

Evaluation of Dynamic Mode Decomposition

for Cascaded Electrical Oscillators

Scientific Project

Course of Studies Mechatronics

at Ravensburg-Weingarten University of Applied Sciences

by

Daniel Peters

March 2023

Student Number 35115

Supervisor Prof. Dr. Lothar Berger

 Stephan Scholz M.Sc.

Date 27.03.2023 Seite - II

Table of Contents

 TASK DEFINITION .. 1

 SYSTEM ANALYSIS ... 2

 DYNAMIC MODE DECOMPOSITION ... 4

 Fundamentals .. 4

 Measurement Data Generation .. 7

 Mode Analysis ... 7

 DYNAMIC MODE DECOMPOSITION WITH CONTROL ..12

Fundamentals...12

Measurement Data Generation and Forecasting...14

 STATE VARIABLE FEEDBACK CONTROLLER ...16

 Fundamentals ...16

 Application ..17

 CONCLUSION ...22

 REFERENCES ...23

 APPENDIX ...25

Date 27.03.2023 Seite - III

List of Figures

Figure 1: Considered Cascaded RLC Circuit ... 2

Figure 2: Dynamic Mode Evolution of 50 RLC Circuits .. 8

Figure 3: 10 smallest normalized Eigenvalues of 50 RLC Circuits ... 9

Figure 4: Result of DMD, (a) original system, (b) system with 40 states, (c) 8 states, (d) 4

states, (e) 2 states .. 10

Figure 5: Forecasting results for sine and square signal, (c) and (d) output original system,

(e) and (f) 40 states, (g) and (h) 8 states, (i) and (j) 4 states ... 15

Figure 7: Closed-loop state space ... 16

Figure 8: Step response and location of poles for open-loop .. 18

Figure 9: Closed-loop step response ... 19

Figure 10: Simulink experiment for controller testing .. 19

Figure 11: System response for sine wave .. 20

Figure 12: System response for square .. 20

Date 27.03.2023 Seite - IV

List of Tables

Table 1: 10 slowest Eigenvalues of 50 RLC Circuits .. 8

Table 2: Open-loop and closed-loop poles ... 18

Date 27.03.2023 Seite - V

List of Abbreviations

DMD Dynamic Mode Decomposition

DMDc Dynamic Mode Decomposition with Control

ECU Electronic Control Unit

RLC Resistor Inductor Capacitor

SISO Single Input Single Output

SVD Singular Value Decomposition

Date 27.03.2023 Seite - 1 - von - 24

 TASK DEFINITION

Since many years, people have been interested in finding ways to use data in control

theory [1]. For classical control approaches, physical dynamic models are necessary

for a fairly accurate description of the actual underlaying behavior of the system. To

obtain such models for complex dynamical systems is often an extremely hard task to

achieve [2]. Therefore, the problem of finding such a model from measured data has

become a mature research field [1] because data-driven models are based on

observations and measurements of the true system and only require a minimum

amount of prior knowledge of the system [2].

One data-driven algorithm developed for system identification and dimensionality

reduction is Dynamic Mode Decomposition (DMD).

In this work, the functionality of this algorithm will be demonstrated for n-fold Electrical

RLC Oscillators.

First, the pure DMD algorithm is explained. Then, a further development of DMD for

input output systems is tested, with which the effects of system control and open loop

dynamics can be separated. Finally, the results are used to develop a full state

feedback controller that can be used to control a system with a reduced dimension

model.

Date 27.03.2023 Seite - 2 - von - 24

Figure 1: Considered Cascaded RLC Circuit

 SYSTEM ANALYSIS

The experimental system to which the DMD algorithm is to be applied consists of 𝒏

RLC elements connected in series, as shown in Figure 1.

If one knows the voltage over each component, these systems can be modeled easily

using differential equations with Kirchhoff’s mesh and node law [3]. Since the state

space representation of an n-fold system can be simply derived, this system is taken as

a show case because the properties can be easily determined for an arbitrary

configuration and compared to the results of DMD.

In the following, the state space representation for an nth-order system according to

Cano et al [3, pp. 12-16] is explained shortly.

The mesh equation per mesh is based on the previous voltage and the node equation

per node is based on the upcoming current. Therefore, a predictable pattern can be

noticed, resulting in following equations

 𝐢𝐧(𝐭) = 𝐂𝐧�̇�𝑪𝒏(𝒕),

𝐢𝐧−𝟏(𝐭) = 𝐂𝐧−𝟏�̇�𝑪𝒏−𝟏(𝒕) + 𝐂𝐧�̇�𝑪𝒏(𝒕),

 …

𝒊𝟏(𝒕) = ∑ 𝐂𝐧�̇�𝑪𝒏(𝒕)

𝑵

𝒏=𝟏

(1)

and

 𝒖𝐢𝐧(𝐭) = 𝒖𝐂𝟎(𝒕) = 𝑹𝟏𝒊𝟏(𝒕) + 𝑳𝟏

𝒅𝒊𝟏(𝒕)

𝒅𝒕
+ 𝒖𝒄𝟏(𝒕),

𝒖𝐂𝟏(𝒕) = 𝑹𝟐𝒊𝟐(𝒕) + 𝑳𝟐

𝒅𝒊𝟐(𝒕)

𝒅𝒕
+ 𝒖𝒄𝟐(𝒕),

 …

𝒖𝐂𝐧−𝟏(𝒕) = 𝑹𝒏𝒊𝒏(𝒕) + 𝑳𝒏

𝒅𝒊𝒏(𝒕)

𝒅𝒕
+ 𝒖𝒄𝒏(𝒕).

