
OPTIMIZATION BASED CONTROL
OF CASCADED ELECTRICAL

CIRCUITS

by

AMAN DUBEY

Master’s thesis submitted in partial fulfillment
of the requirements for the degree of

M.Eng in Electrical Engineering and Embedded Systems

Supervisor:
Prof. Dr.-Ing. Lothar Berger

Mr. Stephan Scholz M.Sc

28 October, 2023

Optimization Based Control of Cascaded Electrical Circuits

Aman Dubey

Abstract

In this thesis, the challenges of optimizing higher-order circuits are addressed, with a focus on various meth-
ods to align system performance with desired reference outputs. The primary question under consideration
pertains to the feasibility of optimization techniques in managing the complexities of higher-order system
dynamics and, if so, which optimization approach—global or local—minimizes output errors.

Three optimization techniques—Flatness-Based Control (FBC), Optimization-Based Control (OBC), and
Model Predictive Control (MPC)—are applied and analyzed. Notably, FBC faced challenges when dealing
with higher-order systems, primarily due to its reliance on the steepness of the reference signal. In contrast,
OBC and MPC proved effective in handling such systems.

Within the OBC framework, the Polyopt optimizer demonstrated exceptional performance, effectively man-
aging parameter variations. In the context of MPC, the interplay of prediction horizon and control horizon
underscored the importance of an extended prediction horizon and a shorter control horizon.

Furthermore, the behavior of global optimizers revealed their ability to closely follow reference signals,
albeit with increased jitter. Local optimization, on the other hand, yielded input signals that led to lower
errors and smoother output responses.

The findings presented here hold substantial promise for applications in power electronics and motor control,
offering the potential for smoother responses and improved control methods, particularly in systems such as,
power converters, clippers and clampers.

i

List of Figures

1 Single and multiple cascaded RLC circuit response to unit step 1
2 first order RLC Circuit . 4
3 2N th order RLC Circuit . 5
4 Open-Loop Control System with Controller and System . 7
5 Function minima with three saddle points. 8
6 Closed-Loop Control System with Controller and System . 9
7 FBC With steepness a=1 for various N. 12
8 FBC for N=15 with a=1. 13
9 Tangent hyperbolic and it’s derivatives. 14
10 FBC with N=6 and varying steepness(a). 15
11 Generalized parameterized tanh. 18
12 p1 Variation from 1 to 5. 18
13 p2 Variation. 19
14 p3 Variation from 10 to 50. 19
15 Residual polynomial with t =1 ,5and 9[1]. 20
16 Example of ADAM on curriculum training[2]. 22
17 Gradient Descent contours[3]. 23
18 Example Gradient Descent in 2D[3]. 24
19 Example, Optimization using quadratic approximation[2]. 25
20 Flow Chart Optimization based Control . 27
21 Original Output and Optimized output(N=1,3,7). 29
22 Original Output and Optimized output(N=10,15,25,40). 30
23 OBC with Polyopt optimizer. 32
24 OBC with Gradient Descent. 34
25 OBC with LNBOBQYA optimizer. 35
26 OBC with LNNELDERMEAD optimizer. 37
27 Loss Comparison of all the optimizer. 38
28 p1 and p2 variations for each optimizer. 39
29 Generalized MPC Description.[4] . 40
30 MPC Block Diagram[5] . 41
31 MPC algorithm flow chart. 42
32 MPC For different order system. 43
33 MPC With prediction horizon variation. 45
34 MPC Local Optimizer vs Global Optimizer. 46
35 Parameter variations local vs global optimizer P=7 and P=8. 47
36 P=10 global vs local optimizer. 47
37 Prediction horizon=10 parameters variation local vs global optmizer. 48
38 p1, p2 and p3 variation for a polyopt. 49
39 MPC control horizon variation with global optimizer. 50
40 MPC control horizon variation with local optimizer(Polyopt). 50

List of Tables

1 p1, p2 and Loss values with Polyopt. 33
2 p1, p2 and Loss values Gradient Descent . 34
3 p1, p2 and Loss values with LNBOBQYA optimizer. 36
4 p1, p2 and Loss values with LNNELDERMEAD optimizer. 38

iii

Declaration of Authorship

I, Aman Dubey, hereby declare that this thesis, entitled "Optimization based control of cascaded electrical
circuits," is entirely my own work. I have conducted the research, written the content, and prepared this
document without unauthorized assistance or external sources, except as appropriately acknowledged and
cited in the text.

I attest that all sources used for information, data, or ideas have been properly referenced and cited in
accordance with the established academic conventions and guidelines. Any materials or concepts obtained
from other works are duly credited.

I further declare that this thesis has not been submitted for any other academic qualification, and it has not
been published in part or in whole in any format.

By signing below, I confirm my understanding of and adherence to the principles of academic integrity
and the ethical standards for conducting research.

Signature Date

iv

Acknowledgement

I am profoundly grateful to all those who have been instrumental in guiding and supporting me throughout
the challenging journey of completing this thesis.
Foremost, I extend my heartfelt thanks to my esteemed advisor, Mr. Stephan Scholz, whose mentorship,
guidance, and unwavering support have been invaluable. Mr. Scholz’s expertise, patience, and encourage-
ment have played a pivotal role in shaping this research. From the inception of my embedded control project
to the culmination in this thesis, his unwavering dedication and insightful guidance have served as a constant
source of inspiration.

I am equally appreciative of Professor Lothar Berger for the profound impact of his insights and constructive
feedback, which ignited dynamic thinking and brought fresh perspectives to this project.

My gratitude extends to the vibrant community of fellow researchers and colleagues at Hochschule Ravens-
burg Weingarten. Their contributions have provided a stimulating academic environment and facilitated
engaging, insightful discussions that have enriched this work.

To my friends and family, I offer my heartfelt thanks for their unwavering encouragement, unwavering
belief in my abilities, and their understanding during the course of this academic endeavor.

I reserve my deepest appreciation for all the participants and individuals who generously contributed their
time and expertise to this study. Without your cooperation and insights, this research would not have been
possible.

This thesis represents the collective effort and support of these remarkable individuals. I extend my sincere
gratitude to all who have played a part in this important journey. Thank you for being an integral part of
this achievement.

v

Contents

1 Introduction 1
1.1 Thesis Structure . 2

2 Problem Formulation 4
2.1 System Description . 4
2.2 Open Loop Control . 6
2.3 Flatness-Based Control . 7
2.4 Optimization Based Control . 7
2.5 Closed Loop Control . 8

3 Flatness Based Control 10
3.1 Results with FBC . 11
3.2 Calculating AN . 16

4 Optimization Based Control 17
4.1 Optimization Methods . 19
4.2 Implementation . 26

5 Model Predictive Control 40
5.1 MPC Implementation . 41
5.2 MPC Results . 43
5.3 Prediction Horizon Variation . 44
5.4 Control Horizon Variation . 49

References 52

vi

1 Introduction

A few years ago, a spacecraft attempting to land on the lunar surface encountered a critical failure during
its final landing stage. This failure arose due to conflicting optimization parameters derived from various
optimization techniques. The parameters produced by the algorithm were not practically attainable, leading
to an unexpected acceleration of the lander’s velocity as it approached the surface. This undesirable outcome
directly contributed to the mission’s failure, as presented in [6]. Thus, it becomes evident that optimization
is a highly intricate and indispensable aspect of the scientific realm.

In the contemporary landscape, numerical optimization assumes a pivotal role across diverse sectors in-
cluding automotive, pharmaceuticals, space research, and beyond. This master’s thesis endeavors to explore
a spectrum of optimization methodologies, encompassing non-optimization approaches like Flatness-based
control, and culminating in the utilization of a closed-loop technique known as Model Predictive Control
(MPC).The realm of model predictive control finds widespread application within the chemical and phar-
maceutical industries, particularly in the precise management of heat within thermodynamically sensitive
processes. In contemporary times, this methodology has piqued the curiosity of engineers within the power
systems domain, especially in power electronics, as a means to regulate essential motor parameters such as
torque and angle. Furthermore, its utility extends to the automotive sector, specifically within Advanced
Driver Assistance Systems (ADAS).

This master’s thesis aims to enhance the output of a cascaded RLC circuit, aligning it with a specified
reference output. To achieve output control, we leverage an input serving as the control variable. An inquiry
arises regarding the choice of an RLC circuit for this purpose. The rationale behind this selection lies in its
dual attributes: the RLC circuit is both well-known for its simplicity and comprehensibility, and it offers an
exceptional degree of flexibility in system order manipulation through the seamless integration of additional
RLC circuits. Moreover, the circuit’s inherent configurability empowers us to modulate the system’s stiffness
by adapting the values of its constituent elements (R, L, and C).

