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 TASK DEFINITION 

Since many years, people have been interested in finding ways to use data in control 

theory [1]. For classical control approaches, physical dynamic models are necessary 

for a fairly accurate description of the actual underlaying behavior of the system. To 

obtain such models for complex dynamical systems is often an extremely hard task to 

achieve [2]. Therefore, the problem of finding such a model from measured data has 

become a mature research field [1] because data-driven models are based on 

observations and measurements of the true system and only require a minimum 

amount of prior knowledge of the system [2]. 

One data-driven algorithm developed for system identification and dimensionality 

reduction is Dynamic Mode Decomposition (DMD).

In this work, the functionality of this algorithm will be demonstrated for n-fold Electrical

RLC Oscillators.

First, the pure DMD algorithm is explained. Then, a further development of DMD for 

input output systems is tested, with which the effects of system control and open loop 

dynamics can be separated. Finally, the results are used to develop a full state 

feedback controller that can be used to control a system with a reduced dimension 

model. 
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Figure 1: Considered Cascaded RLC Circuit 

 SYSTEM ANALYSIS 

The experimental system to which the DMD algorithm is to be applied consists of 𝒏 

RLC elements connected in series, as shown in Figure 1.  

 

 

 

 

 

 

 

If one knows the voltage over each component, these systems can be modeled easily 

using differential equations with Kirchhoff’s mesh and node law [3]. Since the state

space representation of an n-fold system can be simply derived, this system is taken as 

a show case because the properties can be easily determined for an arbitrary 

configuration and compared to the results of DMD.  

In the following, the state space representation for an nth-order system according to 

Cano et al [3, pp. 12-16] is explained shortly.  

The mesh equation per mesh is based on the previous voltage and the node equation 

per node is based on the upcoming current. Therefore, a predictable pattern can be 

noticed, resulting in following equations 

 

 𝐢𝐧(𝐭) = 𝐂𝐧�̇�𝑪𝒏(𝒕), 

𝐢𝐧−𝟏(𝐭) = 𝐂𝐧−𝟏�̇�𝑪𝒏−𝟏(𝒕) + 𝐂𝐧�̇�𝑪𝒏(𝒕),  

                  … 

𝒊𝟏(𝒕) =  ∑ 𝐂𝐧�̇�𝑪𝒏(𝒕)

𝑵

𝒏=𝟏

 

(1) 

 

and 

 

 𝒖𝐢𝐧(𝐭) = 𝒖𝐂𝟎(𝒕) = 𝑹𝟏𝒊𝟏(𝒕) + 𝑳𝟏

𝒅𝒊𝟏(𝒕)

𝒅𝒕
+ 𝒖𝒄𝟏(𝒕), 

𝒖𝐂𝟏(𝒕) = 𝑹𝟐𝒊𝟐(𝒕) + 𝑳𝟐

𝒅𝒊𝟐(𝒕)

𝒅𝒕
+ 𝒖𝒄𝟐(𝒕), 

                                 … 

𝒖𝐂𝐧−𝟏(𝒕) = 𝑹𝒏𝒊𝒏(𝒕) + 𝑳𝒏

𝒅𝒊𝒏(𝒕)

𝒅𝒕
+ 𝒖𝒄𝒏(𝒕). 

(2) 
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Combining equations 1 and 2 results in 

 

 
𝒖𝐢𝐧(𝒕) = 𝑹𝟏 [∑ 𝑪𝒏�̇�𝑪𝒏(𝒕)

𝑵

𝒏=𝟏

] + 𝑳𝟏 [∑ 𝑪𝒏�̈�𝑪𝒏(𝒕)

𝑵

𝒏=𝟏

] + 𝒖𝑪𝟏(𝒕), 

𝒖𝑪𝟏(𝒕) = 𝑹𝟐 [∑ 𝑪𝒏�̇�𝑪𝒏(𝒕)

𝑵

𝒏=𝟐

] + 𝑳𝟐 [∑ 𝑪𝒏�̈�𝑪𝒏(𝒕)

𝑵

𝒏=𝟐

] + 𝒖𝑪𝟐(𝒕), 

                                              … 

𝒖𝑪𝒏−𝟏(𝒕) = 𝑹𝒏𝑪𝒏�̇�𝑪𝒏(𝒕) + 𝑳𝒏𝑪𝒏�̈�𝑪𝒏(𝒕) + 𝒖𝑪𝒏(𝒕), 

(3) 

 

from which the matrix form  

 

 𝑴�̈�(𝒕) + 𝑫�̇�(𝒕) +  𝑺𝒛(𝒕) =  𝑮𝒖(𝒕) (4) 

can be read. Rewriting this form to  

 

 �̈�(𝒕) = −𝑴−𝟏𝑫�̇�(𝒕) − 𝑴−𝟏𝑺𝒛(𝒕) + 𝑴−𝟏𝑮𝒖(𝒕) (5) 

and introducing new variable names 𝒙𝟏(𝒕) = 𝒛(𝒕), 𝒙𝟐(𝒕) = �̇�(𝒕) the final state space 

notation  

 

 [
�̇�𝟏(𝒕)
�̇�𝟐(𝒕)

] =  [
𝟎 𝑰

−𝑴−𝟏𝑺 −𝑴−𝟏𝑫
] [

𝒙𝟏(𝒕)
𝒙𝟐(𝒕)

] + [
𝟎

𝑴−𝟏𝑮
]𝒖(𝒕) (6) 

 

is created. 
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 DYNAMIC MODE DECOMPOSITION 

 Fundamentals 

Dynamic Mode Decomposition (DMD) is a mathematical technique used for analyzing 

and modeling complex dynamical systems. It was initially discussed by Peter J. Schmid 

in 2010 [4]. DMD is particularly useful when dealing with systems that are too complex 

to be analyzed directly, but whose behavior can be observed or measured [5].  