(2)

Date 27.03.2023 Seite - 3 - von - 24

Combining equations 1 and 2 results in

𝒖𝐢𝐧(𝒕) = 𝑹𝟏 [∑ 𝑪𝒏�̇�𝑪𝒏(𝒕)

𝑵

𝒏=𝟏

] + 𝑳𝟏 [∑ 𝑪𝒏�̈�𝑪𝒏(𝒕)

𝑵

𝒏=𝟏

] + 𝒖𝑪𝟏(𝒕),

𝒖𝑪𝟏(𝒕) = 𝑹𝟐 [∑ 𝑪𝒏�̇�𝑪𝒏(𝒕)

𝑵

𝒏=𝟐

] + 𝑳𝟐 [∑ 𝑪𝒏�̈�𝑪𝒏(𝒕)

𝑵

𝒏=𝟐

] + 𝒖𝑪𝟐(𝒕),

 …

𝒖𝑪𝒏−𝟏(𝒕) = 𝑹𝒏𝑪𝒏�̇�𝑪𝒏(𝒕) + 𝑳𝒏𝑪𝒏�̈�𝑪𝒏(𝒕) + 𝒖𝑪𝒏(𝒕),

(3)

from which the matrix form

 𝑴�̈�(𝒕) + 𝑫�̇�(𝒕) + 𝑺𝒛(𝒕) = 𝑮𝒖(𝒕) (4)

can be read. Rewriting this form to

 �̈�(𝒕) = −𝑴−𝟏𝑫�̇�(𝒕) − 𝑴−𝟏𝑺𝒛(𝒕) + 𝑴−𝟏𝑮𝒖(𝒕) (5)

and introducing new variable names 𝒙𝟏(𝒕) = 𝒛(𝒕), 𝒙𝟐(𝒕) = �̇�(𝒕) the final state space

notation

 [
�̇�𝟏(𝒕)
�̇�𝟐(𝒕)

] = [
𝟎 𝑰

−𝑴−𝟏𝑺 −𝑴−𝟏𝑫
] [

𝒙𝟏(𝒕)
𝒙𝟐(𝒕)

] + [
𝟎

𝑴−𝟏𝑮
]𝒖(𝒕) (6)

is created.

Date 27.03.2023 Seite - 4 - von - 24

 DYNAMIC MODE DECOMPOSITION

 Fundamentals

Dynamic Mode Decomposition (DMD) is a mathematical technique used for analyzing

and modeling complex dynamical systems. It was initially discussed by Peter J. Schmid

in 2010 [4]. DMD is particularly useful when dealing with systems that are too complex

to be analyzed directly, but whose behavior can be observed or measured [5].

The approach involves decomposing the system’s behavior into a set of dynamic

modes each of which represents a distinct oscillation or pattern in the measurements.

These dynamic modes, together with corresponding eigenvalues, can be used to

approximate the systems behavior over time, making it easier to understand and

predict [6]. So, the algorithm consists of collecting data over time and constructing a

matrix that describes the systems dynamics. The matrix is decomposed using linear

algebra techniques (such as Singular Value Decomposition – SVD) to extract the

dynamic modes [6].

DMD has been applied to a wide range of systems in various fields, including fluid

dynamics, neuroscience, finance and materials science. However complex, many of

these systems evolve on a low-dimensional attractor that may be characterized by

spatiotemporal coherent structures (dynamic modes) [7].

In the following, the algorithm is explained in detail according to Kutz et al [6] [8].

At basic level, DMD examines the relationships between pairs of data from a dynamical

system. The measurements 𝒙𝒌 and 𝒙𝒌+𝟏 are taken to be roughly connected by a linear

operator

 𝒙𝒌+𝟏 = 𝑨 𝒙𝒌 (7)

where 𝒌 stands for the temporal iteration from a discrete dynamical system and 𝒙𝒌 ∈

 ℝ𝒏 and 𝑨 ∈ ℝ𝒏×𝒏. It is assumed that this approximation holds true for all measurement

pairs.

The measurements can be taken at regular time intervals. Therefore, one sets up the

two data matrices

Date 27.03.2023 Seite - 5 - von - 24

𝑿 = [

| |
𝒙𝟏 𝒙𝟐 …

| |

|
𝒙𝒎−𝟏

|
] (8)

and

𝑿′ = [

| |
𝒙𝟐 𝒙𝟑 …

| |

|
𝒙𝒎

|
] (9)

where 𝒎 is the total number of measurement points and 𝑿′ is the time-shifted

measurement point matrix of 𝑿. According to Formula 7, this is needed for the

relationship

 𝑿′ = 𝑨𝑿. (10)

To solve for operator matrix 𝑨, it is theoretically possible to calculate as the following

 𝑨 = 𝑿′𝑿⟊ (11)

where ⟊ is the Moore-Penrose pseudoinverse. Therefore, 𝑨 is a least-square

regression, minimizing ∑ ‖𝒙𝒌+𝟏 − 𝑨 𝒙𝒌‖𝟐𝒌 . Due to high matrix dimensionality for high-

order systems, this computation will be very inefficient. A faster method for determining

the pseudoinverse is via the SVD with a truncation value 𝒓. The matrix 𝑿 will be

thereby reduced in dimension

 𝑿 = 𝑼𝚺𝐕∗ = [�̃� �̃�𝒓𝒆𝒎] [
�̃� 𝟎
𝟎 �̃�𝒓𝒆𝒎

] [
�̃�∗

�̃�𝒓𝒆𝒎
∗] ≈ �̃��̃��̃�∗ (12)

with 𝑼 𝝐 ℝ𝒏×𝒏, 𝚺 𝝐 ℝ𝒏×𝒎−𝟏, 𝑽∗ 𝝐 ℝ𝒎−𝟏×𝒎−𝟏, �̃� 𝝐 ℝ𝒏×𝒓, �̃� 𝝐 ℝ𝒓×𝒓, �̃�∗𝝐 ℝ𝒓×𝒎−𝟏 to compute

�̅� ∈ ℝ𝒏×𝒏 with

 �̅� = 𝑿′�̃� �̃�−𝟏�̃�∗. (13)

Note: * denotes the complex conjugate transpose.