The depicted figure illustrates the responses of a 2nd-order and a 20th-order cascaded RLC circuit. Evidently,
the lower-order system exhibits overshoot in its response, while the higher-order counterpart demonstrates
sluggish behavior. Our optimization endeavor addresses both scenarios, seeking to devise a comprehensive
solution that transcends these distinctions.

Time t in [s]
0 200 400 600 800 1000 1200

0.0

0.2

0.4

0.6

0.8

1.0

Input
Output

(a) Lower order system response to unit step input

Time t in [s]
0 200 400 600 800 1000 1200

0.0

0.2

0.4

0.6

0.8

1.0

Input
Output

(b) Higher Order system response to unit step input

Figure 1: Single and multiple cascaded RLC circuit response to unit step

1

The research endeavors lead to the formulation of the following key objectives

1. Does optimization-based control outperform alternative techniques like flatness-based control?

2. What optimization technique proves most efficacious for both higher-order and lower-order systems?

3. Can model predictive control enhance system stability while minimizing overall loss?

4. Is it possible to generate continuous time input signal with model predictive control?

The crux of the research centers on addressing the intricacies of higher-order systems. These systems involve
higher-order derivatives, rendering them acutely responsive to minute changes in input. Notably, even slight
alterations in input yield abrupt changes in output. Another pivotal facet of analysis pertains to evaluating
the computational efficiency of optimization techniques, gauging both the incurred loss value and the time
required for optimizing parameters.

Modern Control Theory and Classical control Theory

Control theory has experienced significant advancements in the 21st century, driven by the rapid devel-
opment of computers and the substantial increase in computational speed. Classical control theory, which
primarily encompasses techniques developed before 1950, relies on methods such as root locus analysis, Bode
plots, Nyquist stability criteria, and Routh-Hurwitz analysis.
However, classical control theory has a notable limitation—it predominantly employs transfer functions and
is confined to analyzing Linear Time-Invariant (LTI) systems within the frequency domain. In contrast, mod-
ern control theory has flourished with the advent of powerful computers, enabling the analysis of systems in
the time domain. The adoption of state-space modeling in modern control has effectively transcended the
limitations that once hindered classical control theory.
Example of Classical Control Theory
A. Frequency Domain Analysis
B. PID(Proportional-Integral-Derivative) Control
C. Heuristic Tuning
D. Laplace Transforms

Example of Modern Control Theory
A. State-Space Representation
B. Optimal Control
C. Robust Control

1.1 Thesis Structure

The thesis is structured as follows, it comprises several distinct chapters, each dedicated to delving into
specific research domains.

Chapter 2: Problem Formulation

This section of the thesis covers several crucial topics. It begins by developing a state space model for
the RLC circuit. It then explores open-loop control methods, including Flatness-Based Control and open-
loop optimization-based control. The section also highlights the significance of closed-loop control and the
role of feedback mechanisms in system stabilization.

Chapter 3: Flatness Based Control

2

In this section, we undertake a series of critical tasks. First, we implement flatness-based control for N
cascaded RLC circuits, establishing direct mathematical relationships between input and output. We then
evaluate the results of the flatness-based control and address its limitations, particularly in the context of
higher-order systems. Additionally, we investigate the role of the hyperbolic tangent function and its impact
on the steepness of the flatness-based control approach.

Chapter 4: Optimization based Control

In this section, we address several key components. We begin by formulating mathematical equations
and exploring the significance of the parameterized tangent hyperbolic function. We then delve into the
various optimization algorithms used, including Gradient Descent, and their role in optimization-based con-
trol. Additionally, we provide a comprehensive explanation of the implementation of Optimization-Based
Control (OBC) through a clear and informative flowchart. Lastly, we present the obtained results and derive
meaningful insights from them.

Chapter 5: Model Predictive Control

This section encompasses the following critical components. We commence by implementing Model Pre-
dictive Control (MPC) and offer an elucidative flowchart that details the control process comprehensively.
We then present the achieved results through the application of MPC across systems of varying orders. Addi-
tionally, we analyze the impact of alterations in control horizon and prediction horizon, while also exploring
the influence of global and local optimizers on the performance of MPC.

3

2 Problem Formulation

This section deals with our problem formulation for generalized higher order RLC circuits(as shown in figure
3, specifically focusing on state space representation. The system Matrix(A), Input Matrix(B) and Output
Matrix(C) are defined for a generalized RLC circuit.

2.1 System Description

As previously mentioned, the primary objective is to stabilize the output, ensuring its alignment with the
desired reference. Let us now delve into the system’s design, specifically focusing on the cascaded RLC
circuit configuration.

First order RLC circuit

Now Let’s look into the mathematical analysis for the first order RLC circuit(as shown below)

−
+ U(t)

R L

C

+

−

Y (t)

Figure 2: first order RLC Circuit

From the Electrical analysis we can say

uR(t) = Ri(t), (2.1)

uL(t) = L
di(t)

dt
, (2.2)

uC(t) =
1

C

Z
i(τ)dτ, (2.3)

Reshaping above equations provide the current as,

i(t) = C
du(t)

dt
= Cu̇(t). (2.4)

From the Kirchhoff’s voltage law i.e. KVL we can say

uin(t) = uR(t) + uL(t) + uC(t) = Ri(t) + L
di(t)

dt
+ uC(t). (2.5)

Similarly let’s dive into generalized representation for higher order systems.

4

Higher Order RLC circuit
As we solve the equation for First order system we can similarly write the final equation for third order
system as follows.

−
+ U(t)

R1 L1

C1

R2 L2

C2

R3 L3

C3 CN

+

−

Y (t)

Figure 3: 2N th order RLC Circuit

Given equations[7] as follows

in(t) = Cnu̇
n
C(t), (2.6)

in−1(t) = Cn−1u̇
n−1
C (t) +Cnu̇

n
C(t), (2.7)

...

i1(t) =
NX

n=1

Cnu̇
n
C(t), (2.8)

uin(t) = R1i1(t) + L1
di1(t)

dt
+ uC1(t). (2.9)

uC1(t) = R2i2(t) + L2
di2(t)

dt
+ uC2(t),

...

uCn−1(t) = Rnin(t) + Ln
din(t)

dt
+ uCn(t).

Putting the value of i1(t) in equations (2.9) results in

uin(t) = R1

"
NX

n=1

Cnu̇
n
C(t)

#
+ L1

"
NX

n=1

Cnü
n
C(t)

#
+ uC1(t),

uC1(t) = R2

"
NX

n=2

Cnu̇
n
C(t)

#
+ L2

"
NX

n=2

Cnü
n
C(t)

#
+ uC2(t),

...
uCn−1(t) = RnCnu̇

n
C(t) + LnCnü

n
C(t) + uCn(t).

Now generalize it into an matrix form in order to write the voltage on nth capacitor.

Mz̈(t) +Dż(t) + Sz(t) = Gu(t)

5

rearranging it leads to
z̈(t) = −M−1Dż(t)−M−1Sz(t) +M−1Gu(t)

and introducing new variable names:

x1(t) = z(t), x2(t) = ż(t).

the final state space notation:
�
ẋ1(t)
ẋ2(t)

�
=

�
0 I

−M−1S −M−1D

��
x1(t)
x2(t)

�
+

�
0

M−1G

�
u(t). (2.10)

We have S̃ = M−1S and D̃ = M−1D, In our case, for simplicity considering R1 = R2 = . . . = Rn = R,
L1 = L2 = . . . = Ln = L, and C1 = C2 = . . . = C3 = C. Our Matrix looks as follows

M = LC




1 1 1 . . . 1
0 1 1 . . . 1
...

...
...

. . .
...

0 0 0 . . . 1


 , D = RC




1 1 1 . . . 1
0 1 1 . . . 1
...

...
...

. . .
...

0 0 0 . . . 1




S =




1 0 0 . . . 0
−1 1 0 . . . 0
0 −1 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1




, G =




1
0
0
...
0




M, D and S are N × N matrix , Whereas G is N × 1. Where N is number of cascaded RLC circuits. This
way the RLC circuit can be represented in state space form and the order of the equation can be changed by
simply modifying N. Finally we have the RLC circuit represented in State space format as shown in (2.11)
and (2.12).