The approach involves decomposing the system’s behavior into a set of dynamic 

modes each of which represents a distinct oscillation or pattern in the measurements. 

These dynamic modes, together with corresponding eigenvalues, can be used to 

approximate the systems behavior over time, making it easier to understand and 

predict [6]. So, the algorithm consists of collecting data over time and constructing a 

matrix that describes the systems dynamics. The matrix is decomposed using linear 

algebra techniques (such as Singular Value Decomposition – SVD) to extract the 

dynamic modes [6].  

DMD has been applied to a wide range of systems in various fields, including fluid 

dynamics, neuroscience, finance and materials science. However complex, many of 

these systems evolve on a low-dimensional attractor that may be characterized by 

spatiotemporal coherent structures (dynamic modes) [7]. 

In the following, the algorithm is explained in detail according to Kutz et al [6] [8]. 

At basic level, DMD examines the relationships between pairs of data from a dynamical 

system. The measurements 𝒙𝒌 and 𝒙𝒌+𝟏 are taken to be roughly connected by a linear 

operator 

 

 𝒙𝒌+𝟏 = 𝑨 𝒙𝒌 (7) 

 

where 𝒌 stands for the temporal iteration from a discrete dynamical system and 𝒙𝒌  ∈

 ℝ𝒏 and 𝑨 ∈ ℝ𝒏×𝒏. It is assumed that this approximation holds true for all measurement 

pairs. 

The measurements can be taken at regular time intervals. Therefore, one sets up the 

two data matrices 
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𝑿 =  [

| |       
𝒙𝟏 𝒙𝟐 …

| |       

|
𝒙𝒎−𝟏

|
] (8) 

 

and 

 

 
𝑿′ =  [

| |       
𝒙𝟐 𝒙𝟑 …

| |       

|
𝒙𝒎

|
] (9) 

 

where 𝒎 is the total number of measurement points and 𝑿′ is the time-shifted 

measurement point matrix of 𝑿. According to Formula 7, this is needed for the 

relationship 

 

 𝑿′ = 𝑨𝑿. (10) 

To solve for operator matrix 𝑨, it is theoretically possible to calculate as the following 

 

 𝑨 = 𝑿′𝑿⟊ (11) 

where ⟊ is the Moore-Penrose pseudoinverse. Therefore, 𝑨 is a least-square 

regression, minimizing ∑  ‖𝒙𝒌+𝟏 − 𝑨 𝒙𝒌‖𝟐𝒌 . Due to high matrix dimensionality for high-

order systems, this computation will be very inefficient. A faster method for determining 

the pseudoinverse is via the SVD with a truncation value 𝒓. The matrix 𝑿 will be 

thereby reduced in dimension  

 

 𝑿 = 𝑼𝚺𝐕∗ =  [�̃�     �̃�𝒓𝒆𝒎] [
�̃� 𝟎
𝟎 �̃�𝒓𝒆𝒎

] [
�̃�∗

�̃�𝒓𝒆𝒎
∗ ]  ≈ �̃��̃��̃�∗ (12) 

 

with 𝑼 𝝐 ℝ𝒏×𝒏, 𝚺 𝝐 ℝ𝒏×𝒎−𝟏, 𝑽∗ 𝝐 ℝ𝒎−𝟏×𝒎−𝟏, �̃� 𝝐 ℝ𝒏×𝒓, �̃� 𝝐 ℝ𝒓×𝒓, �̃�∗𝝐 ℝ𝒓×𝒎−𝟏 to compute 

�̅�  ∈ ℝ𝒏×𝒏 with 

 

 �̅� = 𝑿′�̃� �̃�−𝟏�̃�∗. (13) 

Note: * denotes the complex conjugate transpose. 

 

If the number of states is significantly greater than one and if the truncation value is 

significantly smaller than the number of states, then there is an even computationally 

more efficient way to calculate the model matrix. This is done by projecting the 

measurement vectors 𝒙𝒌 to a low-rank subspace of dimension 𝒓 with the transformation 
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�̃�𝒌 = �̃�∗ 𝒙𝒌. For the model matrix �̃� this results in the transformation �̃� = �̃�∗�̅� �̃�. 

Therefore, the final reduced-order matrix �̃� 𝝐 ℝ𝒓×𝒓 is calculated by 

 

 �̃� = �̃�∗𝑿′�̃� �̃�−𝟏 (14) 

which has many of the same eigenvalues as �̅�. 

By the eigendecomposition of �̃� one gets the eigenvalues 𝚲 and eigenvectors 𝑾. The 

dynamic modes of 𝑨  can be obtained by calculating 

 

 𝚽 = 𝑿′�̃� �̃�−𝟏 𝑾. (15) 

Once the dynamic modes and the reduced-order matrix are obtained, there are various 

ways to use them. Two use cases are: 

 

• Mode Analysis: One can analyze the spatial and temporal patterns of each 

dynamic mode to gain insights into the behavior of the system. For example, 

you can identify the dominant frequencies [9]. 

 

• Reduced-Order-Modeling: One can use the dynamic modes to develop 

reduced-order models of the system. By representing the systems behavior in 

terms of its dominant dynamic modes, one can reduce the dimensionality of the 

state space representation (reduced-order state matrix). This can be useful for 

predicting the systems behavior and designing control strategies that are 

computationally efficient [8]. 

