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1 Introduction to sliding mode control

Sliding mode control (SMC) is a powerful, robust, and computing-wise easy-to-
implement control method. Equivalent to the proportional integral derivative con-
troller (PID controller), once the control parameters are defined, the controller can
be easily implemented on a microcontroller. Moreover, due to its robustness, it can
handle disturbances or inaccuracies in either the system model or other parameters
to a certain degree. It is commonly used to control nonlinear systems. However, it
can be used for linear control tasks as well [2].

Compared to other nonlinear control methods, such as model predictive control
(MPC), the advantage of sliding mode control is its less complexity at run time.
The sliding mode control parameters have to be defined only once to yield a con-
stant controller structure, whereas MPC has an optimization algorithm that changes
the control parameters during the runtime. Consequently, MPC needs more compu-
tational resources, which means more expensive controllers. Therefore sliding mode
control is commonly used, in several applications like the aerospace industry [9],
electric drives [4], and automotive systems [5].

1.1 Basic idea

The mathematical concept of SMC is based on using a sliding manifold, a mathemat-
ical function that represents the desired system behavior. To force the system to the
desired behavior, SMC applies a control signal to the system such that the system
will slide along the so-called sliding surface or more generally, sliding manifold. The
sliding manifold is, in the case of a three-dimensional system, a two-dimensional sur-
face, and in the case of a two-dimensional system a one-dimensional line. Generally,
the order n of the sliding manifold can be calculated by the systems order m reduced
by one (n = m−1). The control input is calculated by the usage of a switching func-
tion. Depending on the position of the system with respect to the sliding surface,
the ultimate trajectory will not exist entirely with one control structure. Therefore,
it will slide along the boundaries of the control structures [7].

2



Sliding-Mode Control for Nonlinear RC and RLC Circuits
Christian Dalea
Simon Scheerer

Figure 1: Sliding manifold of a 2nd order system. [6]

Figure 2: Sliding phase with chattering [8]

The pictures above show two different phase plots of a second order system that
visualize the basic concept of SMC. In a second order system the sliding manifold is
a line. Based on the starting condition x(t0), the trajectories will start on different
starting positions within the phase plot (Figure 1). The first stage in SMC is the
reaching phase, where the trajectory moves toward the sliding surface s(x) = 0. As
soon as it has reached this surface, it will slide along the sliding surfaces until it
reaches its stable position in origin. Since the trajectory does not always hit the
sliding surface perfectly, the trajectory chatters along the sliding surface (Figure 2).
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1.2 General design rules for SMC

The subspace that fulfills the condition s(x) = 0 is called the sliding surface. When
the system reaches this area, the system is asymptotically stable. To reach this
subspace the following conditions are considered. If s(x) > 0 than its derivative
has to be ṡ(x) < 0. On the other hand if s(x) < 0 than the derivative has to be
ṡ(x) > 0. These two conditions will ensure that the system will be attracted to
move toward the desired system behavior s(x) = 0 (see Figure 3). Derived from
that, consequently, the following condition holds: s(x)ṡ(x) < 0.[1]
Hence this condition is necessary, it does not ensure that the system will reach these
states in a finite time. The reachability in a finite time is already proven for example
in [7], therefore no further prove will be done again.

Figure 3: Sliding surface over time

The formulas to design the sliding mode control are introduced next. In this report
the linear sliding surface

s(x) = rTx = r1x1 + r2x2 + ...+ rnxn (1.2.1)

with rn = 1 is used.
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The derivative of s(x) is given in the following equation

ṡ(x) = rT ẋ = gradT s(x)ẋ,

ẋ = Ax+ bu,

ṡ(x) = gradT s(x)(Ax+ bu). (1.2.2)

Based on the above mentioned design rules for SMC, the following condition holds

ṡ(x) =

{
> 0 if s(x) < 0,

< 0 if s(x) > 0.
(1.2.3)

From equation (1.2.3), the inequality

s(x)ṡ(x) < 0 (1.2.4)

is obtained.

When does sliding occur?

Based on condition (1.2.3), it is evident in which direction the system should move.
To investigate if this condition is fulfilled, the gradient will be used. By applying
the scalar product ∇s(x) · f , it can be calculated in which direction the vectors f1
and f2 are pointing. If the scalar product is positive, both vectors point in the same
direction. Otherwise, the vectors point in the opposite direction. Finally, condition
(1.2.3) can be proven, and sliding occurs, if the following condition will be respected
[3]

∂s(x)

∂x
f1 = Lf1s(x) < 0 and

∂s(x)

∂x
f2 = Lf2s(x) > 0.

Figure 4: Check when sliding occurs. f1 is the system behavior if s(x) > 0, f2 is the
system behavior if s(x) < 0 and s(x) = 0 is the sliding manifold.[3]
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Controllable canonical form

The controller design for linear and nonlinear systems will be described in the next
chapters. An essential condition for both cases (linear and nonlinear) is that the
system has to be noted in controllable canonical form


ẋ1

ẋ2
...