If the number of states is significantly greater than one and if the truncation value is

significantly smaller than the number of states, then there is an even computationally

more efficient way to calculate the model matrix. This is done by projecting the

measurement vectors 𝒙𝒌 to a low-rank subspace of dimension 𝒓 with the transformation

Date 27.03.2023 Seite - 6 - von - 24

�̃�𝒌 = �̃�∗ 𝒙𝒌. For the model matrix �̃� this results in the transformation �̃� = �̃�∗�̅� �̃�.

Therefore, the final reduced-order matrix �̃� 𝝐 ℝ𝒓×𝒓 is calculated by

 �̃� = �̃�∗𝑿′�̃� �̃�−𝟏 (14)

which has many of the same eigenvalues as �̅�.

By the eigendecomposition of �̃� one gets the eigenvalues 𝚲 and eigenvectors 𝑾. The

dynamic modes of 𝑨 can be obtained by calculating

 𝚽 = 𝑿′�̃� �̃�−𝟏 𝑾. (15)

Once the dynamic modes and the reduced-order matrix are obtained, there are various

ways to use them. Two use cases are:

• Mode Analysis: One can analyze the spatial and temporal patterns of each

dynamic mode to gain insights into the behavior of the system. For example,

you can identify the dominant frequencies [9].

• Reduced-Order-Modeling: One can use the dynamic modes to develop

reduced-order models of the system. By representing the systems behavior in

terms of its dominant dynamic modes, one can reduce the dimensionality of the

state space representation (reduced-order state matrix). This can be useful for

predicting the systems behavior and designing control strategies that are

computationally efficient [8].

Mode Analysis can be applied to the RLC system using the native DMD approach

(Chapter 3.3). For prediction and controller design, an extension of the DMD algorithm

is needed since the system has an external control input. This will be discussed in

Chapters 4 and 5.

Date 27.03.2023 Seite - 7 - von - 24

 Measurement Data Generation

Based on the derivations in Chapter 2, a Matlab algorithm was written by Gres [3] to

represent the state space for an n-fold system. This algorithm is used in this work to

produce time-series data as input for DMD algorithm. In this chapter, as a showcase, a

system with 50 RLC circuits (= 100 states) and the parameters R=1, L=1 and C=1 is

chosen. Here it should be said in advance: The results for variations of the parameters

can be derived analogous.

First, the state space of this system must be discretized. The Matlab command c2d is

used for this. The sampling time is set to 0.1 seconds (here one has to be careful that if

the sampling time is too large, then due to the Shannon-Nyquist theorem, the dynamic

behavior could be distorted). To get usable measurement data, these must only come

from an unforced system, since the native DMD algorithm cannot distinguish between

system dynamics and control input. For this purpose, the system response is

generated for initial states (all states set to 1) using the Matlab command initial.

 Mode Analysis

As already mentioned, the Dynamic Modes represent a pattern, the temporal behavior

is expressed with the associated eigenvalues. The general behavior of a mode can be

stated depending on the position of the eigenvalues [9]:

• 𝚲 inside unit circle: decaying mode

• 𝚲 outside unit circle: growing mode

• 𝚲 on unit circle: oscillating mode

To analyze the temporal behavior in detail, the DMD eigenvalue 𝚲 (see formula (15)) is

converted first to a continuous-time eigenvalue 𝛀 with following formula [9]

 𝛀 =
𝐥𝐧(𝚲)

𝚫𝐭
= 𝛃 + 𝐣𝛚. (16)

Then,

 𝒆𝛀𝐭 = 𝐞𝛃𝐭 𝒄𝒐𝒔(𝛚𝐭) + 𝒋𝐞𝛃𝐭𝒔𝒊𝒏(𝛚𝐭) (17)

can be used to calculate the behavior over time [9].

Date 27.03.2023 Seite - 8 - von - 24

Figure 2: Dynamic Mode Evolution of 50 RLC Circuits

Figure 2 shows the temporal behavior of the modes for the example system where the

truncation value is equal to the dimension of the original system (no dimension

reduction to get all modes).

As one can see, most modes fall off directly and converge to 0. So, most modes have

an influence only shortly after the impulse and then become vanishing. Only a few

modes dominate the behavior over time. The following table shows the 10 in absolute

value smallest (corresponding to the slowest) continuous eigenvalues of the system.

Here one can see that there is a significant jump between the 8th and 9th eigenvalue.

This is also visually depicted in Figure 3.

Index 1 2 3 4 5 6 7 8 9 10 11

‖𝛀𝐢‖ 0.00097 0.0088 0.0248

0.0497 0.085 0.1338 0.2022 0.3097 0.5226

0.5226

0.5824

‖𝛀𝐢‖

min (‖𝛀𝐢‖)
 1 9.0651 25.56 51.31 87.88 138.22 208.77 319.77 538 538 600

Table 1: 10 slowest Eigenvalues of 50 RLC Circuits

Date 27.03.2023 Seite - 9 - von - 24

Figure 3: 10 smallest normalized Eigenvalues of 50 RLC Circuits

Therefore, the assumption is close that the system can be represented by a system

with 8 modes resp. 8 states to get the best tradeoff between accuracy and dimension

reduction. To verify this, the DMD systems are created with 40 states, 8 states, 4 states

and 2 states and the output of the systems are reconstructed and compared with the

output of the original system. To calculate the output of the reduced systems, the

output matrix 𝑪 for these systems is missing so far. This is calculated artificially in this

case, using the expected output (which is the same as the output of the original

system) by rearranging the output equation of the state space:

 𝑪𝑫𝑴𝑫 = 𝒚𝒐𝒓𝒊𝒈 ⋅ 𝒙⟊ (18)

Figure 4a shows the behavior of the original system. The temporal behavior of the

output corresponds quite exactly with the output of the system with 40 states (Fig. 4b).

This also holds for the system with 8 states in Figure 4c (q.e.d.). In the system with 4

states (Fig. 4d) there is a visible deviation in the first 100 seconds after the stimulus,

but subsequently this course also matches. The assumption for the deviation is that

here the unrepresented modes are noticeable in the first 100 seconds (see Figure 2).