 

Mode Analysis can be applied to the RLC system using the native DMD approach 

(Chapter 3.3). For prediction and controller design, an extension of the DMD algorithm 

is needed since the system has an external control input. This will be discussed in 

Chapters 4 and 5. 
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 Measurement Data Generation 

Based on the derivations in Chapter 2, a Matlab algorithm was written by Gres [3] to 

represent the state space for an n-fold system. This algorithm is used in this work to 

produce time-series data as input for DMD algorithm. In this chapter, as a showcase, a 

system with 50 RLC circuits (= 100 states) and the parameters R=1, L=1 and C=1 is 

chosen. Here it should be said in advance: The results for variations of the parameters 

can be derived analogous.  

First, the state space of this system must be discretized. The Matlab command c2d is 

used for this. The sampling time is set to 0.1 seconds (here one has to be careful that if 

the sampling time is too large, then due to the Shannon-Nyquist theorem, the dynamic 

behavior could be distorted). To get usable measurement data, these must only come 

from an unforced system, since the native DMD algorithm cannot distinguish between 

system dynamics and control input. For this purpose, the system response is

generated for initial states (all states set to 1) using the Matlab command initial.

 Mode Analysis 

As already mentioned, the Dynamic Modes represent a pattern, the temporal behavior 

is expressed with the associated eigenvalues. The general behavior of a mode can be 

stated depending on the position of the eigenvalues [9]: 

 

• 𝚲 inside unit circle: decaying mode 

• 𝚲 outside unit circle: growing mode 

• 𝚲 on unit circle: oscillating mode 

 

To analyze the temporal behavior in detail, the DMD eigenvalue 𝚲 (see formula (15)) is 

converted first to a continuous-time eigenvalue 𝛀 with following formula [9] 

 

 𝛀 =
𝐥𝐧(𝚲)

𝚫𝐭
=  𝛃 + 𝐣𝛚. (16) 

 

Then, 

 

 𝒆𝛀𝐭 = 𝐞𝛃𝐭 𝒄𝒐𝒔(𝛚𝐭) + 𝒋𝐞𝛃𝐭𝒔𝒊𝒏(𝛚𝐭) (17) 

 

can be used to calculate the behavior over time [9]. 
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Figure 2: Dynamic Mode Evolution of 50 RLC Circuits 

Figure 2 shows the temporal behavior of the modes for the example system where the 

truncation value is equal to the dimension of the original system (no dimension 

reduction to get all modes). 

 

 

 

 

 

 

 

 

 

 

 

 

As one can see, most modes fall off directly and converge to 0. So, most modes have 

an influence only shortly after the impulse and then become vanishing. Only a few 

modes dominate the behavior over time. The following table shows the 10 in absolute 

value smallest (corresponding to the slowest) continuous eigenvalues of the system. 

Here one can see that there is a significant jump between the 8th and 9th eigenvalue. 

 

 

This is also visually depicted in Figure 3. 

 

 

Index 1 2 3 4 5 6 7 8 9 10 11 

‖𝛀𝐢‖ 0.00097 0.0088 0.0248 

 

0.0497 0.085 0.1338 0.2022 0.3097 0.5226 

 

0.5226 

 

0.5824 

‖𝛀𝐢‖

min (‖𝛀𝐢‖)
 1 9.0651 25.56 51.31 87.88 138.22 208.77 319.77 538 538 600 

Table 1: 10 slowest Eigenvalues of 50 RLC Circuits 
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Figure 3: 10 smallest normalized Eigenvalues of 50 RLC Circuits 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, the assumption is close that the system can be represented by a system 

with 8 modes resp. 8 states to get the best tradeoff between accuracy and dimension 

reduction. To verify this, the DMD systems are created with 40 states, 8 states, 4 states 

and 2 states and the output of the systems are reconstructed and compared with the 

output of the original system. To calculate the output of the reduced systems, the 

output matrix 𝑪 for these systems is missing so far. This is calculated artificially in this 

case, using the expected output (which is the same as the output of the original 

system) by rearranging the output equation of the state space: 

 

 𝑪𝑫𝑴𝑫 = 𝒚𝒐𝒓𝒊𝒈 ⋅ 𝒙⟊ (18) 

Figure 4a shows the behavior of the original system. The temporal behavior of the 

output corresponds quite exactly with the output of the system with 40 states (Fig. 4b). 

This also holds for the system with 8 states in Figure 4c (q.e.d.). In the system with 4 

states (Fig. 4d) there is a visible deviation in the first 100 seconds after the stimulus, 

but subsequently this course also matches. The assumption for the deviation is that 

here the unrepresented modes are noticeable in the first 100 seconds (see Figure 2). 
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                          (a)                                                                                                           (b) 

 

 

 

 

 

 

 

 

 

             (c)                                                                                                           (d) 

 

 

 

 

 

 

 

 

 

 

 

(e)    

Figure 4: Result of DMD, (a) original system, (b) system with 40 states, (c) 8 states, (d) 4 states, (e) 2 states 
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So, for systems that have only slow changing setpoints the representation with 4 states 

could also work fine, for systems that have many fast setpoint changes this is likely to 

be problematic (will be shown in chapter 4). The temporal output of the system with 2 

states (figure 4e) does not agree at all with the original system. It confirms the 

assumption that here too few dominant modes are used to represent the behavior. 