ẋn−1

ẋn

 =


0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
−a0 −a1 · · · −an−2 −an−1




x1

x2
...

xn−1

xn

+


0
0
...
0
1

u = Ax+ bu,

for linear system, and


ż1
...

żn−1

żn

 =


z2
...
zn

Ln
ac(x) +LbL

n−1
a c(x)u

 =


z2
...
zn

α(z)

+


0
...
0

β(z)

u = ã(z) + b̃(z)u

for nonlinear system.

If the system is not already in this form, the state space model has to be transformed
into the desired ”controllable canonical form“. Therefore, it could be necessary to
introduce new variables, such as in a cascaded RC circuit (see chapter 2.1.1).

Furthermore, in a nonlinear system, the new variables will be calculated with the
help of the Lie derivative (see chapter 2.2.1). To better understand how this can be
done, in chapter 2, several calculation examples for a second-order system will be
shown.
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1.3 Control methods

Several control methods with different properties will satisfy the general design rules
(chapter 1.2) for SMC. In this report, three different methods were investigated. All
these three methods use the approach to describe ṡ(x) by a particular function.

1.3.1 Reaching law with constant rate

For this method, the following ansatz will be used [6]:

ṡ(x) = −εsign(s(x)) with control parameter ε > 0 (1.3.1)

ṡ(x) =

{
−εsign(s+(x)) = −ε < 0 if s(x) > 0

−εsign(s−(x)) = +ε > 0 if s(x) < 0
(1.3.2)

With proof 1.3.2, it can be shown formula 1.3.1 fulfills the conditions 1.2.3 and 1.2.4.

1.3.2 Exponential reaching law by Gao and Hung

For this method, the following ansatz will be used [6]:

ṡ(x) = −εsign(s(x))− ks(x) with control parameters ε > 0 and k > 0 (1.3.3)

ṡ(x) =

{
−εsign(s+(x))− ks+(x) = −ε− ks+(x) < 0 if s(x) > 0

−εsign(s−(x))− ks−(x) = +ε− ks−(x) > 0 if s(x) < 0
(1.3.4)

With proof 1.3.4, it can be shown formula 1.3.3 fulfills the conditions 1.2.3 and 1.2.4.

1.3.3 Reaching law with power rate

For this method, the following ansatz will be used [6]:

ṡ(x) = −k|s(x)|αsign(s(x)) with control parameters k > 0 and 0 < α < 1 (1.3.5)

ṡ(x) =

{
−k|s+(x)|αsign(s+(x)) = −k|s+(x)|α < 0 if s(x) > 0

−k|s−(x)|αsign(s−(x)) = +k|s−(x)|α > 0 if s(x) < 0
(1.3.6)

With proof 1.3.6 it can be shown formula 1.3.5 fullfills the conditions 1.2.3 and 1.2.4.
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1.4 Linear controller calculation

Derived from the definition of the sliding surface (equation (1.2.1)) and its derivative
equation (1.2.2). It is possible to calculate the corresponding controller u(t) for each
control method individually. The following calculations consider a linear system
which can be described as ẋ = Ax+ bu.

1.4.1 Linear controller for reaching law with constant rate

General equation

u(x) = −rTAx+ εsign(s(x))

rTb
(1.4.1)

Special case 2nd order

The matrix A, vector b, vector x and the vector rT will be defined as

A =

[
0 1
a0 a1

]
, (1.4.2)

b =

(
0
b1

)
, (1.4.3)

x =

(
x1

x2

)
, (1.4.4)

rT = (r1, 1). (1.4.5)

With these definitions the equation (1.4.1) can be simplified as

u(x) =
−x1a0 − x2(r1 + a1)− εsign(r1x1 + x2)

b1
.
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1.4.2 Linear controller for reaching law with exponential rate

General equation

u(x) = −rTAx+ εsign(s(x)) + ks(x)

rTb
(1.4.6)

Special case 2nd order

With the definitions 1.4.2 to 1.4.5 the equation (1.4.6) can be simplified as

u(x) =
−x1a0 − x2(r1 + a1)− εsign(r1x1 + x2)− k(r1x1 + x2)

b1
.

1.4.3 Linear controller for reaching law with power rate

General equation

u(x) = −rTAx+ k|s(x)|αsign(s(x))
rTb

(1.4.7)

Special case 2nd order

With the definitions 1.4.2 to 1.4.5 the equation (1.4.7) can be simplified as

u(x) =
−x1a0 − x2(r1 + a1)− k|r1x1 + x2|αsign(r1x1 + x2)

b1
.
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1.5 Nonlinear controller calculation

In the case of a nonlinear system, the starting point to calculate the controller is
slightly different because the system can not be represented in the same way as
the linear system. A nonlinear system can be represented by ż = ã(z) + b̃(z)u.
Therefore applies analogously

ṡ(z) = gradT s(z)ż,

ṡ(z) = gradT s(z)(ã(z) + b̃(z)u). (1.5.1)

By reshaping equation (1.5.1) to u based on the corresponding control method from
section 1.3, it is possible to calculate the controller.

