
Hochschule Ravensburg-Weingarten
Faculty for Electrical Engineering and

Computer Science

Optimal Control of the heat equation
in Julia

Bachelor Thesis
submitted for the degree of

Bachelor of Electrical Engineering and
Information Technology

by
Abdelhady Abdelmagid

Matriculation Nr.: 27893

Supervisors
Prof. Dr.Ing. Lothar Berger

Stephan Scholz M.Sc

ABSTRACT
Optimal control of systems described using partial differential equations is a
field of interest in research and industry. The heat equation, a partial differ-
ential equation, describes various heating and cooling processes. It is usually
accompanied by constraints on the input signals, temperature through the
body or both, which motivates applying optimal control in such processes.

In this thesis, a solution to the optimal boundary control of the heat
equation is presented. The heat equation is numerically approximated using
Finite difference method. The optimal control problem is formulated using a
direct method into a non linear program. JuMP, a mathematical modelling
language built on Julia is used to solve the problem. Simulation results are
presented for a one dimensional rod and a two dimensional plate.

ii

Contents

1 Problem statement 1
1.1 Motivation . 1
1.2 Heat equation . 2
1.3 Problem statement . 4

2 Numerical Optimal Control 5
2.1 State space representation . 5
2.2 Heat equation in State space representation 8
2.3 Cost Function . 13
2.4 Constrained Optimization . 15
2.5 Direct collocation method . 20
2.6 Optimal control of heat equation 21

3 Software 23
3.1 JuMP.jl . 23
3.2 NLOptControl . 25

4 Implementation and Results 28
4.1 The one Dimensional heat equation 28
4.2 Two Dimensional heat equation 35

5 Conclusion 41

iii

Chapter 1

Problem statement

In this chapter, we start by introducing the motivation to our work in Section
1.1. In Section 1.2, a brief introduction of the heat equation is given. A
problem statement and the objectives are given in Section 1.3.

1.1 Motivation
Optimal control theory has been a major topic in research and industry, as it
controls a process in the most efficient way according to a criterion specified.
Different numerical approaches are available for solving such problems using
mathematical modelling frameworks, such as JuMP [7], NLOptControl [8],
CasADi [1] and various other frameworks. With the computational power
available nowadays, numerical solutions became feasible to use with systems
described using partial differential equations (PDE).

The boundary control of the heat equation arises in heating and cooling
applications as in [2, 4]. The heat equation is also known to be one of the
basic partial differential equation, which makes it suitable for researching
optimal control theory.

The boundary input heat equation is usually accompanied by constraints
on the actuator’s input, this increases the problem’s size to an already large
scaled problem. Different approaches were introduced to solve a constrained
optimal control problem (OCP) of heat equation. In [23], a method is intro-
duced to reformulate the problem into an unconstrained optimization prob-
lem. However, the presence of mathematical modelling packages such as
JuMP [7] and NLOptControl [8] motivates this work of solving the OCP of
heat equation with boundary input constraints using a direct method [19].

1

1.2 Heat equation
The heat equation is a partial differential equation,that describes tempera-
ture distribution θ(x, t) in space and time. The linear heat equation in three
dimensions is noted as

∂θ

∂t
= α

�
∂2θ

∂x2 + ∂2θ

∂y2 + ∂2θ

∂z2

�
. (1.1)

The optimal boundary control of heat equation is considered for one di-
mensional and two dimensional cases.

One dimensional heat equation
As presented in Figure 1.1, a one dimensional body Ω = (0, L), with a heat-
ing source placed on the left side and a temperature sensor placed on the
right side of the body in the time t ∈ (0, tf) is considered.

x−x
0 Lu(t) y(t)

Figure 1.1: A one dimensional rod Ω of length L with the input source on
left side and output source on the right side.

From Equation (1.1), the one dimensional case of the heat equation is
noted as

∂θ

∂t
= α

∂2θ

∂x2 , (1.2)

with x ∈ Ω. The initial and boundary conditions are also needed to define
the function. Assuming a constant initial temperature θ(x, 0) = θ0.

The Neumann boundary condition describes the normal flux along the
boundary [17]. Neumann boundary condition is noted as

λ∇θ(x, t) · �n = 0, (1.3)

where n is a vector pointing to x direction. The boundary conditions for
input placed on the left side and measurements taken on the right

−λ∇θ(0, t) = u(t),
λ∇θ(L, t) = 0.

(1.4)

2

Two dimensional heat equation
As shown in Figure 1.2, a two dimensional body Ω = (0, L) × (0, W) in time
interval t ∈ (0, tf) is studied.

x

y1(t)y1(t) y2(t) y3(t)

0

L

Lu1(t) u2(t) u3(t)

Figure 1.2: A two dimensional plate Ω of length L and width L with several
input sources on lower side and several measurements on the upper side.

From the Equation (1.1), the two dimensional heat equation is noted as

∂θ

∂t
= α

�
∂2θ

∂x2 + ∂2θ

∂y2

�
, (1.5)

with x, y ∈ Ω. The initial temperature is θ (x, y, 0) = θ0.

The Neumann boundary conditions in Equation (1.3) is also applied for
the two dimensional case, where ∇θ, n ∈ R2. The boundary condition for
the two dimensional space is noted as

λ




∂θ

∂x
∂θ

∂y


 · �n = 0, (1.6)

where �n represents the sides of the space. The possible values for �n are
�
−1
0

�
,

�
1
0

�
,

�
0

−1

�
,

�
0
1

�
. (1.7)

3

The outcome of Equation (1.6) is four boundary conditions. The arrangement
of the inputs applied on the lower side of the body, the boundary conditions
are

−λ
∂θ(0, y, t)

∂x
= 0,

λ
∂θ(L, y, t)

∂x
= 0,

−λ
∂θ(x, 0, t)

∂y
= u(x, t),

λ
∂θ(x, W, t)

∂y
= 0.

(1.8)

1.3 Problem statement
The interest of this work is to calculate the optimal input u∗(t) of a boundary
input two dimensional heat equation, where the body is heated to a given
temperature with a bounded input signal. A one dimensional rod is first to
be studied with a heating source on the left side and output measured on
the right side. The controller is then adjusted to implement a trajectory for
several input sources on one side and several measurements on the other side
of the body. The final output is an optimal boundary control of the one
dimensional and two dimensional heat equation in JuMP.

