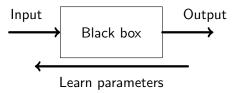
Scientific Machine Learning

Stephan Scholz

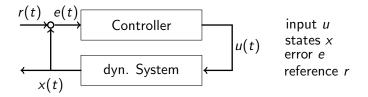
May 31, 2022

(Scientific) Machine Learning



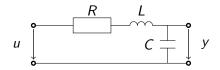
- Machine Learning:
 adjust parameters p to minimize error = output − input
 ⇒ Black box model
- System identification: find parameters p of dynamical system $\dot{x}(t) = f(x,t,p)$ such that it fits to my experimental data $\tilde{x}(t) \approx x(t)$. \Rightarrow Grey box model system is partially known

(Scientific) Machine Learning



- ► Control Engineering:
 - find a control signal u(t) = g(t, p) such that
 - 1. the dynamical systems "does not explode" (stability) and
 - 2. the error e(t) = r(t) x(t) is minimized
 - \Rightarrow Grey box model

Example: RLC circuit



Ordinary Differential Equation

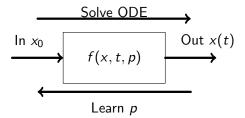
$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{-1}{LC} & -\frac{RC}{LC} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{1}{LC} \end{pmatrix} u(t)$$

$$y(t) = x_1(t)$$

- ► Resistor *R*
- ► Inductor L
- Capacitor C

System Identification

- 1. Create original data
- 2. Build grey box model (ODE with parameters)
- 3. Design cost (or goal) function
- 4. Choose initial parameters p and optimizer
- 5. Run optimization loop
 - ► Solve ODE
 - Apply continuous backpropagation
 - Adapt parameters



$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{-1}{LC} & -\frac{R}{L} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{1}{LC} \end{pmatrix} u(t)$$

1. Which parameters shall be learned?

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{-1}{LC} & -\frac{R}{L} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{1}{LC} \end{pmatrix} u(t)$$

- 1. Which parameters shall be learned?
 - $ightharpoonup p_1 = R, \ p_2 = L \ \text{and} \ p_3 = C$

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{-1}{LC} & -\frac{R}{L} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{1}{LC} \end{pmatrix} u(t)$$

- 1. Which parameters shall be learned?
 - $ightharpoonup p_1 = R, p_2 = L \text{ and } p_3 = C$
- 2. Cost function

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{-1}{LC} & -\frac{R}{L} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{1}{LC} \end{pmatrix} u(t)$$

- 1. Which parameters shall be learned?
 - $ightharpoonup p_1 = R, p_2 = L \text{ and } p_3 = C$
- 2. Cost function

$$\min_{\rho} J(x, \tilde{x}) = \int_{0}^{T} (x_{1}(t) - \tilde{x}_{1}(t))^{2} + (x_{2}(t) - \tilde{x}_{2}(t))^{2} dt$$

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{-1}{LC} & -\frac{R}{L} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{1}{LC} \end{pmatrix} u(t)$$

- 1. Which parameters shall be learned?
 - $ightharpoonup p_1 = R, p_2 = L \text{ and } p_3 = C$
- 2. Cost function

$$\min_{\rho} J(x, \tilde{x}) = \int_{0}^{T} (x_{1}(t) - \tilde{x}_{1}(t))^{2} + (x_{2}(t) - \tilde{x}_{2}(t))^{2} dt$$

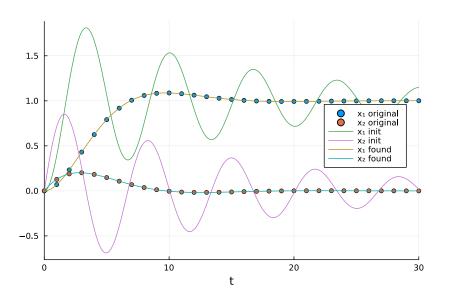
- Optimizer
 - local vs. global
 - convex vs. non-convex
 - here: BFGS

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{-1}{LC} & -\frac{R}{L} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{1}{LC} \end{pmatrix} u(t)$$

- 1. Which parameters shall be learned?
 - $p_1 = R, p_2 = L \text{ and } p_3 = C$
- 2. Cost function

$$\min_{\rho} J(x, \tilde{x}) = \int_{0}^{T} (x_{1}(t) - \tilde{x}_{1}(t))^{2} + (x_{2}(t) - \tilde{x}_{2}(t))^{2} dt$$

- 3. Optimizer
 - local vs. global
 - convex vs. non-convex
 - here: BFGS



Neural Ordinary Differential Equations

Typical neural network architecture (e.g. ResNets) can be represented

$$x(n+1) = x(n) + h f(x(n), p)$$
 (1)

with x(n) the states of the recent layer and p the set of parameters.