1.5.1 Nonlinear controller for reaching law with constant rate

General equation

u(z) = −rT ã(z) + εsign(s(z))

rT b̃(z)
(1.5.2)

Special case 2nd order

The vector ã(z), vector b̃(z) and vector z will be defined as

ã(z) =

(
z2

α(z)

)
, (1.5.3)

b̃(z) =

(
0

β(z)

)
, (1.5.4)

z =

(
z1
z2

)
. (1.5.5)

With the definitions 1.5.3 to 1.5.5 and definition 1.4.5 the equation (1.5.2) can be
simplified as
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u(z) =
−r1z2 − α(z)− εsign(r1z1 + z2)

β(z)
.

1.5.2 Nonlinear controller for reaching law with exponential rate

General equation

u(z) = −rT ã(z) + εsign(s(z)) + krTz

rT b̃(z)
(1.5.6)

Special case 2nd order

With the definitions 1.5.3 to 1.5.5 and definition 1.4.5 the equation (1.5.6) can be
simplified as

u(z) =
−r1z2 − α(z)− εsign(r1z1 + z2)− k(r1z1 + z2)

β(z)
.

1.5.3 Nonlinear controller for reaching law with power rate

General equation

u(z) = −rT ã(z) + εsign(s(z)) + krTz

rT b̃(z)
(1.5.7)

Special case 2nd order

With the definitions 1.5.3 to 1.5.5 and definition 1.4.5 the equation (1.5.7) can be
simplified as:

u(z) =
−r1z2 − α(z)− k|r1z1 + z2|αsign(r1z1 + z2)

β(z)
.
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2 State space models

For the project, we analyzed two circuits. These are a cascaded RC circuit (Figure
5) and a simple RLC circuit (Figure 6), and both circuits are second-order low-pass
filters.

2.1 Linear circuits

2.1.1 Cascaded RC circuit

The following picture shows a cascaded RC circuit.

UR1

R1

i
UR2

R2

i2

x1C1

i1

u x2C2

Figure 5: Cascaded RC circuit

The following equations are given from the circuit by Kirchhoff’s law

i = i1 + i2 =
UR1

R1

,

x1 =
1

C1

∫
i1dt, (2.1.1)

x2 =
1

C2

∫
i2dt, (2.1.2)

u = UR1 + x1. (2.1.3)

By reshaping equation (2.1.1) and (2.1.2) the following equations for current i1 =
C1ẋ1 and i2 = C2ẋ2 will sustain.
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The equation (2.1.1) can also be expressed as

x1 = UR2 + x2 = R2i2 + x2 = R2C2ẋ2 + x2. (2.1.4)

In addition, the equation (2.1.3) can be expanded as

u = R1i+ x1 = R1(i1 + i2) + x1 = R1C1ẋ1 +R1C2ẋ2 + x1. (2.1.5)

Now, the equations (2.1.4) and (2.1.5) as

R1C1ẋ1 +R1C2ẋ2 = − x1 + u, (2.1.6)

R2C2ẋ2 = x1 − x2. (2.1.7)

In this case, the equations (2.1.6) and (2.1.7) can be shown in the matrix represen-
tation

[
R1C1 R1C2

0 R2C2

](
ẋ1

ẋ2

)
=

[
−1 0
1 −1

](
x1

x2

)
+

(
1
0

)
u. (2.1.8)

The equation (2.1.8) can be solved for ẋ1 and ẋ2(
ẋ1

ẋ2

)
=

[
− 1

R1C1
− 1

R2C1

1
R2C1

1
R2C2

− 1
R2C2

](
x1

x2

)
+

(
1

R1C1

0

)
u. (2.1.9)

To simplify the equation (2.1.9), the parameters will be chosen as: R1 = R2 = R,
and C1 = C2 = C

(
ẋ1

ẋ2

)
=

1

RC

[
−2 1
1 −1

](
x1

x2

)
+

1

RC

(
1
0

)
u. (2.1.10)

From equation (2.1.10) the following equations are obtained for ẋ1 and ẋ2

ẋ1 =
1

RC
(−2x1 + x2 + u),

ẋ2 =
1

RC
(x1 − x2).
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A substitution must be done for the equation (2.1.10) to be represented in the
controllable canonical form, as mentioned in chapter 1.2.

For the substitution, the following variables will be defined

z1 = x2,

ż1 = ẋ2 = z2,

ż2 = ẍ2.

The variables x1 and x2 can be replaced with the following equations

z2 = x1 − z1 → x1 = z1 + z2,

x2 = z1.