For all 5 systems, the eigenvalues or poles lie within the right-hand side of the unit 

circle. This fits the plot of the Dynamic Modes since all modes show a decaying 

behavior. 

The time evolution of the states for the reduced systems is similar to that of the 

dynamic modes. In Fig. 4b one can see that there are many states that decay quickly 

and a few that show a very damped behavior. 
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 DYNAMIC MODE DECOMPOSITION WITH CONTROL 

 Fundamentals 

Dynamic Mode Decomposition with Control (DMDc) was developed by Kutz et al in 

2016 [8]. It is an extension of the traditional DMD technique. DMDc incorporates the 

control input information into the DMD analysis to identify the influence of external 

control inputs on the system’s dynamic [6]. It is therefore particularly useful for 

analyzing and predicting the behavior of controlled systems that are subject to external 

input. It also works by decomposing the systems input-output data into a series of 

spatial modes and corresponding temporal dynamics [6].  

The control input is incorporated into the analysis by adding it as an additional input to 

the DMD algorithm. This allows DMDc to identify the effect of the control input on the 

systems behavior and predict how the system will respond to different control inputs in 

the future [8]. In the following, the algorithm according to Kutz et al [6] [8] is explained. 

If a system has a control input, Formula 7 for calculating the future state vector, 

changes as follows: 

 

 𝒙𝒌+𝟏 ≈ 𝑨 𝒙𝒌 + 𝑩 𝒖𝒌 (19) 

 

In addition to the state measurement data matrices 𝑿 und 𝑿′, this results in another 

one for the control input 𝚼: 

 

 
𝚼 =  [

|    |       
𝒖𝟏 𝒖𝟐 …

|    |       

|
𝒖𝒎−𝟏

|
] , 𝒖𝒌 ∈  ℝ𝒍

(20) 

 

Using these three matrices, DMDc now attempts to determine an optimal approximate 

solution for the system matrix 𝑨 and the input matrix 𝑩. 

  

From Formula 10 one gets with 𝐆 = [𝑨 𝑩] and 𝛀 =  [
𝑿
𝚼
] 

 

 𝑿′ = 𝑨𝑿 + 𝑩𝚼 =  [𝑨 𝑩]  [
𝑿
𝚼
] =  𝐆 𝛀. (21) 
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To determine the two unknown matrices in G, it requires a conversion to 𝑮 

 

 𝑮 = [𝑨 𝑩] =  𝑿′ 𝛀⟊ =  𝑿′ [
𝑿
𝚼
]
⟊

. (22) 

 

The best approximation solution corresponds again to the pseudoinverse of 𝛀. For this 

purpose, SVD is applied again, the truncation value is called 𝒑 here. For 𝑮 thus results 

 

 𝑮 ≈ �̅� = 𝑿′�̃� �̃�−𝟏�̃�∗. (23) 

 

To extract matrices 𝑨 and 𝑩 from 𝑮, the matrix �̃� is split into two components 

 

 [𝑨 𝑩] ≈  [�̅� �̅�] ≈ [𝑿′�̃� �̃�−𝟏 �̃�𝟏
∗   𝑿′�̃� �̃�−𝟏�̃�𝟐

∗  ] (24) 

 

where �̃�𝟏  ∈  ℝ𝒏×𝒑 and �̃�𝟐  ∈  ℝ𝒍×𝒑. However, to make this more computationally 

efficient, a reduced-order model with a significantly smaller rank is also sought here. 

For the transformation of 𝒙𝒌, �̃� cannot be used as in DMD, since this matrix defines the 

input subspace instead, as it was obtained from the augmented matrix 𝛀, which 

includes the control inputs. A reduced-order subspace of the output space 𝑿′ is 

employed in order to locate a linear transformation for the states alone. This is realized 

by performing a second SVD for 𝑿′  

 

 𝑿′ = �̂� �̂� �̂�∗ (25) 

with truncation value 𝒓, which is used to transform into a low-rank subspace, resulting 

in 

 

 �̃� =  �̂�∗�̅� �̂� =  �̂�∗𝑿′ �̃� �̃�−𝟏�̃�𝟏
∗ �̂�, 

… 

�̃� =  �̂�∗�̅�  =  �̂�∗𝑿′ �̃� �̃�−𝟏�̃�𝟐
∗  

(26) 

 

where �̃� ∈ ℝ𝒓×𝒓 and �̃� ∈ ℝ𝒓×𝒍. 

The dynamic modes of 𝑨 can be determined similar to DMD: 

 

 𝚽 = 𝑿′�̃� �̃�−𝟏 �̃�𝟏
∗ �̂� 𝑾 (27) 
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Note: Since the truncation value of 𝛀 should be larger than that of 𝑿′ [6], in this work 𝒑 

is set to 𝒑 = 𝒓 + 𝐝𝐢𝐦 (𝒖𝒌). 

Note: There is also a variant for DMDc, for the case that B is already known. Since this 

is rarely the case in practice, this approach is not explained further here. 

 Measurement Data Generation and Forecasting 

For the application of the DMDc algorithm, the measurement data are obtained 

similarly to the way of chapter 3.2. But the difference is that now a signal must be given 

to the control input, so that it can be divided between system dynamics and control 

input to get the system matrix 𝑨 input matrix 𝑩. A sinusoidal oscillation is used as 

control signal. The same system as in chapter 3 is used here again as an example 

system. 