ẋ(t) = Ax(t) +Bu(t) (2.11)
y(t) = x1(t) = Cx(t). (2.12)

Where A, B could be calculated from equation (2.10), C would look as

C = [0, 0,, 0N−1, 1, 0N+1, 0,, 02N]

2.2 Open Loop Control

The open-loop controller, also referred to as a feed-forward controller, designs the control variable based on
anticipated references. This approach involves the absence of a feedback loop, emphasizing a pre-defined
control action. This configuration proves advantageous when rapid response is prioritized, even though it
may entail a compromise with increased loss values or errors in the presence of disturbances. Open-loop
control finds utility in applications involving uncomplicated machines, such as household appliances.
However, its suitability diminishes when applied to critical systems. The inability to accommodate abrupt
changes arising from external interference or internal disturbances diminishes its reliability.

6

Controller System
r(t) U(t) y(t)

Figure 4: Open-Loop Control System with Controller and System

This project uses two open loop control techniques.
1.Flatness-Based Control (FBC).
2.Open loop Optimization based control.

2.3 Flatness-Based Control

Flatness-based control is a methodology that designs and implements controllers for intricate dynamical
systems by leveraging the concept of ’flat outputs[8].’ The core concept is to establish a direct relationship
between desired outputs and inputs through mathematical expressions[9].
Here are some important terms and concept used in FBC.

1. Flat Output and Flatness Principle

The desired flat output can be formulated using the input and its derivatives, namely as

u(t) = y(t) +
d

dt
y(t) +

d2

dt2
y(t) + . . .+

dn

dtn
y(t). (2.13)

where y(t) represents desired output and u(t) input signal. However, the applicability of this property de-
pends on the system’s characteristics. If our system can be transformed into a flat output system, then its
complete input trajectory can be determined by specifying the desired output and its derivatives.

2. State Transformation

When choosing the desired flat outputs, you need to perform a mathematical formulation where the in-
put is expressed in terms of the output and its derivatives, as demonstrated in Equation (2.13).

3. Advantages and Limitations

Flatness-based control (FBC) offers several advantages, including its inherent simplicity and robustness
due to the direct input-output relationship it establishes. Moreover, FBC effectively manages disturbances.
However, there exist certain limitations. Notably, FBC necessitates the reference output to exhibit flatness,
a condition that might not be attainable for complex non linear systems. Additionally, FBC’s sensitivity to
model design is noteworthy, as its control strategy hinges on the accuracy of the corresponding mathematical
model.

2.4 Optimization Based Control

This control strategy relies on optimization to determine the control inputs (control variables) that guide
the system to track a desired reference trajectory or minimize the loss function[10]. Let’s briefly delve into
the mathematical foundation[11]. Given the function f(x), our objective is to determine a λ such that
f(λ) ≤ f(x) for all x belonging to Rn.
A condition formulated would be as shown in 2.14, i.e. first order differential needs to be zero.

df(λ)

dx
= 0 (2.14)

7

Commonly, f(x) is referred to as the cost function or loss function, while λ represents the optimal value where
the loss is minimized. However, it’s essential to note that this condition alone is insufficient, as the gradient
can be zero at both local minima and maxima. Further computation of higher-order derivatives is necessary
to pinpoint the precise optimized point. Generally, we compute the Hessian matrix, which represents the
second derivative. If the Hessian is positive, it implies that the obtained point is a local minimum, while
a negative gradient suggests a local maximum. However, these points do not guarantee global maxima or
minima, as the interval may contain multiple points satisfying these conditions. Therefore, it is necessary to
individually examine each potential point to determine the desired global minimum or maximum. In Figure
5, three potential points are evident where the derivative may be zero. To pinpoint the exact minima, it
becomes necessary to calculate the second derivative at these points.

Figure 5: Function minima with three saddle points.

The cost function L(t) is defined as

L(t) =

Z Tf

0

(e(t))2 dt.

Where e(t) refers to the error value computed over the horizon. The error e(t) is given by

e(t) = r(t)− y(t).

Where r(t) represents the reference or desired signal, and y(t) is the obtained output. Subject to the
constraint

g(t) = c.

2.5 Closed Loop Control

A closed-loop control system incorporates live feedback to the controller, enabling real-time response to sud-
den disturbances (errors) and taking them into account during optimization. A general closed loop systems
looks as shown in figure 6, along with system and controller it contains following mentioned signals:-
Reference signal r(t)
System state x(t)
Control signal u(t)
Output signal y(t)

8

Controller System
r(t) r(t)− x(t) u(t)

x(t)

y(t)

Figure 6: Closed-Loop Control System with Controller and System

In conclusion, a control system with closed loop make real time adjustments in the system and helps in
dealing with unwanted/unwarranted errors occurring in the plant . This method helps in controlling the
system with high precision and increase the overall robustness of system. Later on we are going to look into
model predictive control which basically is a type of feedback based controller.

9

3 Flatness Based Control

Having previously addressed the fundamental principles of flatness-based control, the focus now shifts to
observing its practical implementation across various cascaded RLC circuits. The objective remains guiding
the input signal to synchronize with the desired reference signal. Let’s formulate the mathematical analysis
for it. Following are the state space modelling of the system

ẋ(t) = Ax(t) +Bu(t). (3.1)

y(t) = Cx(t). (3.2)

Differentiating Equation (3.1) and substituting the value of ẋ(t) from Equation (3.2), we get

ẏ(t) = Cx(̇t) = C(Ax(t) +Bu(t)) = CAx(t) + CBu(t),

If CB=0 then continue the differentiation y as

y(n)(t) = CAnX + CAn−1Bu,

In case of cascaded RLC circuit at n=2N, where N is the number of RLC subsystems, CA2N−1B ̸= 0
So we find

u(t) = [CA2N−1B]−1(y(n)(t)− CA2Nx(t)). (3.3)

Now we need to express the states x in terms of y using



y
y(1)

y(2)

...
y(2N−1)




=




C
CA
CA2

...
CA2N−1




x(t),

where,

Z =




y
y(1)

y(2)

...
y(2N−1)




and, T =




C
CA
CA2

...
CA2N−1




In turn we obtained,

x(t) = T−1Z.

Putting the value of x(t) in 3.3 we get

u(t) = (CA2N−1B)−1(y2N − CA2NT−1Z). (3.4)

The output signal y(t) has to follow the reference signal r(t).

r(t) =
1 + tanh(a(t− Tf

2))

2
.

10

and replace y(t) and it’s derivatives in equation 3.4, by computing ṙ(t), r̈(t),, r(2n)(t).
Derivative of r is

r(n)(t) =
an

2
.
dn

dtn
tanh(t− Tf

2
).

Formula for computing derivative of tangent hyperbolic function looks as follows.

Tangent Hyperbolic Derivatives

Before moving on let’s look at the derivatives of tanh function[12]

dn

dzn
tanh z =

2n+1e2z

(1 + e2z)n+1

n−1X

k=0

(−1)kAn,ke
2kz.

Where An,k is Euler number[13]

A(n, k) =

kX

i=0

(−1)i
�
n+ 1

i

�
(k + 1− i)n.

3.1 Results with FBC

Firstly we know the desired reference which is needed.

r(t) =
1 + tanh(a(t− Tf

2))

2
. (3.5)

Where Tf represents the total time and ’a’ is a steepness value. The reference signal is selected because it
exhibits properties similar to that of a unit step signal, albeit with a rise time that can be controlled by the
user by varying the steepness value ’a’. Now, in equation 3.4, substitute the reference signal (equation 3.5)
for ’y’ and solve the equation. This will yield the desired ’u’ value, which will be used to solve the equation
and obtain the desired output.
Now, We shall examine the results presented in Figure 7. In this analysis, we have maintained the ’a’
(steepness) value as constant while varying the ’N’ value. It is readily apparent from the figure that for
smaller values of ’N,’ the FBC demonstrates greater accuracy in problem-solving. However, as the system
order ’N’ increases, it exhibits poor performance, resulting in higher overall loss, undershoot, and overshoot.
It becomes apparent that increasing the value of N also escalates the stiffness of the equation. This heightened
stiffness, in turn, poses a significant challenge for the solver, leading to difficulties in solving the equation.

11

0 50 100

0.0

0.5

1.0 Output
Reference

(a) N=1

0 50 100

0.0

0.5

1.0 Output
Reference

(b) N=3

0 50 100

0.0

0.5

1.0 Output
Reference

(c) N=5

0 50 100

0.0

0.5

1.0

Output
Reference

(d) N=6

0 50 100

-6

-4

-2

0

Output
Reference

(e) N=7

0 50 100

0

5.0×10⁴

1.0×10⁵

Output
Reference

(f) N=10

0 50 100

-4.0×10¹⁶

-2.0×10¹⁶

0 Output
Reference

(g) N=15

Figure 7: FBC With steepness a=1 for various N.