Date 27.03.2023 Seite - 10 - von - 24

 (a) (b)

 (c) (d)

(e)

Figure 4: Result of DMD, (a) original system, (b) system with 40 states, (c) 8 states, (d) 4 states, (e) 2 states

Date 27.03.2023 Seite - 11 - von - 24

So, for systems that have only slow changing setpoints the representation with 4 states

could also work fine, for systems that have many fast setpoint changes this is likely to

be problematic (will be shown in chapter 4). The temporal output of the system with 2

states (figure 4e) does not agree at all with the original system. It confirms the

assumption that here too few dominant modes are used to represent the behavior.

For all 5 systems, the eigenvalues or poles lie within the right-hand side of the unit

circle. This fits the plot of the Dynamic Modes since all modes show a decaying

behavior.

The time evolution of the states for the reduced systems is similar to that of the

dynamic modes. In Fig. 4b one can see that there are many states that decay quickly

and a few that show a very damped behavior.

Date 27.03.2023 Seite - 12 - von - 24

 DYNAMIC MODE DECOMPOSITION WITH CONTROL

 Fundamentals

Dynamic Mode Decomposition with Control (DMDc) was developed by Kutz et al in

2016 [8]. It is an extension of the traditional DMD technique. DMDc incorporates the

control input information into the DMD analysis to identify the influence of external

control inputs on the system’s dynamic [6]. It is therefore particularly useful for

analyzing and predicting the behavior of controlled systems that are subject to external

input. It also works by decomposing the systems input-output data into a series of

spatial modes and corresponding temporal dynamics [6].

The control input is incorporated into the analysis by adding it as an additional input to

the DMD algorithm. This allows DMDc to identify the effect of the control input on the

systems behavior and predict how the system will respond to different control inputs in

the future [8]. In the following, the algorithm according to Kutz et al [6] [8] is explained.

If a system has a control input, Formula 7 for calculating the future state vector,

changes as follows:

 𝒙𝒌+𝟏 ≈ 𝑨 𝒙𝒌 + 𝑩 𝒖𝒌 (19)

In addition to the state measurement data matrices 𝑿 und 𝑿′, this results in another

one for the control input 𝚼:

𝚼 = [

| |
𝒖𝟏 𝒖𝟐 …

| |

|
𝒖𝒎−𝟏

|
] , 𝒖𝒌 ∈ ℝ𝒍

(20)

Using these three matrices, DMDc now attempts to determine an optimal approximate

solution for the system matrix 𝑨 and the input matrix 𝑩.

From Formula 10 one gets with 𝐆 = [𝑨 𝑩] and 𝛀 = [
𝑿
𝚼
]

 𝑿′ = 𝑨𝑿 + 𝑩𝚼 = [𝑨 𝑩] [
𝑿
𝚼
] = 𝐆 𝛀. (21)

Date 27.03.2023 Seite - 13 - von - 24

To determine the two unknown matrices in G, it requires a conversion to 𝑮

 𝑮 = [𝑨 𝑩] = 𝑿′ 𝛀⟊ = 𝑿′ [
𝑿
𝚼
]
⟊

. (22)

The best approximation solution corresponds again to the pseudoinverse of 𝛀. For this

purpose, SVD is applied again, the truncation value is called 𝒑 here. For 𝑮 thus results

 𝑮 ≈ �̅� = 𝑿′�̃� �̃�−𝟏�̃�∗. (23)

To extract matrices 𝑨 and 𝑩 from 𝑮, the matrix �̃� is split into two components

 [𝑨 𝑩] ≈ [�̅� �̅�] ≈ [𝑿′�̃� �̃�−𝟏 �̃�𝟏
∗ 𝑿′�̃� �̃�−𝟏�̃�𝟐

∗] (24)

where �̃�𝟏 ∈ ℝ𝒏×𝒑 and �̃�𝟐 ∈ ℝ𝒍×𝒑. However, to make this more computationally

efficient, a reduced-order model with a significantly smaller rank is also sought here.

For the transformation of 𝒙𝒌, �̃� cannot be used as in DMD, since this matrix defines the

input subspace instead, as it was obtained from the augmented matrix 𝛀, which

includes the control inputs. A reduced-order subspace of the output space 𝑿′ is

employed in order to locate a linear transformation for the states alone. This is realized

by performing a second SVD for 𝑿′

 𝑿′ = �̂� �̂� �̂�∗ (25)

with truncation value 𝒓, which is used to transform into a low-rank subspace, resulting

in

 �̃� = �̂�∗�̅� �̂� = �̂�∗𝑿′ �̃� �̃�−𝟏�̃�𝟏
∗ �̂�,

…

�̃� = �̂�∗�̅� = �̂�∗𝑿′ �̃� �̃�−𝟏�̃�𝟐
∗

(26)

where �̃� ∈ ℝ𝒓×𝒓 and �̃� ∈ ℝ𝒓×𝒍.

The dynamic modes of 𝑨 can be determined similar to DMD:

 𝚽 = 𝑿′�̃� �̃�−𝟏 �̃�𝟏
∗ �̂� 𝑾 (27)

Date 27.03.2023 Seite - 14 - von - 24

Note: Since the truncation value of 𝛀 should be larger than that of 𝑿′ [6], in this work 𝒑

is set to 𝒑 = 𝒓 + 𝐝𝐢𝐦 (𝒖𝒌).

Note: There is also a variant for DMDc, for the case that B is already known. Since this

is rarely the case in practice, this approach is not explained further here.

 Measurement Data Generation and Forecasting

For the application of the DMDc algorithm, the measurement data are obtained

similarly to the way of chapter 3.2. But the difference is that now a signal must be given

to the control input, so that it can be divided between system dynamics and control

input to get the system matrix 𝑨 input matrix 𝑩. A sinusoidal oscillation is used as

control signal. The same system as in chapter 3 is used here again as an example

system.

If the output matrix 𝑪 is calculated as in chapter 3.3, one has a complete state space

representation with which one can simulate or predict the behavior of the system. For

testing, two different signals are used as control input. One is a sine wave with low

frequency and the other is a square signal with higher frequency.