 

If the output matrix 𝑪 is calculated as in chapter 3.3, one has a complete state space 

representation with which one can simulate or predict the behavior of the system. For 

testing, two different signals are used as control input. One is a sine wave with low 

frequency and the other is a square signal with higher frequency. 

The results for the sine wave are good. The reduced DMD system with 40 states (Fig. 

5e) reflects the course of the output of the original system well. With 8 states (Fig. 5g), 

the result is still very good, with a maximal deviation in the range 10−2. With the DMD 

system with 4 states (Fig. 5i), the biggest deviations occur again in the first 100 

seconds in range of 10−1, but the subsequent course is very exact.  

The results with the square signal look different. Here, the system with 40 states (Fig. 

5f) again reproduces the output very accurately. With 8 states (Fig. 5h), the systems 

output follows the original output, but the signal is noisy with deviations in range 100. 

The output of the system with 4 states (Fig. 5j), however, is unusable and shows at 

most a trend. This is due to the unrepresented modes, which are important when a 

rapid signal change occurs.  

Thus, the assumption from chapter 3.3 is confirmed that the accuracy of the dimension 

reduction depends on which control signal is applied to the system. 
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                                (a)                                                                                                                  (b) 

 

 

 

 

                 (c)                                                                                                                 (d)  

 

 

 

 

 

                                (e)                                                                                                                 (f)  

 

 

 

 

 

 

 

 

                                (g)                                                                                                                 (h) 

 

 

 

 

 

 

 

 

                                  (i)                                                                                                                 (j) 

Figure 5: Forecasting results for sine and square signal, (c) and (d) output original system, (e) and (f) 40 states, (g) and (h) 8 states, (i) and (j) 4 states 
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Figure 6: Closed-loop state space 

 STATE VARIABLE FEEDBACK CONTROLLER 

As mentioned in chapter 3.1, one use case of the reduced order state space 

representation is for designing computationally efficient control strategies. This is 

especially interesting for real-time simulations, since the computational effort of a state 

space has the complexity 𝚯(𝒏𝟐𝒓) for 𝑨 ∈  ℝ𝒏×𝒏 and 𝑩 ∈  ℝ𝒏×𝟏 [10] and computation 

effort should be held low to be real-time capable. But also for embedded systems the 

goal is to lower the effort. 

Therefore, an example of a state variable feedback controller with pole placement 

based on a reduced state space is given below. The detailed theory behind state 

feedback control will be not explained in detail in this work, as it is not the scope. A 

detailed explanation can be found in [11], [12], [13].

 Fundamentals 

There are two goals to follow when dealing with state variable feedback systems: 

 

• Determine the controller matrix 𝑲 so that any initial states can be reduced to 

zero (for 𝑡 →  ∞) [11]. 

• The output should converge towards the reference input 𝒓. This will be 

achieved by calculating a filter matrix 𝑾 [11]. 

 

This changes the open-loop system to the closed-loop system depicted in Figure 7. 
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The state space model of the closed control loop results therefore in 

 

 �̇� = (𝑨 − 𝑩𝑲)𝒙 + 𝑩𝑾𝒓,  

…           𝑨𝑪𝑳 

𝒚 = 𝑪𝒙. 

(28) 

 

The closed loop state matrix 𝑨𝑪𝑳 is depending on the controller matrix 𝑲. Since the 

systems behavior is specified by the eigenvalues of the state matrix, the goal is to 

choose the controller matrix 𝑲 in a way, that the system has desired eigenvalues [11].  

One way to do so for Single Input Single Output (SISO) systems is via Ackermann 

Theorem (see [11], [13]) with controllability matrix 𝑷𝒄 and the characteristic equation of 

the desired eigenvalues 𝑷𝒅 for the matrix 𝑨 

𝒌𝑻 = 𝑷𝒄,𝒏
−𝟏 𝑷𝒅(𝝀 → 𝑨). 

(29) 

 

The filter matrix 𝑾 for the discrete system gets calculated by [11] 

 

 𝑾 = [𝑪(𝑰 − (𝑨 − 𝑩𝑲))
−𝟏

𝑩]
−𝟏

.  (30) 

 Application 

As an example, a circuit of 13 coupled RLC circuits is used. This means, the system 

has 26 states. This system shall be reduced to a system of 4 states and based on the 

reduced state space a controller will be designed. The sizes of R, L and C are 

assumed to be 1 again. For the sake of shortness, the process of reducing the system 

via DMDc is here not shown again (see previous chapters). 

Before attempting the method, one has to prove that the system is controllable. To 

prove that the system is controllable, the controllability matrix must have full rank [11]. 

This is the case for this system.  

Next, the step response of the reduced open-loop system and the location of the poles 

will be analyzed. As can be seen in Figure 7, the system converges to 1 in 

approximately 300 seconds without any oscillating or unstable behavior. Looking at the 

location of the poles, one can see, that this is because all poles are located on the real 

axis (high damping). Three of four poles are located close to the unit circle, which can 

be a hint that the system reacts slow.  
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When placing the poles, the focus is on ensuring that the system is robust, i.e. that 

overshoots do almost not occur and that the system becomes faster. This is attempted 

with a heuristic strategy, since the goal is not to design an optimal controller, but to 

improve the system response in general. 

 

 

 

 

 

 

 

 

 

 

Therefore, the most right pole was shifted a bit to the left (see Table 2) as this pole has 

the biggest impact on the speed. 

 

open-loop poles 0.4054 0.9986 0.9716 0.9844 

closed-loop poles 0.4054 0.99 0.9716 0.9844 

Table 2: Open-loop and closed-loop poles 

   

Figure 8 shows the step response of the closed-loop system compared to the open-

loop. The setpoint is reached within ~70 seconds without any overshoots, so this is a 

good improvement in speed while maintaining robustness. 