12

In Figure 8, the FBC output exhibits a significantly pronounced overshoot and undershoot. Between the time
intervals of 60 to 63, it experiences a sudden and substantial overshoot followed by a subsequent undershoot.
Both the overshoot and undershoot values are in the order of millions. This observation underscores the
diminishing relevance of FBC when dealing with higher values of ’N’.

time
0 10 20 30 40 50 60 70 80 90 100

Am
pli

tud
e

-4.0×10¹⁶

-2.0×10¹⁶

0

60 61 62 63
0

5.00×10¹³
1.00×10¹⁴
1.50×10¹⁴

Output
Reference

Figure 8: FBC for N=15 with a=1.

Tangent Hyperbolic function

The question may arise: why was the reference signal chosen to be a tanh function rather than a unit step
signal? Firstly, the unit step signal does not exist in the real world, as each function takes some time to
rise. Additionally, the hyperbolic tangent function, commonly referred to as tanh, plays a significant role in
today’s scenarios, finding widespread application in machine learning as an activation function within arti-
ficial neural networks. While it shares some similarities with the ordinary tangent function, its distinctive
feature is its output constraint within the interval of -1 to 1. Below, we outline several key advantageous
properties that have contributed to its extensive adoption:

Smoothness The tanh function and its derivatives exhibit continuity and differentiability at all points.
Moreover, its bounded range within the interval of -1 to 1 renders it an optimal choice for control system
applications. As depicted in Figure 9, it is evident that the first and second derivatives exist, with their
respective amplitudes being less than that of the original signal. It’s worth noting that tangent hyper-
bolic functions are employed to enhance the smoothness of responses in systems that exhibit non-smooth
characteristics. This application has garnered significant attention in recent research endeavors.

13

0 50 100

0.0

0.5

1.0 tanh
First derivative
Second Derivative

Figure 9: Tangent hyperbolic and it’s derivatives.

Steepness Affects On FBC

Again looking in the equation 3.4

u = (CA2N−1B)−1(y2N − CA2NT−1Z).

As the input of the function relies on 2N derivatives of the output (y), in FBC, y is substituted with the
reference signal (r), and the equation is subsequently solved. However, in this context, as we are aware...

f(x) = g(ax),

df

dx
= a

dg

dx
, ...,

dNf

dx2
= aN

dNg

dx2
. (3.6)

From equation 3.6 it is clear that as we change the value of a , it has a huge impact on the output. For the
higher derivative it becomes more sensitive to the value of a.

14

0 50 100

0.0

0.5

1.0 Output
Reference

(a) a=0.7

0 50 100

0.0

0.5

1.0 Output
Reference

(b) a=0.8

0 50 100

0.0

0.5

1.0 Output
Reference

(c) a=0.9

0 50 100

0.0

0.5

1.0

Output
Reference

(d) a=1.0

0 50 100

0.0

0.5

1.0

1.5 Output
Reference

(e) a=1.1

0 50 100

0

1

2

3

Output
Reference

(f) a=1.2

Figure 10: FBC with N=6 and varying steepness(a).

15

Figure 10 illustrates the impact of the ’a’ parameter variation on a circuit with an order of 12 (2N). It is
evident that when ’a’ is set to 0.9, the FBC output consistently stays below the reference, whereas at a value
of ’a’ equal to 1.0, it exhibits an overshoot beyond the desired range. This observation suggests that the
FBC output will closely track the reference signal within the interval of 0.9 to 1.

3.2 Calculating AN

Before we move on to the next steps, it’s important to make sure that our calculations are both fast and
dependable. This will help us solve the optimization problem more quickly. Matrix A has a specific pattern,
so we should take a closer look at that pattern to make our calculations easier.
We have

A =

�
0 I

−M−1S −M−1D

�

Let A1 = −M−1S and A2 = −M−1D, We have

A =

�
0 I
A1 A2

�
, A2 =

�
A1 A2

A2A1 A1 +A2
2

�
,

A3 =

�
A2A1 A1 +A2

2

A2
1 +A2

2A1 A2A1 +A1A2 +A3
2

�
.

When we closely observed the value of A, A2, A3 there seems to a pattern. We define An in terms of

An =

�
a1,n a2,n
a3,n a4,n

�
.

Finally we can compute An with the help of An−1, A1 and A2 as provided by equation (3.7).

a1,n = a3,n−1, (3.7a)
a2,n = a4,n−1, (3.7b)
a3,n = a4,n−1A1, (3.7c)
a4,n = a3,n−1 + a4,n−1A2. (3.7d)

This way it is possible to reduce the computation time by small margin.

16

4 Optimization Based Control

Optimization-based control represents a contemporary mathematical control methodology employed to ad-
dress control problems by optimizing a loss function to derive optimal control inputs. This approach encom-
passes a diverse array of optimization techniques, including linear programming, nonlinear programming,
gradient descent, and more. The critical element in optimization-based control is the judicious selection of
an appropriate optimization method, informed by a comprehensive analysis of the characteristics of the loss
function and the manner in which constraints should be managed. Extensive mathematical modeling and
simulations precede the practical implementation of optimization-based control in real-world scenarios. The
loss function needs to be created as presented in equation (4.1).

Cost = min

Z T

0

(y(t)− r(t))2 dt, (4.1a)

ẋ(t) = Ax(t) +Bu(t), (4.1b)
y(t) = Cx(t), (4.1c)

u(t) =
p1
2

�
1 + tanh

�
p2

�
t

Tf
− p3

���
. (4.1d)

Here for simplicity the parameter p3 of u(t) would be written in terms of p1 and p2. We consider u(0) = ϵ,
Which is very small(in order of 10−2). We put t=0,

u(0) = ϵ =
p1
2
(1 + tanh(−p2p3),

We obtained p3 as

p3 =
−1

p2
arctan(

2ϵ

p1
− 1).

However, it’s important to note that the arctanh(z) function exists only when z falls within the range of -1
to 1. This condition imposes restrictions on p1 as outlined in Equation (4.2).

p1 > ϵ. (4.2)

We have a constraint on the parameter p1. The reference, which is similar to the one used in Flatness-Based
Control.

r(t) =
1

2

�
1 + tanh

�
15t

Tf
− 3

��
. (4.3)

17

0 50 100

0.0

0.5

1.0

Figure 11: Generalized parameterized tanh.

As we’ve introduced the equation with parameterized inputs in (4.1), our next step involves investigating the
properties of the hyperbolic tangent (tanh) function and the impact of its various parameters (represented
as p1, p2, and p3) on system optimization. We will now delve into how each of these parameters influences
the system.

1.p1 Variation

This parameter controls the signal’s amplitude and the energy it provides, allowing it to compensate for
energy loss during the process.

0 50 100

0

2

4

p_1 = 1
p_1 = 5

Figure 12: p1 Variation from 1 to 5.

2.p2 Variation

This parameter holds paramount significance as it profoundly influences the system’s slope, often described
as its steepness. The derivative of the system is highly dependent on this factor.

18

0 50 100

0.0

0.5

1.0 p_2 = 1
p_2 = 5

(a) p2 = 1 and 5

0 50 100

0.0

0.5

1.0 p_2 = 1
p_2 = 1.5

(b) p2 = 1 and 1.5

Figure 13: p2 Variation.

3.p3 Variation

It impacts the system’s delay by causing the input to shift further to the right as it increases.

0 50 100

0.0

0.5

1.0 p_3 = 10
p_3 = 50

Figure 14: p3 Variation from 10 to 50.

4.1 Optimization Methods

We will now delve into the optimization techniques employed in the project. In general, a variety of tech-
niques were considered, including Simulated Annealing, Particle Swarm Optimization, Conjugate Gradient,
and others. However, only a select few were ultimately applied due to their superior performance. Each
technique will also be individually assessed by applying them separately to the system, rather than being
applied simultaneously.

We will begin by discussing the basic polynomial optimization of the quadratic convex function mentioned in
Equation (4.4). We will explore the impact of eigenvalues on system convergence using various optimization
techniques, for more detail please refer[1].

f(x) =
1

2
xTHx+ bTx. (4.4)

Here basically the gradient descent algorithm would be used with few additional steps. We will explore how
it’s possible to associate any gradient-based technique with a polynomial that characterizes the rate at which

19

the method converges. The next position is reached as,

xt+1 = xt −
2

L+ µ
∇f(xt). (4.5)

In equation (4.5), L and µ are max and minimum eigen value of H respectively. Here we need to look into
the convergence rate of equation in terms of eigenvalues and number of iteration(t).