4

Chapter 2

Numerical Optimal Control

In this chapter, we introduce the topics optimal control and numerical opti-
mization. We start by introducing the state space representation of system
dynamics in Section 2.1. This is followed by a brief introduction of Finite
difference method. In Section 2.2, an approximation of the heat equation
using finite difference method is presented for the one dimensional and two
dimensional bodies with boundary input, to represent the heat equation in
state space. The stability, controllability and observability are tested for the
propsed approximation in Section 2.2. In Section 2.3, the general form of a
cost functional and the linear quadratic regulators are introduced. In Sec-
tion 2.4, Numerical optimization is introduced briefly. In Section 2.5, direct
collocation method is introduced. Finally, the formulated OCP of the heat
equation is presented in Section 2.6.

2.1 State space representation
The formulation of a control problem requires the presence of a mathematical
model describing the system dynamics. The system dynamics are represented
in state space representation, when used in OCPs. This form of representa-
tion reduces the order of the differential equations of the system dynamics
to first order differential equations. The states of a system are defined by a
vector x(t) ∈ Rn, with n as the dimension of the system. An initial value of
the vector x(t0), in addition to the control input u(t) ∈ Rm,where m is the
number of input signals, are used to determine the states vectors values over
time for t > 0. The system dynamics is described by

ẋ(t) = Ax(t) + Bu(t), (2.1)
with matrix A ∈ Rn×n and matrix B ∈ Rn×m for a linear, time invariant
system.

5

The output equations represent the states that can actually be measured
by the system. For a linear, time invariant system, the output equation has
the following form

y(t) = Cx(t) + Du(t), (2.2)
with matrix C ∈ Rq×n and matrix D ∈ Rq×m, where y(t) ∈ Rq. The matrix
D is zero in the cases studied. Both, the system equation together with the
output equation, fully represent a model.

If a system is described with the second order differential equation
ÿ(t) + aẏ(t) + by(t) = u(t). (2.3)

We rename the variables in Equation (2.3) to get the state vector x(t),where
x1(t) = y(t) and x2(t) = ẏ(t) = ẋ1(t). The second order differential equation
is reduced into first order differential equations, which are noted as

ẋ1(t) = ẏ(t) = x2(t),
ẋ2(t) = ÿ(t) = −ax2(t) − bx1(t) + u(t).

(2.4)

From Equation (2.4), The matrices A and B are

A =
�

0 1
−b −a

�
, B =

�
0
1

�
. (2.5)

The output matrix is based on the sensors used and their functionality. If
the sensors are arranged to measure the first state of the system, the output
matrix is

C =
�
1 0

�
. (2.6)

The system dynamics are described by
�
ẋ1(t)
ẋ2(t)

�
=

�
0 1

−b −a

� �
x1(t)
x2(t)

�
+

�
0
1

�
u(t),

y(t) =
�
1 0

� �
x1(t)
x2(t)

�
.

(2.7)

An example is the mechanical oscillator explained in [20]. The system is
described by

ÿ(t) + 2dω0ẏ(t) + ω2
0y(t) = Kω2

0u(t). (2.8)
The system in state space representation is noted as

�
ẋ1(t)
ẋ2(t)

�
=

�
0 1

−ω2
0 −2dω0

� �
x1(t)
x2(t)

�
+

�
0

Kω2
0

�
u(t). (2.9)

In Chapter 3, this example is used to demonstrate the software tools JuMP [7]
and NLOptControl [8].

6

Finite difference Method
Finite difference methods (FDM) are used in the approximation of differen-
tial equations to difference equations, so that they can be solved numerically.
It is also used to discretize PDEs, where changes in each of the discretized
spaces can be studied with respect to time. The equations mentioned in this
section follows [17].

In OCPs, the system dynamics are usually represented in state space
as a number of first order differential equations. FDMs could be used in
order to describe a PDE in the form of difference equations that describes a
system and can be used to solve the OCP numerically. The error between
the numerical and exact value of the derivative is called truncation error and
it arises from the fact that the FDM is obtained from the approximation of
the taylor series. Considering a one dimensional equation, the approximation
is related to the definition of the derivative of a smooth function u at point
x ∈ R, where the derivative of u is noted as

u
�(x) = lim

h→0

u(x + h) − u(x)
h

. (2.10)

The smaller the value of h is, the better the value of this approximation.
This means that the error of the numerical result decreases with reducing
the value of h towards 0.

By applying Taylor series, for any value of h > 0, for the first derivative

u(x + h) = u(x) + hu
�(x) + 1

2u
��(ξ)h, (2.11)

in which ξ is any value between [x, x + h], the truncation error in Equation
(2.11) is proportional to the step size h and is denoted as O(h).

For the second derivative, we consider the taylor series again

u(x + h) = u(x) + hu
�(x) + h2

2 u
��(x) + h3

6 u
���(x) + O(h4),

u(x − h) = u(x) − hu
�(x) + h2

2 u
��(x) − h3

6 u
���(x) + O(h4).

(2.12)

From adding both parts of the Equation (2.12), the difference equation of
the second derivative is noted as

u
��(x) = u(x + h) − 2u(x) + u(x − h)

h2 + O(h2). (2.13)

7

The center difference approximation of the second order dervative has a trun-
cation error proportional to h2. As shown in Figure 2.1, a one dimensional
rod is discretized into N nodes.

h = Δx

Figure 2.1: The discretization of a one dimensional rod into a number of
nodes N = 16.

The discretization of a two dimensional space is presented in Figure 2.2.

h = Δy

h = Δx

Figure 2.2: The discretization of a two dimensional plate into a number of
nodes Nx = Ny = 11.

2.2 Heat equation in State space representa-
tion

One dimensional heat equation

Equation (1.2) shows the heat equation in a one dimensional space. To obtain
a numerical approximation of the heat equation, the equation is discretized

8

in space and time. For the spatial discretization, center difference approxi-
mation noted in Equation (2.13) is applied. The heat equation in discretized
space is

∂θ (xi, t)
∂t

= α

�
θi+1 − 2θi + θi−1

Δx2

�
, (2.14)

where the node arrangement is presented in Figure 2.3.

θi θi+1θi−1

Figure 2.3: The visualisation of the arrangement of the nodes surrounding
node i.

In Equation (2.14), Δx = h is the step size between two discretization
points. Equation (2.14) shows the change in temperature at any discretized
space xi in the one dimensional body considered. The boundary conditions
are also discretized. From Equation (1.4), the boundary condition for both
ends of the rod are noted as

θ1 − θ−1 = −2Δx

λ
u(t),

θN+1 − θN−1 = 0,
(2.15)

where θ−1 and θN+1 are imaginary points used to calculate the change at
xi = 0 and xi = N , where N is the number of discretization points.