The results for the sine wave are good. The reduced DMD system with 40 states (Fig.

5e) reflects the course of the output of the original system well. With 8 states (Fig. 5g),

the result is still very good, with a maximal deviation in the range 10−2. With the DMD

system with 4 states (Fig. 5i), the biggest deviations occur again in the first 100

seconds in range of 10−1, but the subsequent course is very exact.

The results with the square signal look different. Here, the system with 40 states (Fig.

5f) again reproduces the output very accurately. With 8 states (Fig. 5h), the systems

output follows the original output, but the signal is noisy with deviations in range 100.

The output of the system with 4 states (Fig. 5j), however, is unusable and shows at

most a trend. This is due to the unrepresented modes, which are important when a

rapid signal change occurs.

Thus, the assumption from chapter 3.3 is confirmed that the accuracy of the dimension

reduction depends on which control signal is applied to the system.

Date 27.03.2023 Seite - 15 - von - 24

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

 (i) (j)

Figure 5: Forecasting results for sine and square signal, (c) and (d) output original system, (e) and (f) 40 states, (g) and (h) 8 states, (i) and (j) 4 states

Date 27.03.2023 Seite - 16 - von - 24

Figure 6: Closed-loop state space

 STATE VARIABLE FEEDBACK CONTROLLER

As mentioned in chapter 3.1, one use case of the reduced order state space

representation is for designing computationally efficient control strategies. This is

especially interesting for real-time simulations, since the computational effort of a state

space has the complexity 𝚯(𝒏𝟐𝒓) for 𝑨 ∈ ℝ𝒏×𝒏 and 𝑩 ∈ ℝ𝒏×𝟏 [10] and computation

effort should be held low to be real-time capable. But also for embedded systems the

goal is to lower the effort.

Therefore, an example of a state variable feedback controller with pole placement

based on a reduced state space is given below. The detailed theory behind state

feedback control will be not explained in detail in this work, as it is not the scope. A

detailed explanation can be found in [11], [12], [13].

 Fundamentals

There are two goals to follow when dealing with state variable feedback systems:

• Determine the controller matrix 𝑲 so that any initial states can be reduced to

zero (for 𝑡 → ∞) [11].

• The output should converge towards the reference input 𝒓. This will be

achieved by calculating a filter matrix 𝑾 [11].

This changes the open-loop system to the closed-loop system depicted in Figure 7.

Date 27.03.2023 Seite - 17 - von - 24

The state space model of the closed control loop results therefore in

 �̇� = (𝑨 − 𝑩𝑲)𝒙 + 𝑩𝑾𝒓,

… 𝑨𝑪𝑳

𝒚 = 𝑪𝒙.

(28)

The closed loop state matrix 𝑨𝑪𝑳 is depending on the controller matrix 𝑲. Since the

systems behavior is specified by the eigenvalues of the state matrix, the goal is to

choose the controller matrix 𝑲 in a way, that the system has desired eigenvalues [11].

One way to do so for Single Input Single Output (SISO) systems is via Ackermann

Theorem (see [11], [13]) with controllability matrix 𝑷𝒄 and the characteristic equation of

the desired eigenvalues 𝑷𝒅 for the matrix 𝑨

𝒌𝑻 = 𝑷𝒄,𝒏
−𝟏 𝑷𝒅(𝝀 → 𝑨).

(29)

The filter matrix 𝑾 for the discrete system gets calculated by [11]

 𝑾 = [𝑪(𝑰 − (𝑨 − 𝑩𝑲))
−𝟏

𝑩]
−𝟏

. (30)

 Application

As an example, a circuit of 13 coupled RLC circuits is used. This means, the system

has 26 states. This system shall be reduced to a system of 4 states and based on the

reduced state space a controller will be designed. The sizes of R, L and C are

assumed to be 1 again. For the sake of shortness, the process of reducing the system

via DMDc is here not shown again (see previous chapters).

Before attempting the method, one has to prove that the system is controllable. To

prove that the system is controllable, the controllability matrix must have full rank [11].

This is the case for this system.

Next, the step response of the reduced open-loop system and the location of the poles

will be analyzed. As can be seen in Figure 7, the system converges to 1 in

approximately 300 seconds without any oscillating or unstable behavior. Looking at the

location of the poles, one can see, that this is because all poles are located on the real

axis (high damping). Three of four poles are located close to the unit circle, which can

be a hint that the system reacts slow.

Date 27.03.2023 Seite - 18 - von - 24

When placing the poles, the focus is on ensuring that the system is robust, i.e. that

overshoots do almost not occur and that the system becomes faster. This is attempted

with a heuristic strategy, since the goal is not to design an optimal controller, but to

improve the system response in general.

Therefore, the most right pole was shifted a bit to the left (see Table 2) as this pole has

the biggest impact on the speed.

open-loop poles 0.4054 0.9986 0.9716 0.9844

closed-loop poles 0.4054 0.99 0.9716 0.9844

Table 2: Open-loop and closed-loop poles

Figure 8 shows the step response of the closed-loop system compared to the open-

loop. The setpoint is reached within ~70 seconds without any overshoots, so this is a

good improvement in speed while maintaining robustness.

Moving the poles further would have resulted in undesirable overshoots (not shown

here).

To test the controller, an experiment is created within Simulink (Figure 9). The setpoint

is applied to the original open-loop system and to the reduced open-loop system in

order to detect potential deviations due to the dimensional reduction. In addition, the

setpoint is then applied to the original closed-loop system and to the reduced closed-

loop system whose inputs are based on the reduced closed-loop system states.

Figure 11 and Figure 12 show the results for two different setpoint signals.

Figure 7: Step response and location of poles for open-loop

Date 27.03.2023 Seite - 19 - von - 24

Figure 9: Simulink experiment for controller testing

 Figure 8: Closed-loop step response

Date 27.03.2023 Seite - 20 - von - 24

 Figure 10: System response for sine wave

 Figure 11: System response for square

Date 27.03.2023 Seite - 21 - von - 24

In both cases it can be seen that the closed-loop controller follows the setpoint much

better compared to the open-loop system. This is the proof that the controller works.