∥xt+1 − x⋆∥2 <= max
λ∈[µ,L]

|(1− 2

L+ µ
λ)t+1|2∥x0 − x⋆∥2.

Here x⋆ is the minima, x0 is starting point. The convergence factor is given by

PGD
t+1 = (1− 2

L+ µ
λ)t+1.

Figure 15: Residual polynomial with t =1 ,5and 9[1].

As depicted in Figure 15, it’s evident that the residual polynomial decreases with each successive iteration.
This decrease is visually represented by the parabolic shape becoming narrower as the number of iterations
increases. Such behavior aligns with our expectations.

xt+1 − x⋆ = Pt+1(H)(x0 − x⋆).

Below, significant conclusions can be derived concerning the convergence rate.

• It depends on the polynomial approximation pt+1(H), which in turn depends on optimization method.

• The other term i.e. x0 − x⋆ depends on initial value x0. If it is selected close to actual solution then
convergence would be faster.

• Various methods are used to create the polynomial approximation but the most common one is Cheby-
shev.

Polyopt

Polyopt[14] is a versatile optimizer that defies easy categorization as either a global or local optimizer.
It achieves its robustness by inherently incorporating two distinct optimization algorithms: ADAM and

20

BFGS (Broyden–Fletcher–Goldfarb–Shanno algorithm). Let’s briefly explore both of these algorithms.

ADAM

The ADAM optimizer represents an enhanced iteration of the stochastic gradient descent (SGD) algorithm,
and it made its debut in 2014, thanks to the work of Diederik P. Kingma and Jimmy Leiba[15]. Its label,
’ADAM,’ stands for ’Adaptive Moment Estimation.’ One of its primary advantages is its reliance solely on
first-order gradients, which translates to reduced memory requirements and improved run-time efficiency.
This algorithm calculates the exponential moving average of gradients, leveraging two critical parameters,
namely β1and β2, to control the decay rate of this moving average. In essence, ADAM amalgamates key
aspects of the Momentum and RMSP techniques, both of which are elaborated upon below.

1. Momentum[16]

ADAM optimization builds upon the concept of ’exponentially weighted averages,’ harnessing their power to
expedite the gradient descent process. Exponentially weighted averages, often referred to as EMA(Exponential
Moving Average), constitute a technique for assigning weights to data points over time. This method grants
greater significance to recent data, gradually diminishing the influence of older data as it fades into the
past.Let’s look into the equations involved.

update = αmt.

The ’update’ indicates the distance between the current point and the next point, with α representing the
step size that governs the transition to the subsequent point. This relationship is visually represented by the
expression for mt in the following equation.4.6

mt = β1mt−1 + (1− β1)∇fw. (4.6)

Where t is current time, ∇fx is gradient of objective function(f). β1 is the hyper-parameter, whose value is
chosen close to 1.

wt+1 = wt − αmt.

This way the next iteration is computed.

2. RMSP(Root mean square propagation)

RMSP is also an adaptive optimization algorithm, it is the upgraded version of AdaGrad. Here we have vt
which is sum of square of past gradients as seen in (4.7).(Note v0 = 0)

vt = β2vt−1 + (1− β2)(∇fw)
2. (4.7)

So the next point is given by

wt+1 = wt −
αt√
vt + ϵ

∇fw.

where wt is the weight at time t.

Now combining momentum and RMSP provides ADAM algorithm as follows

• Calculate mt and vt from the equation 4.6 and 4.7.

21

• Now compute the weight(wt) using following equation

wt = wt−1 − α
m̃tp

(ṽt) + e
.

Where m̃t and ṽt are given as

m̃t =
mt

(1− βt
1)
,

ṽt =
vt

(1− βt
2)
.

here βt
1 and βt

2 are the hyper parameter at time t. An beautiful exapmple of ADAM optimizer is shown
in figure 16, ADAM demonstrate the best optimization as the loss is minimum.

Figure 16: Example of ADAM on curriculum training[2].

BFGS(Broyden–Fletcher–Goldfarb–Shanno)

The BFGS[17][18] algorithm is an optimization method that relies on approximating the Hessian matrix
of the given objective function, often referred to as the loss function. This approximation is derived from
gradient evaluations (or approximate gradient evaluations), leading to a notable reduction in computational
complexity, typically on the order of O(n2).
We have a function f(x), x ∈ Rn. x does not have constraints. The algorithm starts at x0(Which would be
provided by ADAM in case of Polyopt). Search direction p⃗k is given by negative gradient of f, as shown in
equation 4.8 .

Bkp⃗k = −∇f(xk). (4.8)

Where Bk[19] is approximation to hessian matrix at xk, which is updated iterative at each stage, and ∇
f(xk) is gradient at xk. Then Line search is used in the direction of pk by minimizing f(xk + γ pk). Here γk
should satisfy wolfe conditions[20]. Thus reaching next point which is xk+1. Please note here γ is scalar.

22

Let sk=xk+1 − xk and yk=∇f(xk+1)-∇f(xk), we have approximate hessian Bk+1[16] given by equation 4.9.

Bk+1 = Bk +
yky

T
k

yT
k sk

− Bksks
T
kB

T
k

sTkBksk
. (4.9)

Please note Bk+1 is the approximation of hessian. For each iteration value of xk+1, f(xk+1) can be checked
for reaching within the desired loss interval.
We know ADAM and BFGS are applied one after the other in order to implement "Polyopt" Algorithm.

Gradient Descent

It is the most widely employed optimization algorithm for minimizing or maximizing an objective function.
The process begins with an initial starting point, denoted as x0. Subsequently, the algorithm progresses in
the direction of steepest descent, following the gradient, to locate the maximum or minimum of the function.
This principle can be visualized in Figure 17, where the contours resemble a valley with a peak at the center.
The arrow within the diagram represents the step size taken in each iteration.

Figure 17: Gradient Descent contours[3].

Now let’s look into the mathematics behind gradient descent.

x(n+ 1) = x(n)− γ ·∇j(x). (4.10)

In Equation 4.10, x(n+1) represents the next point, while x(n) corresponds to the current point. Here,
∇j(x) signifies the gradient of the objective function j(x), and γ denotes the step size in the direction of the
negative gradient. This iterative process is repeated until the minimum of the function is attained.

23

Figure 18: Example Gradient Descent in 2D[3].

At times, the step size of the system is also referred to as the learning rate. A larger step size can indeed
expedite the journey to the minimum, but it carries the risk of overshooting or potentially neglecting the
global minimum.

Bound Optimization By Quadratic Approximation(BOBYQA)

Initially, we will delve into the approach known as the Generalized Quadratic Approximation, often re-
ferred to as the ’Quadratic Approximation with Trust Region’ method.
In this context, we encounter a function f(x) that necessitates minimization for x ∈ Rn. Here we have
following methods for finding out the minima:-

• Initialize the optimization process with the starting point x0.

• Create a quadratic polynomial function to approximate the objective function, f(x).

• Note that this approximation closely matches the actual objective function only within a predefined
trust region.

• Move to the point with the minimum value of this trust region, which becomes the new starting point
x1.

• Recalculate the quadratic polynomial approximation of the objective function around x1.

• Define a new trust region and compute the minimum point within it.

• Repeat this iterative process until the desired loss value is achieved.

Now, we shall elucidate this concept using Figure 19. The figure displays the contours of the function f(x).
Beginning from the point wk, we embark on the task of approximating the region using a quadratic polyno-
mial. Now, we will explore the specifics of this approximation procedure. Choose a quadratic polynomial of
the form

w(x) = ax2 + bx+ c.

24

Now select three points x1, x2 and x3 consecutively, Calculate corresponding objective value on those points.
so points would be (x1,f(x1)),(x2,f(x2)) and (x3, f(x3)). Now we have the following equations

f(x1) = ax2
1 + bx1 + c,

f(x2) = ax2
2 + bx2 + c,

f(x3) = ax2
3 + bx3 + c.

We have three equation and three variable, it can be easily solved to obtain values of a,b and c.

Figure 19: Example, Optimization using quadratic approximation[2].