From Equation (2.14), the system matrix is obtained. The system ma-
trix is a tri-diagonal sparse matrix, with non-zero entries in the first three
diagonals in the matrix. The system matrix has the form

A = α

Δx2




−2 2 0 · · · · · · 0
1 −2 1 · · · · · · 0
0 · · · ...
... 0 · · · 1 −2 1
0 · · · · · · · · · 2 −2




. (2.16)

The first entry of the upper and the last entry of the lower secondary diag-
onal arises from the discretization of boundary conditions in Equation (2.15).

From Equation (2.15), the input matrix is formed. There is one input
source applied on the left side of the rod, which means that there is only one

9

entry at the beginning of the input matrix. The input matrix is written as

B = 2
cρΔx




1
0
...
0




. (2.17)

Equation (2.11) shows the approximation of first order derivatives. At a
position xi at a time instance k with a time step Δt, the heat equation is
approximated to

θk+1 − θk

Δt
= Aθk + Buk. (2.18)

The approximation of the heat equation is forward time center space,
which is an explicit method that have conditions for numerical stability.
According to [17], the inequality constraint must satisfy

αΔt

Δx2 ≤ 1
2 . (2.19)

Two dimensional heat equation

Equation (1.5) represents the two dimensional heat equation. The index i
is used for the iteration in the x-direction and j index for iteration in the
y-direction. The center difference method in Equation (2.13) is used for the
discretization of the temperature change in space. The difference equation
for discretization in space is noted as

∂θ(i, j, t)
∂t

= α

�
θi+1,j − 2θi,j + θi−1,j

Δx2 + θi,j+1 − 2θi,j + θi,j−1

Δy2

�
. (2.20)

The node arrangement used in the approximation is presented in Figure 2.4.

10

θi,j

θi,j+1

θi+1,jθi−1,j

θi,j−1

Figure 2.4: The visualisation of the arrangement of the nodes surrounding
node (i, j).

If Δx = Δy in Equation (2.20), they are replaced by a step h. The center
difference equation is noted as

∂θ(i, j, t)
∂t

= α

h2 (θi+1,j − 4θi,j + θi−1,j + θi,j+1 + θi,j−1) . (2.21)

The boundary conditions are discretized as done with the one dimensional
case. The discretized boundary conditions are written as

−λ
θ1,j(t) − θ−1,j(t)

2h
= 0,

λ
θN+1,j(t) − θN−1,j(t)

2h
= 0,

−λ
θi,1(t) − θi,−1(t)

2h
= u(t),

λ
θi,N+1(t) − θi,N−1(t)

2h
= 0.

(2.22)

The forward difference of the time derivative is noted as

θk+1 − θk

Δt
= Aθk + Buk. (2.23)

For the numerical stability of the two dimensional equation, the inequality
constraint must satisfy

αΔt

h2 ≤ 1
4 . (2.24)

11

Stability
The system’s stability describes the evolution of the system in time. A sys-
tem is called stable, if the solution is expected to converge to an equilibrium
point. If the system is unstable, the solution might diverge to arbitrary val-
ues of initial data or input systems.

According to [16], a system is stable, if the eigenvalues of the system
(λi ≤ 0) for i = 0, 1, 2 · · · k, k ≤ n, where n is number of states.

The eigenvalues of the discretized one dimensional heat equations are
shown in Figure 2.5.

Figure 2.5: Eigenvalues of the one dimensional heat equation with 11 dis-
cretization points.

The largest eigenvalue is equal to zero, which means that the one dimen-
sional heat equation is stable. The eigenvalues of the two dimensional heat
equation are shown in Figure 2.6.

Figure 2.6: Eigenvalues of the two dimensional heat equation with 11 dis-
cretization points in each dimension.

Similar to the one dimensional case, the greatest eigenvalue is equal to
zero, which shows the stability of the system.

Controllability and observability
Controllability shows the degree of controllability of a system. A fully con-
trollable system, is a system, whose states can be driven from one state to
another during a finite time horizon, depending on the control inputs of the
system. The concept of Controllability was first introduced in [12].

According to [16], the controllability matrix is noted as

E =
�
B AB A2B . . . An−1B

�
. (2.25)

12

A system is fully controllable if the rank of matrix E is equivalent to the
number of states in the system.

The controllability of the approximation of the heat equation is done by
implementing the controllability matrix for various N values. For all tested
values from N = 3 to N = 15, the controllability matrix has full rank. The
form of the controllability matrix is similar for all values of N , where the
matrix is an upper triangular matrix with values added to the upper side of
the matrix only. The test proves that the approximation of the heat equation
is fully controllable for the tested values.

Another principle introduced in [12] was the Observability of a system .
An observable system is a system where the initial states x(t0) can be deter-
mined by knowing the input of the system u(t) and the output of the system
y(t) across a finite time interval [t0, tf].

Observability matrix [16] is used to test observability of the system, where
the rank of observability matrix G = n, where n is the number of states

G =




C
CA

...
CAn−1




. (2.26)

The observability of the approximation of the heat equation is tested in the
same way as the controllability of the matrix. The observability matrix was
created for N = 3 up to N = 15. The matrix had entries in the lower part
of the matrix with full rank of the matrix, which proves the observability of
the system to the tested values.

2.3 Cost Function
The task of the optimal control problem is to find a signal u∗, that results
in an optimal state trajectory x∗ with respect to a performance criterion,
known as a cost function. The general form of a cost function is noted as

J(x(t), u(t), t) = J(t0, tf , x(t0), x(tf)) +
tf�

t0

ω(τ, x(τ), u(τ)) dτ. (2.27)

There are two parts forming the cost function. The part with the boundary
states and inputs, is known in literature as Mayer’s form and the part repre-

13

senting an integral along path of trajectory is known as the Lagrange term.
The previous cost function is in Bolza form, which is a combination of both
terms [14]. The choice of which form to use depends on the performance
criterion we want to minimize or maximize.

Linear Quadratic Optimal control
If the problem at hand should drive the states to a final position, taking into
consideration the deviation from the final state only, the cost function would
have the following form

J(x(tf)) = x(tf)�Hx(tf). (2.28)

This form penalizes the deviation from the final state without considering
the input and states trajectory path. The function is quadratic, mainly to
deal with the positive and negative values of the deviation without the need
to use absolute values in the function. The matrix H ∈ Rn×n is a weighing
matrix, that is required to be a positive semi-definite matrix.