Moving the poles further would have resulted in undesirable overshoots (not shown 

here). 

To test the controller, an experiment is created within Simulink (Figure 9). The setpoint 

is applied to the original open-loop system and to the reduced open-loop system in 

order to detect potential deviations due to the dimensional reduction. In addition, the 

setpoint is then applied to the original closed-loop system and to the reduced closed-

loop system whose inputs are based on the reduced closed-loop system states.  

 

Figure 11 and Figure 12 show the results for two different setpoint signals.  

Figure 7: Step response and location of poles for open-loop 
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Figure 9: Simulink experiment for controller testing 

 

 

       Figure 8: Closed-loop step response 
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          Figure 10: System response for sine wave 

 

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

       Figure 11: System response for square 
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In both cases it can be seen that the closed-loop controller follows the setpoint much 

better compared to the open-loop system. This is the proof that the controller works. 

Only when testing with the square signal it is noticeable that the reduced system shows 

an undesired deflection during the setpoint change, but this does not appear in the 

original system. Again, the assumption is that the deviation during the jumping setpoint 

change is due to an underrepresentation of the modes during the jump. 

 

It should be noted that the simulation of the controller is based on the states of the 

model and not on measured states (which is ok for a simulation, but not for a real 

controller). If such a controller would be implemented in an ECU, either the states 

would have to be measured, if possible, or, if the system is too complex or sensors too 

expensive, an observer would have to be implemented additionally to estimate the 

states (system is observable). 

Another theoretical possibility would be to use this controller model as a feedforward

control for system stabilization and to control remaining deviations with e.g. a PID

controller. 
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 CONCLUSION 

In this work, a system identification and dimensionality reduction method called 

Dynamic Mode Decomposition (DMD) was applied to cascaded RLC circuits. Initially, 

the native algorithm was used. Here it is shown how one can analyze the Dynamic 

Modes and their influence on the temporal behavior. Since the system under 

consideration is a system with a control input, an extension of DMD, namely DMDc was 

applied to distinguish the difference between control signal and system dynamics. The 

results of this can be used to predict the output of the system with a reduced state 

space representation. Here it was shown that the success of the dimensionality 

reduction depends on the type of control signal used to simulate the behavior. 

Last but not least, DMDc was used to design a state controller that was designed on a

reduced state space.
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 APPENDIX 

 Script for DMD Analysis 

clear 
% main program 
  
%% define variables 
% parameters for RLC system 
rlcDim=50; 
R = ones(1,rlcDim)*1; 
L = R; 
C = R; 
Ts = 0.1; 
x0 = ones(1,2*rlcDim); 
  
%dimension for DMD 
dim=20; 
states=2*dim; 
% simulation time for continuous system 
simEnd=1000; 
 
%% calculate system 
[M,N,A,B] = RLC_osc(R, L, C); 
[Ac,Bc,Cc,Dc] = RLC_ss(M, N, A, B); 
sys = ss(Ac,Bc,Cc,Dc); 
sys_d = c2d(sys,Ts); 
  
%% plot of unforced system for continuous system 
[y,t,x] = initial(sys, x0, simEnd); %plots the unforced 
system response 
figure(1); 
subplot(3,1,1); 
plot(t,x); 
legend('x1', 'x2', 'x3', 'x4', 'x5', 'x6'); 
title('plot of system states for continuous system'); 
xlabel('time in s'); 
ylabel('amplitude'); 
xlim([0 1000]); 
  
subplot(3,1,2); 
plot(t,y); 
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title('plot of output for continuous system'); 
xlabel('time in s'); 
ylabel('amplitude'); 
xlim([0 1000]); 
ylim([1 2.5]); 
  
subplot(3,1,3); 
pzmap(sys); 
title('poles and zeros of continuous system'); 
  
%% plot of unforced system for discrete system 
[y,t,x] = initial(sys_d, x0, simEnd); %plots the unforced 
system response 
y_rec=y; 
figure(2); 
subplot(3,1,1); 
plot(t,x); 
title('plot of system states for discrete system'); 
xlabel('time in s'); 
ylabel('amplitude'); 
xlim([0 1000]); 
  
subplot(3,1,2); 
plot(t,y); 
title('plot of output for discrete system'); 
xlabel('time in s'); 
ylabel('amplitude'); 
xlim([0 1000]); 
ylim([1 2.5]); 
  
subplot(3,1,3); 
pzmap(sys_d); 
title('poles and zeros of discrete system'); 
xlim([0.5 1.5]); 
  
%% DMD 
% create X1 and X2 
X1 = x(1:length(t)-1,:); 
X1 = X1'; 
X2 = x(2:length(t),:); 
X2 = X2'; 
x0 = ones(1,states); 
% calculate reduced A matrix (DMD) 
[A_dmd, dynModes, U] = Dmd(X1,X2, states); 
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sys_dmd = ss(A_dmd,[],[],[],Ts); 
  
[y,t,x] = initial(sys_dmd, x0, 1000); %plots the unforced 
system response 
  
figure(3); 
subplot(3,1,1); 
plot(t,x); 
title('plot of system states for dmd system'); 
xlabel('time in s'); 
ylabel('amplitude'); 
xlim([0 1000]); 
  
