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(Scientific) Machine Learning

Black box

Input Output

Learn parameters

I Machine Learning:
adjust parameters p to minimize error = output − input
⇒ Black box model

I System identification:
find parameters p of dynamical system ẋ(t) = f (x , t, p)
such that it fits to my experimental data x̃(t) ≈ x(t).
⇒ Grey box model - system is partially known



(Scientific) Machine Learning

Controller

dyn. System

u(t)

r(t) e(t)

x(t)

input u
states x
error e
reference r

I Control Engineering:
find a control signal u(t) = g(t, p) such that

1. the dynamical systems ”does not explode” (stability) and
2. the error e(t) = r(t)− x(t) is minimized

⇒ Grey box model



Example: RLC circuit
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y(t) = x1(t)

I Resistor R

I Inductor L

I Capacitor C



System Identification

1. Create original data

2. Build grey box model (ODE with parameters)

3. Design cost (or goal) function

4. Choose initial parameters p and optimizer

5. Run optimization loop
I Solve ODE
I Apply continuous backpropagation
I Adapt parameters

f (x , t, p)
In x0 Out x(t)

Solve ODE

Learn p



System Identification: RLC Circuit
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1. Which parameters shall be learned?

I p1 = R, p2 = L and p3 = C
I p1 = 1

LC and p2 = R
L

2. Cost function

min
p

J(x , x̃) =

∫ T

0
(x1(t)− x̃1(t))2 + (x2(t)− x̃2(t))2 d t

3. Optimizer
I local vs. global
I convex vs. non-convex
I here: BFGS

Is it possible to replace parts of the ODE by ANNs?
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ẋ1
ẋ2
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ẋ1
ẋ2
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Neural Ordinary Differential Equations

Typical neural network architecture (e.g. ResNets) can be
represented

x(n + 1) = x(n) + h f (x(n), p) (1)

with x(n) the states of the recent layer and p the set of
parameters.

Initial Question
How is it possible to accelerate deep learning with such
architectures?

Idea
Equation (1) looks like the Euler forward method. Let’s go back to
the ODE and solve it with a better method (e.g. Runge-Kutta)!



Scheme

I Go backwards from Euler approximation to (Neural) ODE

x(n + 1)− x(n)

h
= f (x(n), p) ⇒ ẋ(t) = f (x , t, p)

I Solve Neural ODE and learn/adapt parameters p

I Optimization with standard tools (e.g. BFGS) or ML tools
(e.g. ADAM)

f (x , t, p)
In x0 Out x(t)

Solving ODE

Learning/adapting p



Continuous Backpropagation

from Chen, et al.: Neural ordinary differential equations [1]



Two Perspectives on Neural ODE

Machine Learning

I Build “infinitely” deep neural networks

I Works also for other ML tools like Normalizing Flows

I Neural ODE must fit to “mathematical rules”

Modeling, Simulation and Control

I Integration of ML tools (ANN, optimizers,) in differential
equations

I Also implemented for DAE, SDE, etc.

I Usually not quick-and-dirty
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Optimal Control of RLC circuit with ANN

min
p

∫ T

0
(r(t)− y(t))2dt

subject to(
ẋ1
ẋ2

)
=
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)
+

(
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)
u(t)

y(t) = x1(t)

u(t) = ANN(t, p)

We assume

I coefficients R = 1, L = 2, C = 3 and

I reference r(t) = 5

I 4-layer network, 32 neurons per hidden layer: 1153 parameters



Optimal Control: initial parameters



Optimal Control: trained parameters



What else?

The Magic

I Julia environment + SciML Organization

I High-class numerical integrators

I Large range of optimizers

I Automatic Differentiation

The Universe

I Dynamic Mode Decomposition + SINDy

I Physics-Informed Neural Networks

I Many applications in biology, chemistry, physics, engineering...
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