In many cases, OCPs are solved in such a way to drive the states from
x(t0) to x(tf), while minimizing the input of the system, a general form of
the cost function can either be an absolute value of the input or a quadratic
function. The cost function is an integral along the whole path of the input
signal

J(u(t)) =
tf�

t0

u(t)�Ru(t) dt, (2.29)

where R ∈ Rm×m is a real symmetric positive definite matrix.
If we would like instead to minimize the deviation of the states from a

certain reference across the complete trajectory, then penalizing the state
across an integral is noted as

J(x(t)) =
tf�

t0

x(t)�Qx(t) dt. (2.30)

This minimizes the deviation from a reference across the whole trajectory.
Matrix Q ∈ Rn×n is a symmetric positive semi-definite matrix. The cost
function’s value is positive or zero, due to the choice of the matrices Q and R.
In the previous cost functions, no reference value was set, thus the reference
value is set to zero and the solution to such problem would drive the states
values to zero. This is known as a regulator. If a reference value other than

14

zero to be used, this is known as a tracking problem. The only difference is
that the states of the system are replaced by the error of the system. The
error of the system is introduced as the deviation of the actual measurements
of the system from the reference value introduced, this is equivalent to

e(t) = Cxref (t) − Cx(t) = yref (t) − y(t). (2.31)

The final form of the cost function is noted as

J(x(t), u(t)) = 1
2e(tf)�He(t) + 1

2

tf�

t0

e(t)�Qe(t) + u(t)�Ru(t) dt. (2.32)

If the system dynamics are linear, then this type of problem is known as a
Linear Quadratic problem.

2.4 Constrained Optimization
Mathematical optimization problems are divided into unconstrained and con-
strained optimization problems. The unconstrained problem does not require
any constraints to be fulfilled, for the trajectory to be considered optimum.
The general form of such problem is noted as

min
x

f(x). (2.33)

In OCP, there are equality and inequality constraints, that the solution
must obey. In [13], several constraint examples are shown. The system
dynamics are equality constraints, that must always be considered when for-
mulating the OCP. The system dynamics are noted as

ẋ = f(x(t), u(t)). (2.34)

Different constraints can be applied to an OCP, so that a certain require-
ment is considered. In most cases, an input signal or state must be bounded
between two values. The bounded constraints are applied as

xmin ≤ x(t) ≤ xmax

umin ≤ u(t) ≤ umax.
(2.35)

Initial and final states are constraints that are satisfied. Depending on
the system and the required outputs, these constraints can be equality or
inequality constraints. These constraints are noted as

g(t0, tf , x(t0), x(tf)) ≤ 0. (2.36)

15

Path constraints are required, when conditions have to be satisfied along
the states trajectory. Path inequalities are noted as

h(t, x(t), u(t)) ≤ 0. (2.37)

For the OCP applied to the heat equation, the system dynamics, initial
temperature and the bounded input signals are the constraints considered.

Numerical optimization deals with solving mathematical optimization
problems numerically. The first step to solving an optimization problem
is to create a mathematical model, which consists of the decision variables,
constraints and objective function. This is analogous to an OCP formulation.
Based on the model, an appropriate algorithm can be implemented computa-
tionally to obtain the optimal trajectory. In this section, basic concepts and
definitions are introduced, together with a class of numerical optimization
programs, known as quadratic programming. The definitions and examples
in this section are according to [15].

The general form of a mathematical optimization problem with equality
and inequality constraints is noted as

min
x∈Rn

f(x)

s.t ci(x) = 0, i = 1, . . . , m

ci(x) ≥ 0, i = 1, . . . , q

(2.38)

A solution x∗ to a constrained problem must satisfy the constraints. This
introduces us to the first definition.

Definition 1 (Feasible set)
A feasible set Ω is the set of points x that satisfies the constraints of the

problem:

Ω = {x|ci(x) = 0, i = 1, . . . , m; ci(x) ≥ 0, i = 1, . . . , q} . (2.39)

An example can be shown in the following problem [10,11]

min
x∈R2

√
x2

s.t x2 ≥ 0
x2 ≥ (2x1)3

x2 ≥ (−x1 + 1)3

(2.40)

The solution to the previous example can be shown in Figure 2.7.

16

Figure 2.7: solution to a constrained nonlinear problem showing the feasible
region of the states [10,11].

As shown in Figure 2.7, the feasible region lies in the area, where all
constraints are satisfied. The optimum value of the objective function, is the
value of function, where its argument x2 is satisfying all the constraints.

Different types of computational programs are introduced based on the
formulation of the mathematical optimization problem. If the objective func-
tion, together with constraints of the problem are known to be linear, the
program used to solve such problem is referred to as a linear program. An-
other Form is non linear programs (NLP), which many of its algorithms can
be applied to solve OCPs. A form of an NLP is a Quadratic program (QP).
A General QP is written as

min
x

1
2x�Gx + x�c

s.t a�
i x = bi, i = 1, . . . , m

a�
i x ≥ bi, i = 1, . . . , q

(2.41)

where G ∈ Rn×n is a symmetric matrix, c, x, ai ∈ Rn.

17

NLP solvers and algorithms usually search for a feasible solution x, which
is only local minimum. A local minimum guarantees that the value of the
function is less than the value of the function at neighbouring feasible sets
x. However, the solution is not globally minimum, which is the least value of
the function at any feasible set x. A solution is guranteed to be a global
minimum, if the objective function is a convex function. The difference
between a global and a local minimum is presented in Figure 2.8.

Figure 2.8: An example of a local and a global minimum and illustration of
how a solver typically finds a solution [6].

Definition 2 (Convex set) A convex set S ∈ Rn is said to be convex, if
a straight line connecting two points, that lie inside the set, lies completely
inside the set.

x, y ∈ S, αx + (1 − α)y ∈ S, ∀α ∈ [0, 1]

Definition 3 (Convex function) A function f is said to be convex, if
its domain S is a convex set, and for any two pints x, y ∈ S, the following
property applies:

f (αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y), ∀α ∈ [0, 1]

The definition of a convex function is visualised in Figure 2.9.

18

Figure 2.9: A convex function with an illustration to the definition: A
straight line connecting two points on the domain of the function, always
lies above the curvature of the function [21, p. 14].

A convex program is much easier to solve, as the cost function only has
a global minimum. A NLP is said to be convex, if the objective function is
convex, equality constraints are linear and inequality constraints are convex.

We are going to implement a LQ-optimal control with bounded input
constraints to solve our problem. The objective function is quadratic with
positive semi-definite Q matrix and a positive definite R matrix, this means
that the objective function is convex. The constraints are linear, which is
also convex. This means that the complete problem is convex.