After computing the quadratic polynomial approximation, establish trust region boundaries within which
the approximation is highly accurate. Proceed by moving inside the trust region along the direction of the
negative gradient, which signifies the path of descent (this step is particularly straightforward when dealing
with a quadratic polynomial). Upon reaching a new point, create another quadratic polynomial within this
region, and continue this iterative process until you attain the target loss value.
In Figure 19, we can observe three different directions(line search and trust region of quadratic model, gra-
dient descent of f) for selecting the next point. It’s evident that the trust region step based on the quadratic
model provides the most accurate prediction for the next step. Moving in this direction ensures a correct
and efficient optimization process.

Subsequently, We shall present a succinct overview of ’Bound Optimization by Quadratic Approximation,’
as originally introduced by Powell [21]. This method is designed to ascertain the minimum value of a loss
function, denoted as f(x), with the variable x belonging to the real vector space Rn, while aiming to fulfill
the following objective.

25

ai < xi < bi where i=1,2,3...n (4.11)

Here derivative of f is not required, This is iterative method where K denotes number of iteration and n
denotes number of variables, We require quadratic approximation Qk(x) where x ∈ Rn.

Qk(yj) = f(yj) where j=1,2,3...m (4.12)

where m is constant integer in the interval
h
n+ 2, (n+1)(n+2)

2

i
, and it should be chosen by user. Now we

have xk a point in the set yj : j = 1, 2,,m, i.e inside of quadratic approximation that satisfies

f(xk) = min{f(yj) : j = 1, 2, . . . ,m} (4.13)

We also have ∆k which is called as "trust region radius", if certain conditions are achieved then termination
occurs at the kth iteration, otherwise we move a step dk in the trust region., such that x= xk+dk lied within
the bounds(4.11).

xk+1 =

(
xk, if f(xk + dk) ≥ f(xk),

xk + dk, if f(xk + dk) < f(xk).
(4.14)

Similarly ∆(k + 1) and Qk+1 are generated in the next iteration. For more details on the above method
please have a look here[21].

4.2 Implementation

As previously discussed in the preceding section, optimization techniques can be broadly categorized as ei-
ther global or local optimization. Global optimization encompasses a broader search space, aiming to locate
minima across the entire interval, whereas local optimization focuses on identifying the optimal minima point
in proximity to the algorithm’s starting point.

26

Figure 20: Flow Chart Optimization based Control

27

Flowchart Explanation

As is well-known, optimization processes require a comprehensive exploration of the entire landscape to
approach the global minima. To achieve this, we employ a global optimizer, equipped with stopping criteria
based on an overall loss value below 0.5 or reaching the maximum iteration limit. Following the global
optimization phase, our attention shifts to a local optimizer, which fine-tunes the search within a confined
area. The initial parameter values from the global optimization are passed on to the local optimizer. This
local optimization continues until the overall loss value drops below 0.1 or the maximum iteration limit is
reached. In a similar vein, another local optimizer comes into play, aiming for a loss value below 0.05 as its
stopping criteria. This strategy optimizes resource utilization, significantly reducing runtime, and effectively
leverages the entire parameter interval within the constraints.

Results with Optimization based control

As per the methodology outlined in the flowchart (Figure 20), let us proceed to examine the solutions ob-
tained by employing all three optimization methods concurrently. The implementation results are depicted
in Figure 21 and Figure 22.

28

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

Optimization based control N = 1

Output without Optimization
Reference

(a) Output and reference N=1

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

Optimization based control N = 1

Reference
Output with Optmization

(b) Optimized and reference for N=1

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

Optimization based control N = 7

Output without Optimization
Reference

(c) Output and reference for N=3

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

Optimization based control N = 3

Reference
Output with Optmization

(d) Optimized and reference for N=3

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

Optimization based control N = 7

Output without Optimization
Reference

(e) Output and reference for N=7

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

Optimization based control N = 7

Reference
Output with Optmization

(f) Optimized and reference for N=7

Figure 21: Original Output and Optimized output(N=1,3,7).

29

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

Optimization based control N = 10

Output without Optimization
Reference

(a) Output and reference for N=10

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

Optimization based control N = 10

Reference
Output with Optmization

(b) Optimized and reference for N=10

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

Optimization based control N = 15

Output without Optimization
Reference

(c) Output and reference for N=15

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

Optimization based control N = 15

Reference
Output with Optmization

(d) Optimized and reference for N=15

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

Optimization based control N = 25

Output without Optimization
Reference

(e) Output and reference for N=25

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

Optimization based control N = 25

Reference
Output with Optmization

(f) Optimized and reference for N=25

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

Optimization based control N = 40

Output without Optimization
Reference

(g) Output and reference for N=40

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

Optimization based control N = 40

Reference
Output with Optmization

(h) Optimized and reference for N=40

Figure 22: Original Output and Optimized output(N=10,15,25,40).

30

Results with Individual Optimization techniques

After conducting a comprehensive examination of optimization using all three methods concurrently, the
outcomes proved to be quite satisfactory, even when addressing higher-order systems. However, to gain a
deeper insight into the impact of system characteristics on optimization and to discern which parameters
are influenced by each optimization technique, it is imperative to investigate each method individually. But
before delving further into the analysis of results, let us explore the libraries employed for optimizing the sys-
tem. In this regard, two Julia libraries, NLOPT[22] and Optim[23], have been utilized. These libraries offer
various optimization techniques, including Polyopt, Gradient Descent, LNBOBQYA, and NELDERMEAD.

Nlopt is widely used optimizer with available packages in various languages, it’s julia package is referred
as "OptimizationNLopt". Optim offers a range of optimization techniques to suit different scenarios, It’s
package name is ""OptimizationOptimJL".
Here are some of the optimizer classes available in both the packages

1. Local Optimizer: This optimizer halts at the nearest local minima or maxima. For example, you
can use Optim.IPNewton().

2. Derivative-Free Optimizer: When calculating derivatives proves challenging, this optimizer class
can be employed. It may be less efficient compared to other methods. For instance, consider using
Optim.NelderMead()[24] and NLopt.LN_BOBYQA()[21].

3. Gradient-Based Optimizer: This class calculates the gradient of the function. You can apply it
with Optim.GradientDescent() and NLopt.LD_LBFGS().

4. Hessian-Based Second-Order Optimizer: When the second-order Hessian can be calculated, this
method offers faster convergence. You can employ it using Optim.Newton().

5. Global Optimizer: For optimization tasks covering a large area, this optimizer is suitable. For
instance, try Optim.GlobalOptimizer(), Optim.ParticleSwarm()[25] and NLopt.GN_DIRECT().

Upon observing Figure 23, it becomes apparent that the obtained results closely match the reference, show-
casing a high degree of accuracy. However, as the system order is increased, a corresponding increase in loss
is observed, resulting in deviations from the reference signal. It is crucial to highlight that in higher-order
systems, the inherent system dynamics prevent rapid rise times due to the sequential charging of multiple
capacitors. We will delve into this topic in more depth after examining the results obtained with different
optimization techniques.

31

1.POLYOPT

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

PolyOpt with N= 1

Output without Optimization
Reference
Output with Optmization

(a) N=1

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

PolyOpt with N= 3

Output without Optimization
Reference
Output with Optmization

(b) N=3

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

PolyOpt with N= 7

Output without Optimization
Reference
Output with Optmization

(c) N=7

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

PolyOpt with N= 10

Output without Optimization
Reference
Output with Optmization

(d) N=10

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

PolyOpt with N= 15

Output without Optimization
Reference
Output with Optmization

(e) N=15

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

PolyOpt with N= 25

Output without Optimization
Reference
Output with Optmization

(f) N=25

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

PolyOpt with N= 40

Output without Optimization
Reference
Output with Optmization

(g) N=40

Figure 23: OBC with Polyopt optimizer.

32

N p1 p2 Loss
1 0.9981226776848832 11.825751665065004 0.0005960718164400807
3 1.010848701050255 11.848403745172874 0.0005645952276773379
7 1.0242833233069517 12.022182633356962 0.0006810261562369537
10 0.9948569610328094 12.341434068499716 0.00040191266472029545
15 0.9998119191759315 13.53399370985718 0.00024060669334838265
25 1.0122601178444737 18.24262818944882 0.000685913708370779
40 1.069362548769509 50.550881343957364 0.0068778432998186124

Table 1: p1, p2 and Loss values with Polyopt.

33

2.Gradient Descent

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

GradientDescent with N= 1

Output without Optimization
Reference
Output with Optmization

(a) N=1

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

GradientDescent with N= 3

Output without Optimization
Reference
Output with Optmization

(b) N=3

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

GradientDescent with N= 7

Output without Optimization
Reference
Output with Optmization

(c) N=7

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

GradientDescent with N= 25

Output without Optimization
Reference
Output with Optmization

(d) N=25

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

GradientDescent with N= 40

Output without Optimization
Reference
Output with Optmization

(e) N=40

Figure 24: OBC with Gradient Descent.