For the substitution ż1 is already known, but ż2 is not known yet. Therefore, ẍ2 has
to be calculated

ẍ2 =
1

RC
(ẋ1 − ẋ2),

ẍ2 =
1

RC
(−3x1 + 2x2 + u). (2.1.11)

In formula 2.1.11 x1 and x2 can be replaced and than is ż2 also known

ż2 =
1

RC
(−z1 − 3z2 + u).

Finally, it is possible to represent the system in the controllable canonical form

(
ż1
ż2

)
=

[
0 1
1

RC
−3
RC

](
z1
z2

)
+

1

RC

(
0
1

)
u.

14
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2.1.2 RLC circuit

The following picture shows an RLC circuit.

i
UR

R

UL

L

x1Cu

Figure 6: RLC circuit

The following equations are given from the circuit by Kirchhoff’s law:

UR = Ri(t),

UL = L
di(t)

dt
,

u(t) = UR(t) + UL(t) + x1(t) = Ri(t) + L
di(t)

dt
+

1

C

∫
i(t)dt. (2.1.12)

Now, the equation for the current i = Cẋ can be insert in equation 2.1.12

u(t) = RCẋ1 + L
Cẋ1

dt
+ x1 = RCẋ1 + LCẍ1 + x1.

Next, the new variable x2(t) will be introcuded with x2(t) = ẋ1(t). From this follows
that ẋ2(t) = ẍ1(t) and with this ansatz the following equation is obtained

u(t) = RCx2 + LCẋ2 + x1. (2.1.13)

Since ẋ1 is already known it is possible to calculate ẋ2 with equation (2.1.13) and
the outcome therefore is

ẋ2 = − 1

LC
x1(t)−

R

L
x2(t) +

1

LC
u(t).

With ẋ1 and ẋ2 the state space model can be described by(
ẋ1

ẋ2

)
=

[
0 1

− 1
LC

−R
L

](
x1

x2

)
+

(
0
1

LC

)
u.
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2.2 Nonlinear circuits

In this section, the nonlinear circuits will be handled. The nonlinear part of the
circuit is represented as a nonlinear resistor. The voltage over the resistor will be
described as a function f(i).

2.2.1 Cascaded RC circuit

The following picture 7 shows a cascaded RC circuit with a nonlinear resistor R2.

UR1

R1

i
UR2

R2

i2

x1C1

i1

u x2C2

Figure 7: Cascaded RC circuit with a nonlinear R2.

The following equations are given from the circuit by Kirchhoff’s law

i = i1 + i2 =
UR1

R1

= C1ẋ1 + C2ẋ2, (2.2.1)

UR2 = f(i2) = f(C2ẋ2), (2.2.2)

x1 =
1

C1

∫
i1dt = UR2 + x2 = f(i2) + x2.

By reshaping equation (2.2.2) the following equation for ẋ2 will sustain

ẋ2 =
1

C2

f−1(UR2). (2.2.3)

UR2 can be rewritten as following expression: UR2 = x1 − x2. The equation (2.2.3)
can be expanded as

ẋ2 =
1

C2

f−1(x1 − x2).
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In the next step, formula (2.2.1) can be converted to

ẋ1 =
UR1

R1C1

− C2

C1

ẋ2 =
u− x1

R1C1

− 1

C1

f−1(x1 − x2).

Now, there are the following expressions for ẋ1 and ẋ2 as

ẋ1 = − x1

R1C1

− 1

C1

f−1(x1 − x2) +
1

R1C1

u,

ẋ2 =
1

C2

f−1(x1 − x2).

However, these expressions cannot be used to represent in the controllable canonical
form. Therefore, the Lie derivative is a useful tool to derive the desired controllable
canonical form for a nonlinear system

Lfh(x) =
∂h(x)

∂(x)
f(x) = gradTh(x)f(x).

For example, the Lie derivative will apply to the output variable c

Lac(x) =
∂c(x)

∂x
a(x).

If the temporal derivative of y will be calculated, the following equation accrues

ẏ =
dc(x)

dt
=

∂c(x)

∂x1

ẋ1 + ...+
∂c(x)

∂xn

ẋn =
c(x)

∂x
ẋ.

It is now possible to calculate y, ẏ and ÿ with the following equations

y = c(x),

ẏ =
∂c(x)

∂x
ẋ = Lac(x),

ÿ =
∂Lac(x)

∂x
ẋ = L2

ac(x).
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For the following calculations the convention f−1(x) = g(x) holds and it yields to
the following equations

y = x2,

ẏ =
∂y

∂x
ẋ =

∂x2

∂x1

ẋ1 +
∂x2

∂x2

ẋ2 = ẋ2 =
1

C2

g(x1 − x2),

ÿ =
∂ẏ

∂ẋ
ẋ =

∂ 1
C2
g(x1 − x2)

∂x1

ẋ1 +
∂ 1

C2
g(x1 − x2)

∂x2

ẋ2

=
1

C2

g′(x1 − x2)ẋ1 −
1

C2

g′(x1 − x2)ẋ2.