19

2.5 Direct collocation method
The numerical methods used for trajectory optimization are divided into two
categories known as the indirect and direct methods. Direct methods depend
on discretizing the continous function and its constraints and reformulating
the problem into a NLP that can be solved directly with a suitable algorithm
to the problem. These methods are motivated nowadays as they scale well
to large OCPs, which is why it is being widely developed in the industry and
due to the high computational power and the availability of specific software
that solves that kind of problems available [19]. The methods differ from one
another based on the form of approximation of the decision variables. The
method that discretizes the states and input variables is called direct colloca-
tion method [18,22]. The continous functions in the OCPs are approximated
to polynomials [13].

In direct collocation methods, the simulation time is divided into N sam-
pling points with equal sampling periods, that is Δt is equivalent for all
values of k = 1, 2, · · · , N . The values of x(t), u(t) are calculated at each
sampling point producing the matrices X, U . In this notation, x[k] corre-
sponds to the value of x(t) at t = tk and u[k] is the value of u(t) at the same
time point. The lower and upper bounds of states and control inputs are
Umin, Umax, Xmin, Xmax.

Euler Forward method
Euler forward method is an explicit method that is used for discretization
of differential equations for numerical solutions. Euler forward method de-
pends on the linear approximation of the differential equation based on the
calculation of the tangent of the function. A time interval is discretized into
N − 1 points, giving a time vector T [1 : N − 1] The system dynamics to our
problem can be discretized for Δt = tk+1 − tk as

x[k + 1] − x[k] = Δt(Ax[k] + Bu[k]). (2.42)

In Figure 2.10, a time step in euler forward method is shown.

20

Figure 2.10: Representation of Euler method [9]

Other constraints are discretized as

Xmin ≤ x[k] ≤ Xmax,

Umin ≤ u[k] ≤ Umax.
(2.43)

The cost function in Equation 2.27 is rewritten as

J = 1
2J(x[1], T [1], x[N], T [N]) + Δt

2

N−1�

k=1
ω(x[k], u[k]). (2.44)

2.6 Optimal control of heat equation
The OCP for the boundary control of heat equation is formed using

• the cost function as introduced in Section 2.3.

• Constraints and initial states as introduced in Section 2.4.

• The approximated heat equation as introduced in Section 2.2.

21

The discretized form of the OCP is introduced in Section 2.5. The OCP is
noted as

min
θ,U

Δt

2

N−1�

k=1
e[k]�Qe[k] + u[k]�Ru[k]

s.t θ[k + 1] = θ[k] + Δt(Aθ[k] + Bu[k])
θ[1] = θinit

umin ≤ u[k] ≤ umax

(2.45)

θ[k] is the temperature vector at time step k, where the temperature at each
discretized node is considered a state. e[k] is the error between the output
and the reference value as in Equation (2.31) at time step k ∈ {1, · · · , N}.

The two dimensional problem has the same structure, with u[k] ∈ Rm for
multiple input signals.

The weighing matrices are chosen as

Q = γ C� C,

R = φ I,

where γ ≥ 0 and φ > 0, output matrix C ∈ Rq×n and identity matrix
I ∈ Rm×m.

22

Chapter 3

Software

After the formulation of the NLP, a mathematical optimization framework
is used to solve such problems. Julia is a dynamic programming language,
created for scientific and computing applications, while keeping the perfor-
mance criterion better than other static programming languages. A brief
introduction can be found in [5]. In Julia, there are packages introduced
for mathematical optimization problems, such as JuMP [7] and NLOptCon-
trol [8]. In this chapter, an overview of JuMP and NLOptControl using the
mechanical oscillator example introduced in Section 2.1 is provided. Both
frameworks are briefly compared to unveil their benefits and limitations.

3.1 JuMP.jl
JuMP [3, 7] is a mathematical modelling language embedded in Julia. The
package has the form of a high level programming language. JuMP is built on
Julia, which allows the usage of all Julia packages in the built model. In [7],
benchmarks are used to compare JuMP to other commercial modelling tools,
showing JuMP’s efficiency in solving optimization problems.

JuMP is designed to take advantage of Julia’s syntactic macros [7], provid-
ing suitable syntax for modelling without the usage of parsers and overcoming
the problem of operator overloading, which is used in other programming lan-
guages. JuMP does not solve the optimization problems itself. It supports
various commercial and open source solvers for different types of optimization
problems. IPOPT [24] is used for the optimal control problems introduced,
because it is open source and designed for sparse large scale NLPs. It uses an
interior point line search algorithm to find the minimum value of the objec-
tive function. It is important to note that IPOPT is a local solver, meaning

23

that if the objective function is not convex, there is no gurantee the solution
found is the global minimum.

The first step is to include the packages that are used and to initialize a
model.

✞ ☎
using JuMP,IPopt
#model initialization
mod = Model(optimizer_with_attributes(Ipopt.Optimizer , "max_iter" => 1000))✝ ✆

The system parameters are initialised. The simulation final time is tf =
10[s], with time steps N = 1000. The sampling time is Δt = tf

N
. The

variables umin and umax are the lower and upper bounds to the input signal.

✞ ☎
ω0 = 1.0; # Frequency
d = -20.5; # Damping
A = [0 1; -ω0 -2*d*ω0]; # System matrix
B = [0 ; 1]; # Input matrix
N = 1000; # Time steps
Tf = 10.0; # Final time
ΔT = Tf/N; # Sampling time
x10 = 2.0; #initial value of state x_1
x20 = 1.0; #initial value of state x_2
Q = [10 0; 0 100]; #weighing matrix of states
R = 0.01; #weighing value of input u(t)✝ ✆

The input u(t) has upper and lower boundaries. The decision variables
are stored using @variable.

✞ ☎
@variable(mod, umin <= u[1:N-1] <= umax) #Control signal
@variable(mod, x1[1:N]) # State x1
@variable(mod, x2[1:N]) # State x2✝ ✆

The @constraint and @NLconstraint are used to define the constraints
of the problem. The system dynamics are discretized as introduced in Section
2.5.

✞ ☎
Initial values of states
@constraint(mod, x1[1] == x10)#Initial value of state x_1
@constraint(mod, x2[1] == x20)#Initial value of state x_2
System dynamics.
for k in 1: N-1
@constraint(mod, x1[k+1] == x1[k] + 0.5 * ΔT *(A[1,:]' * [x1[k],x2[k]] + B[1,1] *
u[k]))
@constraint(mod, x2[k+1] == x2[k] + 0.5 * ΔT *(A[2,:]' * [x1[k],x2[k]] + B[2,1] *
u[k]))
end

24

✝ ✆
The objective function is initialized using @NLobjective macro. The

objective function is quadratic and is in trapezoidal form. The model is
passed to the optimize!() function to start solving the problem.