Only when testing with the square signal it is noticeable that the reduced system shows

an undesired deflection during the setpoint change, but this does not appear in the

original system. Again, the assumption is that the deviation during the jumping setpoint

change is due to an underrepresentation of the modes during the jump.

It should be noted that the simulation of the controller is based on the states of the

model and not on measured states (which is ok for a simulation, but not for a real

controller). If such a controller would be implemented in an ECU, either the states

would have to be measured, if possible, or, if the system is too complex or sensors too

expensive, an observer would have to be implemented additionally to estimate the

states (system is observable).

Another theoretical possibility would be to use this controller model as a feedforward

control for system stabilization and to control remaining deviations with e.g. a PID

controller.

Date 27.03.2023 Seite - 22 - von - 24

 CONCLUSION

In this work, a system identification and dimensionality reduction method called

Dynamic Mode Decomposition (DMD) was applied to cascaded RLC circuits. Initially,

the native algorithm was used. Here it is shown how one can analyze the Dynamic

Modes and their influence on the temporal behavior. Since the system under

consideration is a system with a control input, an extension of DMD, namely DMDc was

applied to distinguish the difference between control signal and system dynamics. The

results of this can be used to predict the output of the system with a reduced state

space representation. Here it was shown that the success of the dimensionality

reduction depends on the type of control signal used to simulate the behavior.

Last but not least, DMDc was used to design a state controller that was designed on a

reduced state space.

Date 27.03.2023 Seite - 23 - von - 24

 REFERENCES

[1] Institut für Systemtheorie und Regelungstechnik Universität Stuttgart, "Data-

Driven System Analysis and Control," [Online]. Available: https://www.ist.uni-

stuttgart.de/research/group-of-frank-allgoewer/data-driven-system-analysis-

and-control/. [Accessed 27 February 2023].

[2] S. Hirche, "Data-driven Control," [Online].

Available: https://www.ce.cit.tum.de/en/itr/research/data-driven-control/.

[Accessed 28 February 2023].

[3] O. Cano, A. Gres, K. Thaqi, M. Schichta and D. Schlumberger, High-order

electrical RLC oscillators - PID and LQR control, Weingarten: University of

Applied Sciences Weingarten, 2022, pp. 12-14.

[4] P. J. Schmid, "Dynamic mode decomposition of numerical and experimental

data," Journal of Fluid Mechanics, vol. 656, pp. 5-28, 2010.

[5] Z. Wu, S. L. Brunton and S. Revzen, "Challenges in Dynamic Mode

Decomposition," 7 September 2021. [Online].

Available: https://arxiv.org/pdf/2109.01710.pdf. [Accessed 10 March 2023].

[6] Z. Bai, E. Kaiser, J. Proctor, N. Kutz and S. Brunton, "Dynamic Mode

Decomposition for Compressive System Identification," February 2020.

[Online]. Available: https://arc.aiaa.org/doi/pdf/10.2514/1.J057870.

 [Accessed 5 March 2023].

[7] N. Kutz, S. Brunton, B. Brunton and J. Proctor, Dynamic Mode

Decomposition: Data-Driven Modeling of Complex Systems, New York:

Society for Industrial & Applied Mathematics,U.S., 2016.

[8] J. Proctor, S. Brunton and N. Kutz, "Dynamic Mode Decomposition with

Control," 2016. [Online].

Available: https://epubs.siam.org/doi/epdf/10.1137/15M1013857. [Accessed

2 March 2023].

[9] A. Muniraju, "Analysis of Dynamic Mode Decomposition," May 2018.

[Online].

Available: https://dc.uwm.edu/cgi/viewcontent.cgi?article=2884&context=etd.

[Accessed 15 March 2023].

Date 27.03.2023 Seite - 24 - von - 24

[10] F. L. Gall, "Complexity of Matrix Multiplication and Bilinear Problems," 24

August 2017. [Online]. Available: https://conferences.mpi-inf.mpg.de/adfocs-

17/material/FLG_L3.pdf. [Accessed 11 March 2023].

[11] L. Berger, Advanced Control Systems Digital Control, Weingarten:

Hochschule Ravensburg-Weingarten, 2022.

[12] "Control Systems/State Feedback," 8 April 2021. [Online]. Available:

https://en.wikibooks.org/wiki/Control_Systems/State_Feedback. [Accessed

15 March 2023].

[13] O. Nelles, "Zustandsraum und Digitale Regelung," 2018. [Online]. Available:

https://www.mb.uni-siegen.de/mrt/lehre/dr/skript_dr.pdf. [Accessed 15 March

2023].

Date 27.03.2023 Seite - 25 - von - 24

 APPENDIX

 Script for DMD Analysis

clear
% main program

%% define variables
% parameters for RLC system
rlcDim=50;
R = ones(1,rlcDim)*1;
L = R;
C = R;
Ts = 0.1;
x0 = ones(1,2*rlcDim);

%dimension for DMD
dim=20;
states=2*dim;
% simulation time for continuous system
simEnd=1000;

%% calculate system
[M,N,A,B] = RLC_osc(R, L, C);
[Ac,Bc,Cc,Dc] = RLC_ss(M, N, A, B);
sys = ss(Ac,Bc,Cc,Dc);
sys_d = c2d(sys,Ts);

%% plot of unforced system for continuous system
[y,t,x] = initial(sys, x0, simEnd); %plots the unforced
system response
figure(1);
subplot(3,1,1);
plot(t,x);
legend('x1', 'x2', 'x3', 'x4', 'x5', 'x6');
title('plot of system states for continuous system');
xlabel('time in s');
ylabel('amplitude');
xlim([0 1000]);

subplot(3,1,2);
plot(t,y);