N p1 p2 Loss
1 1.005470800042144 12.822764319431185 0.0022004928863047376
3 0.9764890280385452 14.860373684319153 0.008836471638452997
7 0.9857771648865551 14.454596373318168 0.005367572680476824
10 N/A N/A N/A
15 N/A N/A N/A
25 1.027553549202767 15.115404683520566 0.0036313195892379523
40 1.1350612732020458 15.80160234436706 0.038961183170550105

Table 2: p1, p2 and Loss values Gradient Descent

34

3.LNBOBQYA

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

LN_BOBYQA with N= 1

Output without Optimization
Reference
Output with Optmization

(a) N=1

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

LN_BOBYQA with N= 3

Output without Optimization
Reference
Output with Optmization

(b) N=3

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

LN_BOBYQA with N= 7

Output without Optimization
Reference
Output with Optmization

(c) N=7

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

LN_BOBYQA with N= 10

Output without Optimization
Reference
Output with Optmization

(d) N=10

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

LN_BOBYQA with N= 15

Output without Optimization
Reference
Output with Optmization

(e) N=15

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

LN_BOBYQA with N= 25

Output without Optimization
Reference
Output with Optmization

(f) N=25

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

LN_BOBYQA with N= 40

Output without Optimization
Reference
Output with Optmization

(g) N=40

Figure 25: OBC with LNBOBQYA optimizer.

35

N p1 p2 Loss
1 1.0 15.0 0.010509620730316442
3 1.0 15.0 0.009968500870898863
7 1.0 15.0 0.007732198200598992
10 1.0 15.0 0.005353448332805369
15 1.0 15.0 0.001508339871321258
25 1.0337011769845768 20.483619969101273 0.002223454295302859
40 1.0 28.410000000000004 0.0163977973349769

Table 3: p1, p2 and Loss values with LNBOBQYA optimizer.

36

4.NELDERMEAD

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

LN_NELDERMEAD with N= 1

Output without Optimization
Reference
Output with Optmization

(a) N=1

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

LN_NELDERMEAD with N= 3

Output without Optimization
Reference
Output with Optmization

(b) N=3

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

LN_NELDERMEAD with N= 7

Output without Optimization
Reference
Output with Optmization

(c) N=7

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

LN_NELDERMEAD with N= 10

Output without Optimization
Reference
Output with Optmization

(d) N=10

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

LN_NELDERMEAD with N= 15

Output without Optimization
Reference
Output with Optmization

(e) N=15

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

LN_NELDERMEAD with N= 25

Output without Optimization
Reference
Output with Optmization

(f) N=25

Time
0 1000 2000 3000 4000

Am
pli

tud
e

0.0

0.5

1.0

LN_NELDERMEAD with N= 40

Output without Optimization
Reference
Output with Optmization

(g) N=40

Figure 26: OBC with LNNELDERMEAD optimizer.

37

N p1 p2 Loss
1 1.0 15.0 0.010509620730316442
3 1.0 15.0 0.009968500870898863
7 1.0 15.0 0.007732198200598992
10 1.0 15.0 0.005353448332805369
15 1.0 15.0 0.001508339871321258
25 1.0337011769845768 20.483619969101273 0.002223454295302859
40 1.0 26.175 0.018620714376337392

Table 4: p1, p2 and Loss values with LNNELDERMEAD optimizer.

Following are some of the observation based on above figures
Upon observing Figure 23, figure 24, figure 25 and 26 it becomes apparent that the obtained results closely
match the reference, showcasing a high degree of accuracy. However, as the system order is increased, a
corresponding increase in loss is observed, resulting in deviations from the reference signal. It is crucial to
highlight that in higher-order systems, the inherent system dynamics prevent rapid rise times due to the
sequential charging of multiple capacitors. As Seen in Figure 27, Polyopt produces the best results whereas
Gradient descent with the worst.

An important observation can be made when examining Table 2. For N=10 and 15, the algorithm fails
to achieve the optimization. This is primarily due to the fact that the optim.gradientdescent() function lacks
constraints, causing the optimizer to be unable to satisfy the condition on p1 mentioned in Equation 4.2.

N
10 20 30 40

Lo
ss

0.00

0.01

0.02

0.03

0.04
OBC Overall Loss

LN_BOBQYA
LN_NELDERMEAD
PolyOpt
GradientDescent

Figure 27: Loss Comparison of all the optimizer.

We shall delve into why Polyopt was able to optimize the system with minimal loss. As observed earlier, p1

is responsible for amplitude adjustment, p2 fine-tunes the input’s steepness, and p3 compensates for system
delay. While p1 and p3 deal with aspects such as energy compensation and system delay comparison, these
parameters remain relatively constant for a specific order system. Therefore, they are of lesser importance.

38

However, as demonstrated in Flatness Based Control (FBC), p2 (steepness) significantly impacts the sys-
tem’s behavior. In Figure 28, Polyopt’s ability to precisely manage steepness becomes evident, effectively
compensating for the system’s inherent sluggishness.

N
10 20 30 40

P1

1.00

1.05

1.10

Parameter 1 variation

LN_BOBQYA
LN_NELDERMEAD
PolyOpt
GradientDescent

(a) p1 variation(Amplitude)

N
10 20 30 40

P2

10

20

30

40

50

Parameter 2 variation

LN_BOBQYA
LN_NELDERMEAD
PolyOpt
GradientDescent

(b) p2 variation(Steepness)

Figure 28: p1 and p2 variations for each optimizer.

39

5 Model Predictive Control

Basic theory of Model Predictive Control
Model Predictive control[26] is an advanced optimization techniques which is quite useful for dynamical
system, it works by predicting the future outputs using mathematical representation of the system and op-
timizing it by controlling the input signal u(t). The accuracy of the system is sensitive to the mathematical
model of the system. Thus it helps in optimizing system while making sure the loss value to be minimum,
As it is dynamic in nature it also helps the system if disturbances are produced in the system at random
time stamp.

Figure 29: Generalized MPC Description.[4]

Following are some of the terminologies used in model predictive control
1.Control Horizon(M)
It represents the duration during which the control input is actively applied.

2.Prediction Horizon(P)
The prediction horizon denotes the future time span over which optimization is performed to calculate con-
trol variables. A longer prediction horizon results in higher computational costs.

3.Control Inputs (u)
The computed input signal is derived by optimizing the system over the prediction horizon.

4.Cost Function / Loss Function
It essentially represents the disparity between the output and the reference signal; its interpretation can also
vary based on the desired output state.

5.Constraints

40

It defines the boundary within which the control input variable can fluctuate, reflecting real-world constraints
to prevent MPC from generating impractical control inputs. For instance, in a motor system, this constraint
might prevent the generation of excessive current demands that are impractical in reality.

6.Optimization
The process of determining the optimal control variable by minimizing a loss function.

7.Reference Trajectory
It is the desired output.

8.System Model
Model equations describe the system’s behavior through input-output relationships, incorporating system
states.

5.1 MPC Implementation

Before delving into our own implementation, We will explore the generalized MPC block diagram depicted
in Figure 30. MPC comprises an optimizer and a prediction model. The optimizer conducts optimization
based on the predicted system output generated by the prediction model, while simultaneously evaluating
the produced output to ensure that disturbances are properly accounted for, potentially causing deviations
between the predicted and measured outputs.

Figure 30: MPC Block Diagram[5]

Let us now proceed to examine the flowchart of the implementation.

41

Figure 31: MPC algorithm flow chart.

Flow Chart Description:

In this context, the optimization process follows a methodology similar to that employed in optimization-
based control, with the use of a single optimizer throughout the Model Predictive Control (MPC) scheme.
Here as well we use the reference similar to OBC, as shown in equation 5.1.

r(t) =
1

2

�
1 + tanh

�
t

10
− 5

��
. (5.1)

Initially, we establish the key parameters: Prediction Horizon (P), Control Horizon (M), and the cost func-
tion (L). Subsequently, we formulate the optimization problem within the time interval spanning from 0 to
P, utilizing a set of parameterized inputs, as represented in the equation 5.2.