Next, the new state space coordinates z1 = y, z2 = ẏ will be introduced

z1 = x2,

z2 =
1

C2

g(x1 − x2). (2.2.4)

With equation 2.2.4, x1 can be calculated:

x1 = g−1(C2z2) + z1 (2.2.5)

In this regard, the following equations occur for ż1 and ż2

ż1 = z2,

ż2 =
1

C2

g′(x1 − x2)ẋ1 −
1

C2

g′(x1 − x2)ẋ2

=
1

C2

g′(g−1(C2z2) + z1 − z1)ẋ1 −
1

C2

g′(g−1(C2z2) + z1 − z1)z2

=
1

C2

g′(g−1(C2z2) + z1 − z1)(−
x1

R1C1

− 1

C1

g(x1 − x2) +
1

R1C1

u)

− 1

C2

g′(g−1(C2z2) + z1 − z1)z2
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where ż2 is further reformulated as

ż2 =
1

C2

g′(g−1(C2z2))(−
(g−1(C2z2) + z1)

R1C1

− 1

C1

g(g−1(C2z2)) +
1

R1C1

u)− 1

C2

g′(g−1(C2z2))z2

= g′(g−1(C2z2))(
−g−1(C2z2)− z1

R1C1C2

− 1

C1

z2 −
1

C2

z2) +
1

R1C1C2

g′(g−1(C2z2))u.

The following function and their inverse and derivative will be used

g(z) = tanh(z),

g−1(z) = atanh(z),

g′(z) = sech2(z).

Now, the controllable canonical form for the nonlinear system can be represented by(
ż1
ż2

)
=

(
z2

1
C2
g′(g−1(C2z2))(−g−1(C2z2)−z1

R1C1
− C2

C1
z2 − z2)

)
+

(
0

1
R1C1C2

g′(g−1(C2z2))

)
u.
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2.2.2 RLC circuit

The following picture 8 shows an RLC circuit with a nonlinear R.

i
UR

R

UL

L

yCu

Figure 8: RLC circuit with a nonlinear R.

The following equations are given from the circuit by Kirchhoff’s law:

UR = f(i),

UL = L
di(t)

dt
,

y(t) =
1

C

∫
i(t)dt, (2.2.6)

u(t) = UR(t) + UL(t) + y(t) = f(i) + L
di(t)

dt
+

1

C

∫
i(t)dt. (2.2.7)

By reshaping formula 2.2.6 equation for the current will sustain

i(t) = Cẏ. (2.2.8)

Therefore, the equation 2.2.8 can be insert in equation 2.2.7 and it yields to

u(t) = f(Cẏ) + L
Cẏ

dt
+ y = f(Cẏ) + LCÿ + y. (2.2.9)
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Now, the variables x1 and x2 will be introduced

x1 = y,

ẋ1 = ẏ = x2,

ẋ2 = ÿ.

These variables can be inserted in equation 2.2.9 and this leads to

u = f(Cx2) + LCẋ2 + x1. (2.2.10)

If equation 2.2.10 is solved to ẋ2, the needed variables ẋ1 and ẋ2 are known

ẋ2 = − 1

LC
f(Cx2)−

1

LC
x1 +

1

LC
u,

and subsequently, the following state space model will sustain(
ẋ1

ẋ2

)
=

(
x2

− 1
LC

x1 − 1
LC

f(Cx2)

)
+

(
0
1

LC

)
u.
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3 Controller design

In this chapter, the parameters which are mandatory for the controller calculation
which are described in chapter 1.4 and chapter 1.5 will be extracted, such that
finally, the controller u(x) can be implemented.

3.1 Linear circuits

For the linear controller design, the matrix

A =

[
0 1
a0 a1

]
and the vector

b =

(
0
b1

)
are needed. From the canonical form of each circuit the values a0, a1 and b1 will be
given.

Linear cascaded RC circuit(
ż1
ż2

)
=

[
0 1
1

RC
−3
RC

](
z1
z2

)
+

1

RC

(
0
1

)
u

a0 =
1

RC

a1 =
−3

RC

b1 =
1

RC
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Linear RLC circuit(
ẋ1

ẋ2

)
=

[
0 1

− 1
LC

−R
L

](
x1

x2

)
+

1

LC

(
0
1

)
u

a0 = − 1

LC

a1 = −R

L

b1 =
1

LC

3.2 Nonlinear circuits

For the nonlinear controller design, the vector

ã(z) =

(
z2

α(z)

)
,

and the vector

b̃(z) =

(
0

β(z)

)
.

are needed. And the variables α(z) and β(z) have to be defined.