✞ ☎
@NLobjective(mod, Min, 0.5 * ΔT * sum(Q[1,1]*(x1[k])ˆ2 + Q[2,2]*(x2[k])ˆ2
+ R*(u[k])ˆ2 for k=1:N-1))
optimize!(mod)✝ ✆

The results of the simulation can be plotted using any of the available
packages. The results are simulated using the Plots package and are shown
in Figures 3.1 and 3.2.

Figure 3.1: The states trajectory Figure 3.2: Input signal trajectory

3.2 NLOptControl
NLOptControl is a package built on JuMP to solve OCPs. It is designed so
that the modelling of the problem can be written in Bolza form as described
in Section 2.3. It has different collocation schemes already implemented. Ex-
amples on how to use could be found in [8].

The model is initialised with a function called define(), where the num-
ber of states, inputs, lower and upper bounds and initial and final states are
passed as arguments of the function.

✞ ☎
#model definition
n=define(numStates = 2, numControls = 1, X0 = [2.0, 1.0],
CL = [-1000.0], CU = [1000.0]);✝ ✆

25

Names can be given to the states and input variables, where each name is a
symbol.

✞ ☎
#model definition
states!(n,[:x,:y],descriptions=["x(t)","y(t)"]);
controls!(n,[:u],descriptions=["u(t)"]);✝ ✆

The system dynamics are passed as an array of symbols to the function
dynamics!(). The variable j has to be used in the brackets, which is re-
placed by the time step variables.

✞ ☎
#System's dynamics
dx=[:(y[j]),:((-1.0 * x[j]) + (41 * y[j]) + u[j])];
dynamics!(n,dx);✝ ✆

The configuration of the OCP is set by the method cofigure!(). The
method arguments are the number of time steps N , the final time tf and the
integration scheme.

✞ ☎
#Problem's configuration
configure!(n,N = 1000; (:integrationScheme=>:trapezoidal),(:tf=>10.0))✝ ✆

The objective function is initialised. If the objective function contains an
integration operation, an integrate!() method is called. NLOptControl
uses JuMP macros to define the objective function and uses the optimize!()
method for the solution of the problem.

✞ ☎
#objective function and optimization
obj = integrate!(n,:(((10 * x[j]ˆ2 + 100 * y[j]ˆ2))+ (0.01 * u[j]ˆ2)));
@NLobjective(n.ocp.mdl, Min, obj);
optimize!(n)✝ ✆
The results are simulated using the Plots package and are shown in Figures
3.3 and 3.4.

26

Figure 3.3: The states trajectory Figure 3.4: Input signal trajectory

In Chapter 4, we will focus on JuMP because the recent state of NLOpt-
Control does not seem to be able to work in our context with large-scale
problems.

27

Chapter 4

Implementation and Results

In the current chapter, the implementation of the OCP for the heat equation
is presented. In Section 4.1, the simulation paramers of the one dimensional
heat equation are presented, followed by the simulation results of the OCP
for various cases. In Section 4.2, the simulation parameters of the two di-
mensional heat equation are presented. The simulation results in Section
4.2 show the results for heating one plate using multiple input signals and
heating multiple plates.

4.1 The one Dimensional heat equation
The approximation of the heat equation is introduced in Section 2.2. The
characteristics of the rod are noted in Table 4.1.

Parameter Symbol Value Unit
Length L 0.1 m

Discretization points N 11
Spatial discretization Δx 0.01 m
Thermal Conductivity λ 45 W/ (m · K)
specific heat capacity c 460 J/ (Kg · K)

Material’s density ρ 7800 Kg · m3

Table 4.1: Simulation parameters for one dimensional case.

In further calculations we use α = λ
cρ

. According to the Table 4.1, the
states vector is θ ∈ R11, the system matrix A ∈ R11×11. The input source is

28

placed at the left hand side of the rod. The input matrix B ∈ R11×1

The sensor is assumed at x = L, which corresponds with the last node of
the rod. Thus, the output matrix C ∈ R1×11 is noted as

C =
�
0 · · · 1

�
. (4.1)

For the numerical stability of the approximated heat equation discussed
in Section 2.2, the sampling period has to satisfy the conditional Equation
(2.19).

The time step size in simulation is Δt = 10−1. The number of constraints
depend on the time step size, where a smaller step means more constraints
to be initialised. The number of calculation steps is noted as

k = tf

Δt
, (4.2)

with tf > 0 as the final simulation time. The system matrix A is a sparse
matrix, where nearly all it’s entries other than the tridiagonal representing
the approximations are zero. In Julia this is done by using the package
SparseArrays.

✞ ☎
Creating the approxiation of the heat equation
using SparseArrays
A = spdiagm(-1 => ones(N-1), 0 => -2*ones(N), 1 => ones(N-1));
A[2,1] = 2.0;
A[end - 1,end] = 2.0;
A = (λ/(c * ρ * dxˆ2)) * A;✝ ✆

Vectors B and C are defined similarly.

The next step is the initialization of the decision variables. These are the
temperatures at the N = 11 grid points, the input variable and the output
variable for k time steps.

✞ ☎
Creating the approxiation of the heat equation
@variable(mod,θ[1:N,1:step]); #temperature at dx[i = 1:N]
@variable(mod,u[k = 1:step - 1]); #Input u
@variable(mod, y[1:step]); #Output y✝ ✆

29

In the following step, we introduce the system dynamics and initial con-
ditions of our states. These are the constraints of our system, as discussed
in Section 2.4, which are linear constraints.

✞ ☎
#Initial states and output of the system
@constraint(mod, θ[:,1] .== θinit)
@constraint(mod, y[1] .== θinit)
#system's dynamics
for k in 1:step - 1,i in 1:N

@constraint(mod,θ[i,k + 1] .== θ[i,k] + dt *
((A[:,i]'*θ[:,k]) + B[i] * u[k]))

end
#Output of the problem
for k in 1:step - 1

@constraint(mod,y[k + 1] .== C' * θ[:,k + 1])
end✝ ✆
The variables θinit is the inital temperature, set to 273 Kelvin.

The cost function is quadratic, therefore a macro for non linear objective
function is used.