Initial Question

How is it possible to accelerate deep learning with such architectures?

Idea

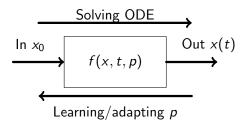
Equation (1) looks like the Euler forward method. Let's go back to the ODE and solve it with a better method (e.g. Runge-Kutta)!

Scheme

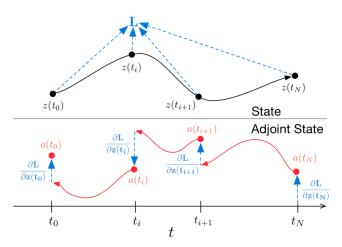
Go backwards from Euler approximation to (Neural) ODE

$$\frac{x(n+1)-x(n)}{h} = f(x(n),p) \Rightarrow \dot{x}(t) = f(x,t,p)$$

- Solve Neural ODE and learn/adapt parameters p
- Optimization with standard tools (e.g. BFGS) or ML tools (e.g. ADAM)



Continuous Backpropagation



from Chen, et al.: Neural ordinary differential equations [1]

Two Perspectives on Neural ODE

Machine Learning

- Build "infinitely" deep neural networks
- Works also for other ML tools like Normalizing Flows
- Neural ODE must fit to "mathematical rules"

Two Perspectives on Neural ODE

Machine Learning

- Build "infinitely" deep neural networks
- Works also for other ML tools like Normalizing Flows
- ▶ Neural ODE must fit to "mathematical rules"

Modeling, Simulation and Control

- Integration of ML tools (ANN, optimizers,) in differential equations
- Also implemented for DAE, SDE, etc.
- Usually not quick-and-dirty

Optimal Control of RLC circuit with ANN

$$\min_{\rho} \int_{0}^{T} (r(t) - y(t))^{2} dt$$
subject to
$$\begin{pmatrix} \dot{x}_{1} \\ \dot{x}_{2} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \frac{-1}{LC} & -\frac{R}{L} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{1}{LC} \end{pmatrix} u(t)$$

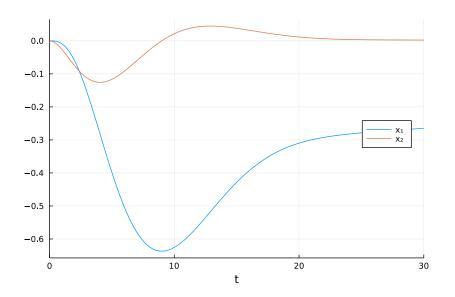
$$y(t) = x_{1}(t)$$

$$u(t) = ANN(t, \rho)$$

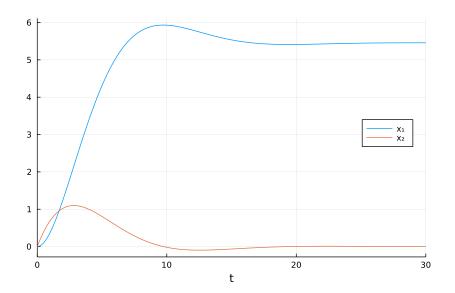
We assume

- ightharpoonup coefficients $R=1,\ L=2,\ C=3$ and
- reference r(t) = 5
- ▶ 4-layer network, 32 neurons per hidden layer: 1153 parameters

Optimal Control: initial parameters



Optimal Control: trained parameters



What else?

The Magic

- ▶ Julia environment + SciML Organization
- ► High-class numerical integrators
- Large range of optimizers
- Automatic Differentiation

What else?

The Magic

- ► Julia environment + SciML Organization
- ► High-class numerical integrators
- Large range of optimizers
- Automatic Differentiation

The Universe

- Dynamic Mode Decomposition + SINDy
- Physics-Informed Neural Networks
- Many applications in biology, chemistry, physics, engineering...

Bibliography

- Ricky Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, David Duvenaud: Neural ordinary differential equations. Advances in neural information processing systems (2018).
- Patrick Kidger: On Neural Differential Equations. arXiv preprint (2022). arXiv:2202.02435.
- Christopher Rackauckas, Mike Innes, Yingbo Ma, Jesse Bettencourt, Lyndon White, Vaibhav Dixit: Diffeqflux.il - A julia library for neural differential equations. arXiv preprint (2019). arXiv:1902.02376.
- Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit Supekar, Dominic Skinner, Ali Ramadhan, Alan Edelman: Universal differential equations for scientific machine learning. arXiv preprint (2020). arXiv:2001.04385.
- Steven A. Frank: Optimizing differential equations to fit data and predict outcomes. arXiv preprint (2022). arXiv:2204.07833.