Nonlinear cascaded RC circuit

(
ż1
ż2

)
=

(
z2

1
C2
g′(g−1(C2z2))(−g−1(C2z2)−z1

R1C1
− C2

C1
z2 − z2)

)
+

(
0

1
R1C1C2

g′(g−1(C2z2))

)
u,

α(z) =
1

C2

g′(g−1(C2z2))(−
g−1(C2z2)− z1

R1C1

− C2

C1

z2 − z2),

β(z) =
1

R1C1C2

g′(g−1(C2z2)).
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Nonlinear RLC circuit(
ẋ1

ẋ2

)
=

(
x2

− 1
LC

x1 − 1
LC

f(Cx2)

)
+

(
0
1

LC

)
u

α(x) = − 1

LC
x1 −

1

LC
f(Cx2),

β(x) =
1

LC
.
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4 Simulation

In the following chapters, the results of the simulation will be visualized.

4.1 Linear circuits

4.1.1 Cascaded RC circuit

Linear controller for reaching law with constant rate

The following pictures will illustrate the impact of the different control parameters,
r1 (Figure 9) and ε (Figure 10). A linear cascaded RC circuit with R = 1Ω and C =
1F is simulated. When r1 gets bigger, the system gets faster, and the undershoot
gets higher and vice versa. By increasing ε, the system will also get faster.

Figure 9: The two upper diagrams show the noncontrolled circuit. The subjacent
diagrams show the controlled linear circuit with various values of r1.
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Figure 10: The two upper diagrams show the noncontrolled circuit. The subjacent
diagrams show the controlled linear circuit with various values of ε

Linear controller for reaching law with exponential rate

In the following picture, only the impact of the additional control parameter k is
simulated. Because, that is the only different parameter from the previous simulated
controller. With the increase of the additional control parameter k the system gets
even faster than the upper controller design.

26



Sliding-Mode Control for Nonlinear RC and RLC Circuits
Christian Dalea
Simon Scheerer

Figure 11: The two upper diagrams show the noncontrolled circuit. The subjacent
diagrams show the controlled linear circuit with various values of k

Linear controller for reaching law with power rate

Finally, the following pictures illustrate the impact of the different control param-
eters, r1 (Figure 12), α (Figure 13), and k (Fiugre 14), of the third controller of
this project. Equally, as in the previous simulated controllers, if r1 gets bigger, the
system gets faster. However, also the undershoot gets higher and vice versa. When
α gets bigger, the system gets faster as well. Lastly, by increasing k, the system will
also fast. The general difference in the simulation results of the third controller is
its smoother trajectory.
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Figure 12: The two upper diagrams show the noncontrolled circuit. The subjacent
diagrams show the controlled linear circuit with various values of r1

Figure 13: The two upper diagrams show the noncontrolled circuit. The subjacent
diagrams show the controlled linear circuit with various values of α
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Figure 14: The two upper diagrams show the noncontrolled circuit. The subjacent
diagrams show the controlled linear circuit with various values of k
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4.1.2 RLC circuit

Linear controller for reaching law with constant rate

The following pictures will illustrate the impact of the different control parameters,
r1 (Figure 15) and ε (Figure 16). A linear RLC circuit with R = 1Ω, C = 1F
and L = 1H is simulated. When r1 gets bigger, the system gets faster, and the
undershoot gets higher and vice versa. By increasing of ε the system will also get
faster, but without overshoots.

Figure 15: The two upper diagrams show the noncontrolled circuit. The subjacent
diagrams show the controlled linear circuit with various values of r1
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Figure 16: The two upper diagrams show the noncontrolled circuit. The subjacent
diagrams show the controlled linear circuit with various values of ε

Linear controller for reaching law with exponential rate

In the following picture, only the impact of the additional control parameter k is
simulated. Because, that is the only different parameter from the previous simulated
controller. With the increase of the additional control parameter k the system gets
even faster than the upper controller design.
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Figure 17: The two upper diagrams show the noncontrolled circuit. The subjacent
diagrams show the controlled linear circuit with various values of k

Linear controller for reaching law with power rate

Finally, the following pictures illustrate the impact of the different control param-
eters, r1 (Figure 18), α (Figure 19), and k (Fiugre 20), of the third controller of
this project. Equally, as in the previous simulated controllers, if r1 gets bigger, the
system gets faster. However, also the undershoot gets higher and vice versa. When
α gets bigger, the system gets faster as well. Lastly, by increasing k, the system will
also fast. The general difference in the simulation results of the third controller is
its smoother trajectory.
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Figure 18: The two upper diagrams show the noncontrolled circuit. The subjacent
diagrams show the controlled linear circuit with various values of r1

Figure 19: The two upper diagrams show the noncontrolled circuit. The subjacent
diagrams show the controlled linear circuit with various values of α