✞ ☎
#Cost functional for LQ-OCP
J = @NLexpression(mod,0.5 * dt * sum(Q * (θref - y[k]) ˆ 2

+R * u[k] ˆ 2 for k in 1:step-1))✝ ✆
The values of Q and R were determined with trial runs. For R ≥ 1 and

Q = 1, the temperature across the rod would not increase considerably, as
the input signal is penalized with a big value, giving it a small value and
quickly driving the input trajectory to zero. Q and R are scalars, where the
error consists of one measurement and there is only one input source. This
means that the states path needs to be penalized more than the input signal.
However, if Q is set too large then this could lead to an overshoot in the
temperature across the rod. The time interval differs according to the values
of Q and R. As the final time increases, the problem size increases, where the
number of constraints is approximately (N + 1) × k. The system was found
to reach the wanted reference temperature of 500 Kelvin for the simulation
time and the weighing matrices shown in Table 4.2.

30

Parameter value
tf 3000[s]
Δt 10−1[s]
Q 103C�C

R 10−3

Table 4.2: Optimization and simulation time parameters.

Three cases are tested to simulate the behaviour of the controller with
different weighing values of Q and R. The input signal is used with no upper
or lower bounds. In the first case, the values Q = 1 and R = 1 are used,
where the simulation results are shown in Figure 4.1.

Figure 4.1: Temperature at input
node for rod with Q = 1,R = 1

Figure 4.2: Output measured at
right side of rod for Q=1 ,R = 1

31

Figure 4.3: Input signal trajectory for Q=1 ,R = 1

From Figure 4.1, it is observed that the rising of the temperature across
the rod is too slow and the input signal has a very small value. In the second
case, the values chosen are Q = 108 and R = 0.1 to reduce the rising time of
the temperature and increase the amount of heat applied on the rod, with no
upper or lower bounds to the input signal. The simulation of the temperature
distribution across the rod is presented in Figures 4.4 and 4.5 and the input
signal trajectory is presented in Figure 4.6.

Figure 4.4: The temperature change
at the left side of rod Q = 108,R =
0.1.

Figure 4.5: Output measured for Q =
108,R = 0.1.

32

Figure 4.6: Input signal for Q = 108,R = 0.1.

The simulations show the overshoot of the temperature at x = 0 and at
the measured output. The input source cools down to negative values, which
is infeasible. In the third case, the values Q = 103, R = 10−3 are tested,
with no bounds on the input signal. The temperatures at the input nodes
and at measured output are shown in Figures 4.7 and 4.8. The input signal
trajectory is shown in Figure 4.9.

Figure 4.7: The temperature at the
left side of rod Q = 103,R = 10−3.

Figure 4.8: Output measured for Q =
103,R = 10−3.

33

Figure 4.9: Input signal for Q = 103, R = 10−3.

The weighing values Q and R are determined. The input signals are
applied with upper and lower bounds 0 ≤ u(t) ≤ 15 · 103.

✞ ☎
#Bounded input signal: u_max = 15\cdot 10^3, u_min = 0.0
@variable(mod,u_min <= u[k = 1:step - 1] <= u_max); #Input u✝ ✆

The simulation time is increased tf = 10000. The temperature trajectory
at the input node and the measured output are shown in Figures 4.10 and
4.11. The input signal trajectory is shown in Figure 4.12.

Figure 4.10: The temperature change
at the left side of rod for Q = 103,R =
10−3 with 0 ≤ u(t) ≤ 15 · 103.

Figure 4.11: Output measured for
Q = 103,R = 10−3 with 0 ≤ u(t) ≤
15 · 103.

34

Figure 4.12: Input signal for Q = 103,R = 10−3 with 0 ≤ u(t) ≤ 15 · 103.

4.2 Two Dimensional heat equation
The two Dimensional heat equation is experimented on a plate, with the
simulation parameters presented in Table 4.3.

Parameter Symbol Value Unit
Length Lx = Ly 0.1 m

Discretization points Nx = Ny 11
Spatial discretization Δx = Δy = h 0.01 m
Thermal Conductivity λ 45 W/ (m · K)
specific heat capacity c 460 J/ (Kg · K)

Material’s density ρ 7800 Kg · m3

Table 4.3: Simulation parameters for two dimensional case.

The system matrix A ∈ R121×121 as described in section 2.2, The input
matrix contains multiple input entries at the first, sixth and eleventh node
of the matrix, whereB ∈ R121×3. This is equivalent to having three input
sources at different discretized nodes of the bottom side of the plate being
tested. Three output readings are taken from the upper side of the plate,
at the first, sixth and last node on the upper side. The output matrix is
C ∈ R1×121. The chosen time and weighing parameters are noted in Table
4.4.

35

Parameter value
tf 6000[s]
Δt 1.5[s]
Q 104C�C

R 10−3

Table 4.4: Optimization and simulation time parameters for two dimensional
case.

In the following section, the temperatures at the bottom of the plate (in-
put boundary) correspond to the positions (0, 0), (L/2, 0), (L, 0) and the tem-
peratures at the top of the plate(output boundary) correspond to (0, L), (L/2, L), (L, L).
The temperature trajectories at these position are presented in Figures 4.13
and 4.14. The input signals are presented in Figure 4.15.

Figure 4.13: Trajectories of the tem-
perature input nodes.

Figure 4.14: Trajectories of the mea-
sured temperatures.

36

Figure 4.15: Input signal of each of the heat sources.

For achieving bounded input signals, we apply a constraint between umin =
0 to umax = 15000 to all three input sources. The varied controller parame-
ters are noted in Table 4.5.

Parameter value
tf 40000[s]
Δt 1.5[s]
Q 104C�C

R 10−4

Table 4.5: Optimization and simulation time parameters for two dimensional
case, with bounded input signals.

The simulations of the temperature trajectories at the bottom of the plate
(input boundary) correspond to the positions (0, 0), (L/2, 0), (L, 0) and at the
top of the plate (output boundary) correspond to (0, L), (L/2, L), (L, L) are
presented in Figures 4.16 and 4.17. The input signals are shown in Figure
4.18.

37

Figure 4.16: Trajectories of the tem-
perature at input nodes.

Figure 4.17: Trajectories of the mea-
sured temperatures.

Figure 4.18: bounded Input signal of each of the heat sources.

The final case is heating several two dimensional bodies with various
heating sources. Three two dimensional bodies are heated using a heating
source for each body. The simulation parameters are shown in Table 4.6.

38

Parameter Symbol Value Unit
Width Lx 0.03 m

Length Ly 0.1 m
Discretization points (Width) Nx 4
Discretization points (Length) Ny 12

Spatial discretization Δx = Δy = h 0.01 m
Thermal Conductivity λ 45 W/ (m · K)
specific heat capacity c 460 J/ (Kg · K)

Material’s density ρ 7800 Kg · m3

Table 4.6: Simulation parameters for two dimensional case of heating several
bodies.