% calculate C matrix for reduced dmd system 
C_dmd = y_rec' * pinv(x'); 
% calculate output with C matrix 
for i = 1:length(x) 
    y(i) = C_dmd * x(i,:)'; 
end 
  
subplot(3,1,2); 
plot(t,y); 
title('plot of output for dmd system'); 
xlabel('time in s'); 
ylabel('amplitude'); 
xlim([0 1000]); 
ylim([1 2.5]); 
  
subplot(3,1,3); 
eigW = eig(sys_dmd.A); 
plot(real(eigW),imag(eigW), 'x'); 
title('poles of dmd system'); 
ylabel('Imaginary Axis'); 
xlabel('Real Axis'); 
viscircles([0 0], 1, 'color', [.5 .5 .5], 'LineStyle', 
':', 'LineWidth', 1); 
ylim([-1 1]); 
xlim([0.5 1.5]); 
  
figure(4); 
 
% calculate behavior of dynamic modes 
 
for i=1:length(eigW) 
   cont = log(complex(eigW(i)))/Ts;  
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   modeBhvor = exp(cont*t); 
   plot(t,modeBhvor); 
   hold on; 
end 
 
title('Dynamic Mode Evolution'); 
xlabel('time in s'); 
ylabel('Amplitude'); 
  
%% helper functions 
  
function [M,N,A,B] = RLC_osc(R, L, C) 
  
    % get size of array(s) 
    order = length(R); 
     
    % create base matrices 
    M=zeros(order); 
    N=zeros(order); 
    A=-1*eye(order); 
    B=zeros(order,1); 
     
    for row = 1:order 
        for column = row:order 
            %fill matrices with corresponding value pairs 
            M(row, column) = L(row)*C(column); 
            N(row, column) = R(row)*C(column); 
             
            if row > 1 
          %fill matrix A with ones under the main diagonal 
                A(row, row-1) = 1; 
            end 
        end 
    end 
     
    B(1) = 1; 
end 
  
function [Ac,Bc,Cc,Dc] = RLC_ss(M, N, A, B) 
    %get order of resulting matrices 
    order = length(B); 
     
    %build matrices 
    S = [eye(order), zeros(order); 
        zeros(order), M]; 
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    T = [zeros(order), eye(order); 
        A, -N]; 
     
    %calculate Ac and Bc 
     
    Ac=S\T; 
    Bc=S\[zeros(order,1); B]; 
    Cc=zeros(1,order); 
    Cc(1,order)=1; 
    Cc=[Cc zeros(1, order)]; 
    Dc=0; 
end 
  
function [A_dmd, psi, U] = Dmd(X1, X2, dim) 
    % SVD for X1 
    [U,S,V] = svds(X1,dim); 
  
    % koopman matrix (reduced A) 
    A_dmd = U'*X2*V*inv(S); 
     
    % calculate dynamic modes 
    [eigV, eigW]=eig(A_dmd); 
    psi = X2*V*inv(S)*eigV; 
end 
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 Script for DMDc Analysis 

clear 
% main program 
  
%% define variables 
% parameters for RLC system 
rlcDim=50; 
nrStates= rlcDim*2; 
R = ones(1,rlcDim)*1; 
L = ones(1,rlcDim)*1; 
C = ones(1,rlcDim)*1; 
Ts = 0.1; 
  
%dimension for DMD 
dmdDim=20; 
dmdStates=dmdDim*2; 
% simulation time for continuous system 
simEnd=1000; 
%% calculate system 
[M,N,A,B] = RLC_osc(R, L, C); 
[Ac,Bc,Cc,Dc] = RLC_ss(M, N, A, B); 
sys = ss(Ac,Bc,Cc,Dc); 
sys_d = c2d(sys,Ts); 
%% plot for discrete system 
  
t = 0:Ts:simEnd; 
u = 100*sin(0.01*t); % signal for DMD measurement data 
u2 = u; 
%u2=1000*0.5*(square(2*pi*0.01*t)+1); % test signal 
  
[y,t,x] = lsim(sys_d, u, t);  
[y2,t2,x2] = lsim(sys_d, u2, t);  
figure(2); 
subplot(3,1,1); 
plot(t2,u2); 
title('input'); 
subplot(3,1,2); 
plot(t2,x2); 
title('system states'); 
subplot(3,1,3); 
plot(t,y2); 
title('output'); 
xlabel('time in s'); 
ylabel('amplitude'); 
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%% DMDc 
% create X1 and X2 and Y 
X1 = x(1:length(t)/2-1,:); 
X1 = X1'; 
X2 = x(2:length(t)/2,:); 
X2 = X2'; 
Y = u(1:length(t)/2-1); 
% calculate reduced A matrix (DMD) 
[A_dmd, B_dmd, U_hat] = dmdwc(X1,X2,Y,dmdStates, 
nrStates); 
  
sys_dmd = ss(A_dmd,B_dmd,[],[],Ts); 
  
% simulate system with dmd matrices 
[y,t,x] = lsim(sys_dmd, u2, t); 
  
% reconstruct original states out of dmd results to 
compare accuracy 
x_rec = []; 
for i = 1:length(x) 
    x_rec(i,:) = x(i,:) * U_hat'; 
    y_rec(i) = Cc * x_rec(i,:)'; 
end 
  
% calculate C matrix for reduced dmd system 
C_dmd = y_rec * pinv(x'); 
  