33



Sliding-Mode Control for Nonlinear RC and RLC Circuits
Christian Dalea
Simon Scheerer

Figure 20: The two upper diagrams show the noncontrolled circuit. The subjacent
diagrams show the controlled linear circuit with various values of k
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4.2 Nonlinear circuits

4.2.1 Cascaded RC circuit

Nonlinear controller for reaching law with constant rate

The following pictures will illustrate the impact of the different control parameters,
r1 (Figure 21) and ε (Figure 22). A nonlinear cascaded RC circuit is simulated
with UR2 = f(i2) and C = 1F . When r1 gets bigger, the system gets faster, and
the undershoot increases. In addition, if r1 is selected too high, the undershoot
will increase, and the return values will be in the complex number range. This
results from the function which will be used because their domain is limited from
−1 < x < 1. If the function’s argument is outside of this domain, the returned
value will be a complex number, and the source code is running into a numerical
issue because it cannot handle complex numbers. Therefore, a min/max function
was implemented. This function will check if the values taken for the next iteration
are in the legal domain. If a value is not in the legal domain, it will shift the value
so that the following calculation will not be complex. On the one hand, this ensured
that the calculation was not complex anymore. On the other hand, it can be seen
that the simulation results still show that if this function applies, the curves will
take an unexpected shape, see the yellow curve in Figure 21. The same effect occurs
if ε is increased. However, the undershoot will not rise to the same level as then r1
will be increased.
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Figure 21: The two upper diagrams show the noncontrolled circuit. The subjacent
diagrams show the controlled nonlinear circuit with various values of r1. The yellow
curve shows the impact of the min/max function.

Figure 22: The two upper diagrams show the noncontrolled circuit. The subjacent
diagrams show the controlled nonlinear circuit with various values of ε.
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Nonlinear controller for reaching law with exponential rate

In the following picture, only the impact of the additional control parameter k is
simulated because that is the only different parameter from the previous simulated
controller. With the increase of the additional control parameter k, the same issue
as the controller before. Therefore, k cannot be chosen arbitrarily large.

Figure 23: The two upper diagrams show the noncontrolled circuit. The subjacent
diagrams show the controlled nonlinear circuit with various values of k.
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Nonlinear controller for reaching law with power rate

In the following pictures, the graphs have the same behavior. If one control param-
eter is increased, the system gets an undershoot, and the system output will be in
the complex number range.
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Figure 24: The two upper diagrams show the noncontrolled circuit. The subja-
cent diagrams show the controlled nonlinear circuit with various values of r1. The
turquoise curve shows the impact of the min/max function.
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Figure 26: The two upper diagrams show the noncontrolled circuit. The subjacent
diagrams show the controlled nonlinear circuit with various values of k. The yellow
curve shows the impact of the min/max function.
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4.2.2 RLC Circuit

Nonlinear controller for reaching law with constant rate

The following pictures will illustrate the impact of the different control parameters,
r1 (Figure 27) and ε (various 28). A nonlinear RLC circuit is simulated with UR =
f(i), C = 1F and L = 1H. If the RLC circuit is compared to the cascaded RC
circuit, the noncontrolled circuits’ behavior is different. At the cascaded RC circuit,
the voltage will decrease to 0V , the RLC circuit oscillates, and the system will be
destroyed.
The controlled circuits also have another behavior compared to the cascaded circuit.
When r1 gets bigger, the undershoot and overshoot will decrease (Figure 27). There
is similar behavior for an increasing ε, but with increasing ε the system will be faster,
but the undershoots are increasing (Figure 28).

Figure 27: The two upper diagrams show the noncontrolled circuit. The subjacent
diagrams show the controlled nonlinear circuit with various values of r1.
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Figure 28: The two upper diagrams show the noncontrolled circuit. The subjacent
diagrams show the controlled nonlinear circuit with variou values of ε.

Nonlinear controller for reaching law with exponential rate

In the following picture, only the impact of the additional control parameter k is
simulated because that is the only different parameter from the previous simulated
controller. With the increase of the additional control parameter k, the system will
be faster but the undershoots are increasing.
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Figure 29: The two upper diagrams show the noncontrolled circuit. The subjacent
diagrams show the controlled nonlinear circuit with various values of k.

Nonlinear controller for reaching law with power rate

In the following pictures, the graphs have the same behavior. If one control param-
eter is increased, the system gets some undershoot.
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Figure 30: The two upper diagrams show the noncontrolled circuit. The subjacent
diagrams show the controlled nonlinear circuit with various values of r1.

Figure 31: The two upper diagrams show the noncontrolled circuit. The subjacent
diagrams show the controlled nonlinear circuit with various values of α.
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Figure 32: The two upper diagrams show the noncontrolled circuit. The subjacent
diagrams show the controlled nonlinear circuit with various values of k.
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5 Controller design in C

The following chapters will illustrate the implementation in C of each linear and
nonlinear controller. The associated C function with its inputs and return values
will be visualized.