The system matrix A ∈ R48×48 as described in section 2.2. The input
matrix contains multiple input entries placed at the lower side of the bodies,
whereB ∈ R48×3. Two output readings are taken from the upper side of each
body, with C ∈ R1×48. Three state vectors are used, θi ∈ R48, i ∈ 1, 2, 3. The
reference temperatures are set differently for each body, where the first is
heated to 400 Kelvin, the second body is heated to 600 Kelvin and the third
body is heated to 500 Kelvin. The input signals are 0 ≤ u(t) ≤ 15 · 103. The
controller and simulation parameters are noted in Table 4.7.

Parameter value
tf 30000[s]
Δt 1.5[s]
Q 104C�C

R 10−4

Table 4.7: Optimization and simulation time parameters for two dimensional
case of heating several bodies, with bounded input signals.

The simulations of the temperature trajectories at the bottom of the
plate (input boundary) correspond to the positions (0, 0) for the first plate,
(L/2, 0) for the second plate and (L, 0) for the third plate are presented
in Figure 4.19. The simulation trajectories at the top of the plate (output
boundary) correspond to (Lx, Ly), (Lx, Ly), (Lx, Ly) are presented in Figure
4.20. The input signals are shown in Figure 4.21.

39

Figure 4.19: The temperature at the
input nodes, with Q = 104,R = 10−4

with 0 ≤ u(t) ≤ 15 · 103.

Figure 4.20: The measured tempera-
ture, with Q = 104,R = 10−4 with
0 ≤ u(t) ≤ 15 · 103.

Figure 4.21: The input signals, with Q = 104,R = 10−4 with 0 ≤ u(t) ≤
15 · 103.

40

Chapter 5

Conclusion

In this work, we took interest in the optimal control problem of the heat equa-
tion with boundary input and additional constraints on the input value. A
stable numerical approximation of the one dimensional and two dimensional
heat equation are presented using finite difference method. An optimal con-
trol problem is formulated and a solution using direct collocation method is
discussed.

A short introduction to JuMP and NLOptControl are presented, which
are suitable packages to solve the derived problem. A JuMP model is imple-
mented to simulate the results of a LQ-optimal control applied.

The work introduced in this thesis can be generalized to systems described
with parabolic PDEs. Depending on the requirements of the research, A fi-
nite element scheme could be also used, if the accuracy of the FDM is not
sufficient.

A model predictive controller is an iterative process of solving a con-
strained optimal control problem for a short time interval [t, t + T] and only
implementing the first control input signal. Our work can be used as the base
of the structure of a model predictive controller. This is done by reducing
the integral period to a very short period and iterating, while only applying
the u[1] and reinitialising the problem, where the current states of the system
are used as the initial values of the problem.

41

Bibliography

[1] Joel AE Andersson, Joris Gillis, Greg Horn, James B Rawlings, and
Moritz Diehl. Casadi: a software framework for nonlinear optimization
and optimal control. Mathematical Programming Computation, 11(1):1–
36, 2019.

[2] Sergey Andreev. System of energy-saving optimal control of metal heat-
ing process in heat treatment furnaces of rolling mills. Machines, 7(3):60,
2019.

[3] Ing Eckhard Arnold. Jump-kurzbeschreibung. 2018.

[4] Christoph Josef Backi and Jan Tommy Gravdahl. Optimal boundary
control for the heat equation with application to freezing with phase
change. In 2013 Australian Control Conference, pages 409–414. IEEE,
2013.

[5] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia:
A fresh approach to numerical computing. SIAM review, 59(1):65–98,
2017.

[6] Juan A Carretero and Meyer A Nahon. A genetic algorithm for cal-
culating minimum distance between convex and concave bodies. pages
18–22, 2001.

[7] Iain Dunning, Joey Huchette, and Miles Lubin. Jump: A modeling
language for mathematical optimization. SIAM Review, 59(2):295–320,
2017.

[8] Huckleberry Febbo, Paramsothy Jayakumar, Jeffrey L Stein, and Tulga
Ersal. Nloptcontrol: A modeling language for solving optimal control
problems. arXiv preprint arXiv:2003.00142, 2020.

[9] Steven G. Johnson. Euler’s method explained with ex-
amples. https://www.freecodecamp.org/news/
eulers-method-explained-with-examples/.

42

[10] Steven G. Johnson. The nlopt nonlinear-optimization package. http:
//github.com/stevengj/nlopt.

[11] Steven G. Johnson. The nlopt nonlinear-optimization package. https:
//nlopt.readthedocs.io/en/latest/NLopt_Tutorial/.

[12] Rudolf E Kalman. On the general theory of control systems. In Pro-
ceedings First International Conference on Automatic Control, Moscow,
USSR, pages 481–492, 1960.

[13] Matthew Kelly. An introduction to trajectory optimization: How to do
your own direct collocation. SIAM Review, 59(4):849–904, 2017.

[14] Donald E Kirk. Optimal control theory: an introduction. Courier Cor-
poration, 2004.

[15] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer
Science & Business Media, 2006.

[16] Geert Jan Olsder and Jacob Willen van der Woude. Mathematical sys-
tems theory, volume 4. VSSD Delft, 2005.

[17] Peter J Olver. Introduction to partial differential equations. Springer,
2014.

[18] Anil V Rao. Trajectory optimization: a survey. In Optimization and
optimal control in automotive systems, pages 3–21. Springer, 2014.

[19] Helena Sofia Rodrigues, M Teresa T Monteiro, and Delfim FM Torres.
Optimal control and numerical software: an overview. arXiv preprint
arXiv:1401.7279, 2014.

[20] Stephan Scholz. Mechanical system with spring, mass and damp-
ing. https://nbviewer.jupyter.org/github/stephans3/
control-engineering-edu/blob/master/2020-1-Summer/
text/jupyter/CE_2020_04_modeling_mechanical_
oscillator.ipynb.

[21] Daniel Simon. Fighter Aircraft Maneuver Limiting Using MPC: Theory
and Application, volume 1881. Linköping University Electronic Press,
2017.

[22] Russ Tedrake. Underactuated robotics: Algorithms for walking, run-
ning, swimming, flying, and manipulation (course notes for mit 6.832).
Downloaded in Fall, 2014.

43

[23] Tilman Utz, Sönke Rhein, and Knut Graichen. Transformation approach
to constraint handling in optimal control of the heat equation. IFAC
Proceedings Volumes, 47(3):9135–9140, 2014.

[24] Andreas Wächter and Lorenz T Biegler. On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear pro-
gramming. Mathematical programming, 106(1):25–57, 2006.

44