Date 27.03.2023 Seite - 26 - von - 24

title('plot of output for continuous system');
xlabel('time in s');
ylabel('amplitude');
xlim([0 1000]);
ylim([1 2.5]);

subplot(3,1,3);
pzmap(sys);
title('poles and zeros of continuous system');

%% plot of unforced system for discrete system
[y,t,x] = initial(sys_d, x0, simEnd); %plots the unforced
system response
y_rec=y;
figure(2);
subplot(3,1,1);
plot(t,x);
title('plot of system states for discrete system');
xlabel('time in s');
ylabel('amplitude');
xlim([0 1000]);

subplot(3,1,2);
plot(t,y);
title('plot of output for discrete system');
xlabel('time in s');
ylabel('amplitude');
xlim([0 1000]);
ylim([1 2.5]);

subplot(3,1,3);
pzmap(sys_d);
title('poles and zeros of discrete system');
xlim([0.5 1.5]);

%% DMD
% create X1 and X2
X1 = x(1:length(t)-1,:);
X1 = X1';
X2 = x(2:length(t),:);
X2 = X2';
x0 = ones(1,states);
% calculate reduced A matrix (DMD)
[A_dmd, dynModes, U] = Dmd(X1,X2, states);

Date 27.03.2023 Seite - 27 - von - 24

sys_dmd = ss(A_dmd,[],[],[],Ts);

[y,t,x] = initial(sys_dmd, x0, 1000); %plots the unforced
system response

figure(3);
subplot(3,1,1);
plot(t,x);
title('plot of system states for dmd system');
xlabel('time in s');
ylabel('amplitude');
xlim([0 1000]);

% calculate C matrix for reduced dmd system
C_dmd = y_rec' * pinv(x');
% calculate output with C matrix
for i = 1:length(x)
 y(i) = C_dmd * x(i,:)';
end

subplot(3,1,2);
plot(t,y);
title('plot of output for dmd system');
xlabel('time in s');
ylabel('amplitude');
xlim([0 1000]);
ylim([1 2.5]);

subplot(3,1,3);
eigW = eig(sys_dmd.A);
plot(real(eigW),imag(eigW), 'x');
title('poles of dmd system');
ylabel('Imaginary Axis');
xlabel('Real Axis');
viscircles([0 0], 1, 'color', [.5 .5 .5], 'LineStyle',
':', 'LineWidth', 1);
ylim([-1 1]);
xlim([0.5 1.5]);

figure(4);

% calculate behavior of dynamic modes

for i=1:length(eigW)
 cont = log(complex(eigW(i)))/Ts;

Date 27.03.2023 Seite - 28 - von - 24

 modeBhvor = exp(cont*t);
 plot(t,modeBhvor);
 hold on;
end

title('Dynamic Mode Evolution');
xlabel('time in s');
ylabel('Amplitude');

%% helper functions

function [M,N,A,B] = RLC_osc(R, L, C)

 % get size of array(s)
 order = length(R);

 % create base matrices
 M=zeros(order);
 N=zeros(order);
 A=-1*eye(order);
 B=zeros(order,1);

 for row = 1:order
 for column = row:order
 %fill matrices with corresponding value pairs
 M(row, column) = L(row)*C(column);
 N(row, column) = R(row)*C(column);

 if row > 1
 %fill matrix A with ones under the main diagonal
 A(row, row-1) = 1;
 end
 end
 end

 B(1) = 1;
end

function [Ac,Bc,Cc,Dc] = RLC_ss(M, N, A, B)
 %get order of resulting matrices
 order = length(B);

 %build matrices
 S = [eye(order), zeros(order);
 zeros(order), M];

Date 27.03.2023 Seite - 29 - von - 24

 T = [zeros(order), eye(order);
 A, -N];

 %calculate Ac and Bc

 Ac=S\T;
 Bc=S\[zeros(order,1); B];
 Cc=zeros(1,order);
 Cc(1,order)=1;
 Cc=[Cc zeros(1, order)];
 Dc=0;
end

function [A_dmd, psi, U] = Dmd(X1, X2, dim)
 % SVD for X1
 [U,S,V] = svds(X1,dim);

 % koopman matrix (reduced A)
 A_dmd = U'*X2*V*inv(S);

 % calculate dynamic modes
 [eigV, eigW]=eig(A_dmd);
 psi = X2*V*inv(S)*eigV;
end

Date 27.03.2023 Seite - 30 - von - 24

 Script for DMDc Analysis

clear
% main program

%% define variables
% parameters for RLC system
rlcDim=50;
nrStates= rlcDim*2;
R = ones(1,rlcDim)*1;
L = ones(1,rlcDim)*1;
C = ones(1,rlcDim)*1;
Ts = 0.1;

%dimension for DMD
dmdDim=20;
dmdStates=dmdDim*2;
% simulation time for continuous system
simEnd=1000;
%% calculate system
[M,N,A,B] = RLC_osc(R, L, C);
[Ac,Bc,Cc,Dc] = RLC_ss(M, N, A, B);
sys = ss(Ac,Bc,Cc,Dc);
sys_d = c2d(sys,Ts);
%% plot for discrete system

t = 0:Ts:simEnd;
u = 100*sin(0.01*t); % signal for DMD measurement data
u2 = u;
%u2=1000*0.5*(square(2*pi*0.01*t)+1); % test signal

[y,t,x] = lsim(sys_d, u, t);
[y2,t2,x2] = lsim(sys_d, u2, t);
figure(2);
subplot(3,1,1);
plot(t2,u2);
title('input');
subplot(3,1,2);
plot(t2,x2);
title('system states');
subplot(3,1,3);
plot(t,y2);
title('output');
xlabel('time in s');
ylabel('amplitude');

Date 27.03.2023 Seite - 31 - von - 24

%% DMDc
% create X1 and X2 and Y
X1 = x(1:length(t)/2-1,:);
X1 = X1';
X2 = x(2:length(t)/2,:);
X2 = X2';
Y = u(1:length(t)/2-1);
% calculate reduced A matrix (DMD)
[A_dmd, B_dmd, U_hat] = dmdwc(X1,X2,Y,dmdStates,
nrStates);

sys_dmd = ss(A_dmd,B_dmd,[],[],Ts);