5.1 Linear circuit

The following subchapters will introduce the three linear controllersRegler1, Regler2,
and Regler3.

Reaching law with constant

Regler1 ( x1 ( i ) , x2 ( i ) , a0 , a1 , r1 , e , s o l l , b1 )
/∗Returns the va lue u f o r the s p e c i f i e d c o n t r o l l e r ∗/

u = ((−x1a0 − x2 ( r1+a1 ) − e s i gn ( ( r1x1)+x2 − r e f r 1 ) )/ b1 ) ;
return u

Exponential reaching law

Regler2 ( x1 ( i ) , x2 ( i ) , a0 , a1 , r1 , e , k , s o l l , b1 )
/∗Returns the va lue u f o r the s p e c i f i e d c o n t r o l l e r ∗/

u = ((−x1a0 − x2 ( r1+a1 ) − e s i gn ( ( r1x1)+x2 − r e f ∗ r1 )
− k ( ( r1x1)+x2 − r e f r 1 ) )/ b1 ) ;

return u

Reaching law with power rate

Regler3 ( x1 , x2 , a0 , a1 , r1 , alpha , k , r e f , b1 )
/∗Returns the va lue u f o r the s p e c i f i e d c o n t r o l l e r ∗/

u = ((−x1a0 − x2 ( r1+a1 ) − kabs ( r1x1+x2−r e f r 1 )ˆ a lphas ign
( r1x1+x2−r e f r 1 ) )/ b1 ) ;

return u
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5.2 Nonlinear circuit

The following subchapters will introduce the three nonlinear controllers Regler1,
Regler2, and Regler3.

Reaching law with constant

Regler1 ( x1 ( i ) , x2 ( i ) , a0 , a1 , r1 , e , s o l l , beta )
/∗Returns the va lue u f o r the s p e c i f i e d c o n t r o l l e r ∗/

u = (−(( r1a0+a1+es i gn ( r1x1+x2−r 1 r e f ) )/ beta ) ) ;
return u

Exponential reaching law

Regler2 ( x1 ( i ) , x2 ( i ) , a0 , a1 , r1 , e , k , s o l l , b )
/∗Returns the va lue u f o r the s p e c i f i e d c o n t r o l l e r ∗/

u = (−(( r1a0+a1+es i gn ( r1x1+x2−r 1 r e f )
+k ( r1x1+x2−r 1 r e f ) )/ b ) ) ;

return u

Reaching law with power rate

Regler3 ( x1 , x2 , a0 , a1 , r1 , alpha , k , r e f , b )
/∗Returns the va lue u f o r the s p e c i f i e d c o n t r o l l e r ∗/

u = (−(( r1a0+a1+kpow( abs ca l c , alpha )
s i gn ( r1x1+x2−r e f r 1 ) )/ b ) ) ;

return u

47



Sliding-Mode Control for Nonlinear RC and RLC Circuits
Christian Dalea
Simon Scheerer

References

[1] Jürgen Adamy. Nichtlineare System und Regelungen. url: https://link.
springer.com/book/10.1007/978-3-642-45013-6.

[2] Alexander Barth. Indirect Adaptive Higher-Order Sliding-Mode Control Using
the Certainty-Equivalence Principle. url: https://www.db-thueringen.de/
servlets/MCRFileNodeServlet/dbt_derivate_00052269/ilm1-2019000739.

pdf.
[3] Magnus Egerstedt. Sliding Mode Control. url: https://www.youtube.com/

watch?v=BZbCdjbPTs4.
[4] IEEE. Sliding mode control design principles and applications to electric drives.

url: https://ieeexplore.ieee.org/document/184818.
[5] Ali J.Koshkouei and Keith J.Burnham. Sliding Mode Controllers for Active

Suspensions. url: https://www.sciencedirect.com/science/article/
pii/S1474667016394794.

[6] Jinkun Liu. Sliding Mode Control Using MATLAB. url: https://www.elsevier.
com/books/sliding-mode-control-using-matlab/liu/978-0-12-802575-

8?country=DE&format=print&utm_source=google_ads&utm_medium=paid_

search&utm_campaign=germanyshopping&gclid=EAIaIQobChMI943z05Hy_

AIVWofVCh0Ugg-1EAQYASABEgIUIvD_BwE&gclsrc=aw.ds.
[7] Sliding mode control. url: https://en.wikipedia.org/wiki/Sliding_mode_

control.
[8] Sliding phase with chattering. url: https://www.researchgate.net/figure/

Sliding-Mode-Control-depicting-the-sliding-surface-chattering-

and-two-phases-namely_fig4_351245869.
[9] Jinkun Liu Xinhua Wang. Sliding Mode Control for Aircraft. url: https://

link.springer.com/chapter/10.1007/978-3-642-20907-9_12.

48