% calculate output with C matrix 
for i = 1:length(x) 
    y(i) = C_dmd * x(i,:)'; 
end 
  
figure(3); 
subplot(3,1,1); 
plot(t2,u2); 
title('input'); 
subplot(3,1,2); 
plot(t,x); 
title('system states'); 
subplot(3,1,3); 
plot(t,y); 
title('output'); 
xlabel('time in s'); 
ylabel('amplitude'); 
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%% helper functions 
  
function [A_dmd, B_dmd, U_hat] = dmdwc(X1, X2, Y, dim, 
nrStates) 
    % create Omega 
    OM = [X1;Y]; 
     
    % SVD for input space omega, truncation value p must 
be larger than 
    % that of X -> more returned singular values 
    [U_tilde,S_tilde,V_tilde] = svds(OM, min(dim+1, 
nrStates)); 
     
    % U_tilde1 corresponds to X1 (dim=nrStates), U_tilde2 
to Y (dim=1) 
    U_tilde1 = U_tilde(1:nrStates,:); 
    U_tilde2 = U_tilde(nrStates+1,:); 
     
    % SVD for output space X2 
    [U_hat, S_hat, V_hat] = svds(X2, dim); 
  
    % compute A_dmd and B_dmd 
    A_dmd = 
U_hat'*X2*V_tilde*pinv(S_tilde)*U_tilde1'*U_hat; 
    B_dmd = U_hat'*X2*V_tilde*pinv(S_tilde)*U_tilde2'; 
end 
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 Script for Controller Design 

clear 
% main program 
  
%% define variables 
% parameters for RLC system 
rlcDim=13; 
nrStates= rlcDim*2; 
R = ones(1,rlcDim)*1; 
L = ones(1,rlcDim)*1; 
C = ones(1,rlcDim)*1; 
Ts = 0.1; 
  
%dimension for DMD 
dmdDim=2; 
dmdStates=dmdDim*2; 
% simulation time for continuous system 
simEnd=1000; 
%% calculate system 
[M,N,A,B] = RLC_osc(R, L, C); 
[Ac,Bc,Cc,Dc] = RLC_ss(M, N, A, B); 
sys = ss(Ac,Bc,Cc,Dc); 
sys_d = c2d(sys,Ts); 
Ad = sys_d.A; 
Bd = sys_d.B; 
Cd = sys_d.C; 
Dd = sys_d.D; 
  
t = 0:Ts:simEnd; 
u = 300*sin(0.01*t); 
  
[y,t,x] = lsim(sys_d, u, t);  
  
%% DMDc 
% create X1 and X2 and Y 
X1 = x(1:length(t)/2-1,:); 
X1 = X1'; 
X2 = x(2:length(t)/2,:); 
X2 = X2'; 
Y = u(1:length(t)/2-1); 
% calculate reduced A matrix (DMD) 
[A_dmd, B_dmd, U_hat] = dmdwc(X1,X2,Y,dmdStates, 
nrStates); 
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sys_dmd = ss(A_dmd,B_dmd,[],[],Ts); 
  
% simulate system with dmd matrices 
[y,t,x] = lsim(sys_dmd, u, t); 
  
% reconstruct original states out of dmd results to 
compare accuracy 
x_rec = []; 
for i = 1:length(x) 
    x_rec(i,:) = x(i,:) * U_hat'; 
    y_rec(i) = Cc * x_rec(i,:)'; 
end 
  
% calculate C matrix for reduced dmd system 
C_dmd = y_rec * pinv(x'); 
  
% calculate output with C matrix 
for i = 1:length(x) 
    y(i) = C_dmd * x(i,:)'; 
end 
  
% setup whole dmd system 
sys_dmd = ss(A_dmd,B_dmd,C_dmd,[],Ts); 
  
ctrlblty = rank(ctrb(sys_dmd)); % Prüfe dessen 
Steuerbarkeit 
EW = [0.4054 0.99 0.9716 0.9844]; % Gewünschte Eigenwerte 
k = place(A_dmd,B_dmd,EW); % Reglerentwurf mittels 
Polvorgabe 
W_dmd=inv(C_dmd*inv(eye(4)- (A_dmd-B_dmd*k))*B_dmd);  
  
sys_dmdCl = ss(A_dmd - B_dmd*k,B_dmd*W_dmd,C_dmd,[],Ts); 
figure(2); 
step(sys_dmd); 
hold on; 
step(sys_dmdCl); 
grid on; 
legend('open-loop','closed-loop'); 
  
figure(3); 
subplot(3,1,1); 
plot(t,u); 
title('input'); 
subplot(3,1,2); 
plot(t,x);
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title('system states'); 
subplot(3,1,3); 
plot(t,y); 
title('output'); 
xlabel('time in s'); 
ylabel('amplitude'); 
  
sim("dmdc_controllersim.slx"); 
  
figure(4); 
subplot(3,1,1); 
plot(setpoint,'LineWidth',1.5); 
grid on; 
ylim([-30 30]); 
ylabel('voltage in V'); 
title('response of open and closed loop system'); 
legend('setpoint'); 
subplot(3,1,2); 
plot(oLOrig,'LineWidth',1.5); 
hold on; 
plot(oLRed,':','LineWidth',1.5); 
grid on; 
ylim([-30 30]); 
ylabel('voltage in V'); 
legend('open-loop orig', 'open-loop red'); 
hold on; 
subplot(3,1,3); 
plot(cLOrig,'LineWidth',1.5); 
hold on; 
plot(cLRed,':', 'LineWidth',1.5); 
xlabel('time in seconds'); 
grid on; 
ylim([-30 30]); 
ylabel('voltage in V'); 
legend('closed-loop orig', 'closed-loop red'); 
  
  

 