% simulate system with dmd matrices
[y,t,x] = lsim(sys_dmd, u2, t);

% reconstruct original states out of dmd results to
compare accuracy
x_rec = [];
for i = 1:length(x)
 x_rec(i,:) = x(i,:) * U_hat';
 y_rec(i) = Cc * x_rec(i,:)';
end

% calculate C matrix for reduced dmd system
C_dmd = y_rec * pinv(x');

% calculate output with C matrix
for i = 1:length(x)
 y(i) = C_dmd * x(i,:)';
end

figure(3);
subplot(3,1,1);
plot(t2,u2);
title('input');
subplot(3,1,2);
plot(t,x);
title('system states');
subplot(3,1,3);
plot(t,y);
title('output');
xlabel('time in s');
ylabel('amplitude');

Date 27.03.2023 Seite - 32 - von - 24

%% helper functions

function [A_dmd, B_dmd, U_hat] = dmdwc(X1, X2, Y, dim,
nrStates)
 % create Omega
 OM = [X1;Y];

 % SVD for input space omega, truncation value p must
be larger than
 % that of X -> more returned singular values
 [U_tilde,S_tilde,V_tilde] = svds(OM, min(dim+1,
nrStates));

 % U_tilde1 corresponds to X1 (dim=nrStates), U_tilde2
to Y (dim=1)
 U_tilde1 = U_tilde(1:nrStates,:);
 U_tilde2 = U_tilde(nrStates+1,:);

 % SVD for output space X2
 [U_hat, S_hat, V_hat] = svds(X2, dim);

 % compute A_dmd and B_dmd
 A_dmd =
U_hat'*X2*V_tilde*pinv(S_tilde)*U_tilde1'*U_hat;
 B_dmd = U_hat'*X2*V_tilde*pinv(S_tilde)*U_tilde2';
end

Date 27.03.2023 Seite - 33 - von - 24

 Script for Controller Design

clear
% main program

%% define variables
% parameters for RLC system
rlcDim=13;
nrStates= rlcDim*2;
R = ones(1,rlcDim)*1;
L = ones(1,rlcDim)*1;
C = ones(1,rlcDim)*1;
Ts = 0.1;

%dimension for DMD
dmdDim=2;
dmdStates=dmdDim*2;
% simulation time for continuous system
simEnd=1000;
%% calculate system
[M,N,A,B] = RLC_osc(R, L, C);
[Ac,Bc,Cc,Dc] = RLC_ss(M, N, A, B);
sys = ss(Ac,Bc,Cc,Dc);
sys_d = c2d(sys,Ts);
Ad = sys_d.A;
Bd = sys_d.B;
Cd = sys_d.C;
Dd = sys_d.D;

t = 0:Ts:simEnd;
u = 300*sin(0.01*t);

[y,t,x] = lsim(sys_d, u, t);

%% DMDc
% create X1 and X2 and Y
X1 = x(1:length(t)/2-1,:);
X1 = X1';
X2 = x(2:length(t)/2,:);
X2 = X2';
Y = u(1:length(t)/2-1);
% calculate reduced A matrix (DMD)
[A_dmd, B_dmd, U_hat] = dmdwc(X1,X2,Y,dmdStates,
nrStates);

Date 27.03.2023 Seite - 34 - von - 24

sys_dmd = ss(A_dmd,B_dmd,[],[],Ts);

% simulate system with dmd matrices
[y,t,x] = lsim(sys_dmd, u, t);

% reconstruct original states out of dmd results to
compare accuracy
x_rec = [];
for i = 1:length(x)
 x_rec(i,:) = x(i,:) * U_hat';
 y_rec(i) = Cc * x_rec(i,:)';
end

% calculate C matrix for reduced dmd system
C_dmd = y_rec * pinv(x');

% calculate output with C matrix
for i = 1:length(x)
 y(i) = C_dmd * x(i,:)';
end

% setup whole dmd system
sys_dmd = ss(A_dmd,B_dmd,C_dmd,[],Ts);

ctrlblty = rank(ctrb(sys_dmd)); % Prüfe dessen
Steuerbarkeit
EW = [0.4054 0.99 0.9716 0.9844]; % Gewünschte Eigenwerte
k = place(A_dmd,B_dmd,EW); % Reglerentwurf mittels
Polvorgabe
W_dmd=inv(C_dmd*inv(eye(4)- (A_dmd-B_dmd*k))*B_dmd);

sys_dmdCl = ss(A_dmd - B_dmd*k,B_dmd*W_dmd,C_dmd,[],Ts);
figure(2);
step(sys_dmd);
hold on;
step(sys_dmdCl);
grid on;
legend('open-loop','closed-loop');

figure(3);
subplot(3,1,1);
plot(t,u);
title('input');
subplot(3,1,2);
plot(t,x);

Date 27.03.2023 Seite - 35 - von - 24

title('system states');
subplot(3,1,3);
plot(t,y);
title('output');
xlabel('time in s');
ylabel('amplitude');

sim("dmdc_controllersim.slx");

figure(4);
subplot(3,1,1);
plot(setpoint,'LineWidth',1.5);
grid on;
ylim([-30 30]);
ylabel('voltage in V');
title('response of open and closed loop system');
legend('setpoint');
subplot(3,1,2);
plot(oLOrig,'LineWidth',1.5);
hold on;
plot(oLRed,':','LineWidth',1.5);
grid on;
ylim([-30 30]);
ylabel('voltage in V');
legend('open-loop orig', 'open-loop red');
hold on;
subplot(3,1,3);
plot(cLOrig,'LineWidth',1.5);
hold on;
plot(cLRed,':', 'LineWidth',1.5);
xlabel('time in seconds');
grid on;
ylim([-30 30]);
ylabel('voltage in V');
legend('closed-loop orig', 'closed-loop red');