U(t) =
MX

t=0

(p1 (1 + tanh ((p2(t/T)− p3)))) . (5.2)

Here, we possess the optimized parameterized input equation. Our process entails conducting optimization
across the entire prediction interval (P). Once the optimized parameters are acquired, the problem necessi-
tates reformulation within the control horizon interval. Subsequently, we resolve the problem by applying
the optimized parameters from the prediction horizon interval and retain the outcome. This marks the
completion of one cycle of Model Predictive Control (MPC), designed for perpetual execution. In practical
implementation, however, it is executed for N steps. The key question that arises pertains to determining
the appropriate value for N. An effective approach involves initializing the system with a standard reference
input, determining the settling time (Ts), and proceeding with Model Predictive Control (MPC) for a dura-
tion of Ts + 30 time units. Keep in mind that the choice of N also varies with the control horizon. A longer

42

control horizon requires a smaller N value.

5.2 MPC Results

This section delves into the conventional implementation of Model Predictive Control (MPC) with various
combinations of control and prediction horizons to optimize results for diverse scenarios. We employ multiple
optimization techniques, considering each individually, and select the one that yields the most favorable
results.
The graph in Figure 32 visually portrays the performance degradation of MPC as the system order increases.
For cases where N is less than or equal to 15, the system output effectively follows the reference with minimal
loss and high precision. However, when N equals 25, it closely approximates the reference but exhibits
oscillatory behavior in the output. A more in-depth analysis of these oscillations will be presented in a
subsequent section. When N equals 20, it initially tracks the reference up to a certain point in time, but
beyond that point, it significantly deviates, resulting in a notable increase in error.

Time
0 100 200

Am
pli

tud
e

0.0

0.5

1.0

MPC for N = 5

Output without MPC
Reference
Output with MPC

(a) N=3

Time
0 100 200

Am
pli

tud
e

0.0

0.5

1.0

MPC for N = 5

Output without MPC
Reference
Output with MPC

(b) N=5

Time
0 50 100 150 200

Am
pli

tud
e

0.0

0.5

1.0

MPC for N = 10

Output without MPC
Reference
Output with MPC

(c) N=10

Time
0 100 200

Am
pli

tud
e

0.0

0.5

1.0

MPC for N = 15

Output without MPC
Reference
Output with MPC

(d) N=15

Time
0 100 200

Am
pli

tud
e

0.0

0.5

1.0

MPC for N = 20

Output without MPC
Reference
Output with MPC

(e) N=20

Time
0 50 100 150 200

Am
pli

tud
e

0.0

0.5

1.0

MPC for N = 25

Output without MPC
Reference
Output with MPC

(f) N=25

Figure 32: MPC For different order system.

43

5.3 Prediction Horizon Variation

This section delves into the pivotal role of the prediction horizon in feedback-based model predictive control.
The prediction horizon, which considers future time stamps, plays a crucial role in forecasting system be-
havior. Extending its value enhances the system’s predictability. It’s imperative to highlight that accurate
modeling of the system equations is essential because, if the predicted output deviates significantly from the
actual output, the effectiveness of the entire MPC optimization process is compromised.
This phenomenon is evident in Figure 33. Here all the observations are taken for N=8(8 cascaded circuits),
For prediction horizons less than 9, MPC fails to track the reference, and its performance is inadequate.
However, when P > 9, MPC functions effectively, closely following the reference. Later, we will delve into
why it fails for P ≤ 9 but works seamlessly for P > 9.

44

Time
0 50 100 150 200

Am
pli

tud
e

0.0

0.5

1.0

MPC for P=8

Output without MPC
Reference
Output with MPC

(a) P=8

Time
0 50 100 150 200

Am
pli

tud
e

0.0

0.5

1.0

MPC for P=9

Output without MPC
Reference
Output with MPC

(b) P=9

Time
0 50 100 150 200

Am
pli

tud
e

0.0

0.5

1.0

MPC for P=10

Output without MPC
Reference
Output with MPC

(c) P=10

Time
0 50 100 150 200

Am
pli

tud
e

0.0

0.5

1.0

MPC for P=11

Output without MPC
Reference
Output with MPC

(d) P=11

Time
0 50 100 150 200

Am
pli

tud
e

0.0

0.5

1.0

MPC for P=15

Output without MPC
Reference
Output with MPC

(e) P=15

Time
0 50 100 150 200

Am
pli

tud
e

0.0

0.5

1.0

MPC for P=20

Output without MPC
Reference
Output with MPC

(f) P=20

Time
0 50 100 150 200

Am
pli

tud
e

0.0

0.5

1.0

MPC for P=25

Output without MPC
Reference
Output with MPC

(g) P=25

Figure 33: MPC With prediction horizon variation.

45

A noteworthy observation is that as we increase P , the model diligently strives to track the reference with
minimal deviation during the initial rise time. However, in the process, it encounters challenges in reducing
the steepness of the response after this initial phase.
Now, let’s delve into another crucial observation, as depicted in Figure 34. As previously mentioned, the
MPC struggled to follow the reference. However, when we transition from a local to a global optimizer,
the MPC begins to closely track the reference. Nevertheless, this transition comes at the cost of losing the
smoothness of the MPC response, resulting in noticeable jitter. This observation underscores the fact that
a local optimizer is not always the best choice.

Time
0 50 100 150 200

Am
pli

tud
e

0.0

0.5

1.0

MPC for P=7

Output without MPC
Reference
Output with MPC

(a) P=7 (Local Optimizer)

Time
0 50 100 150 200

Am
pli

tud
e

0.0

0.5

1.0

MPC for P=7

Output without MPC
Reference
Output with MPC

(b) P=7 (Global Optimizer)

Time
0 50 100 150 200

Am
pli

tud
e

0.0

0.5

1.0

MPC for P=8

Output without MPC
Reference
Output with MPC

(c) P=8 (LocalOptimizer)

Time
0 50 100 150 200

Am
pli

tud
e

0.0

0.5

1.0

MPC for P=8

Output without MPC
Reference
Output with MPC

(d) P=8 (Global Optimizer)

Figure 34: MPC Local Optimizer vs Global Optimizer.

Now, delving deeper into the comparison of how the parameters p1, p2, and p3 vary between global and local
optimization, we can examine Figure 35, which illustrates the variations of these parameters for P=7 and
8. It becomes evident that, with local optimization, as these parameters diverge from their original desired
values, the system struggles to adapt and ultimately results in failure.

46

t
0 50 100 150 200

P1

0

50

100

Parameter 1 variation

Local Optimizer P=7
Global Optimizer P=7
Local Optimizer P=8
Global Optimizer P=8

(a) p1 variation

t
0 50 100 150 200

P2

0

100

200

300

Parameter 2 variation

Local Optimizer P=7
Global Optimizer P=7
Local Optimizer P=8
Global Optimizer P=8

Local Optimizer P=7
Global Optimizer P=7
Local Optimizer P=8
Global Optimizer P=8

(b) p2 variation

t
0 50 100 150 200

P3

0

50

100

Parameter 3 variation

Local Optimizer P=7
Global Optimizer P=7
Local Optimizer P=8
Global Optimizer P=8

(c) p3 variation

Figure 35: Parameter variations local vs global optimizer P=7 and P=8.

Now, when examining the scenario with P=10, both the Global and Local optimizers exhibit commendable
performance in closely tracking the reference signal. However, it’s worth noting that in the case of Global
Optimization, there are some fluctuations, particularly during the rise and settling times, as depicted in
Figure 36.

Time
0 50 100 150 200

Am
pli

tud
e

0.0

0.5

1.0

MPC for P=10

Output without MPC
Reference
Output with MPC

(a) Local Optimizer(Polyopt)

Time
0 50 100 150 200

Am
pli

tud
e

0.0

0.5

1.0

MPC for P=10

Output without MPC
Reference
Output with MPC

(b) Global Optimizer(ParticleSwamp)

Figure 36: P=10 global vs local optimizer.

Furthermore, let’s explore a crucial and advantageous aspect of the local optimizer concerning the behavior
of parameters when the prediction horizon is extended, as we’ve done in this case with a horizon of 10. As
evident in Figure 36, both optimization techniques successfully track the reference, but the nuances of how

47

they achieve this warrant closer examination.
For a more detailed insight, refer to Figure 37, where you’ll observe that parameter variations are markedly
minimal in the case of the local optimizer (depicted in black). In contrast, the global optimizer (depicted in
yellow) exhibits substantial variations, leading to a less smooth response. It can be asserted that to achieve
a smooth final output, it is essential for parameter variations to exhibit smoothness as well.

t
0 50 100 150 200

P1

0

50

100
Parameter 1 Global Vs Local

Local Optimizer P=10
Global Optimizer P=10

(a) p1

t
0 50 100 150 200

P1

0

100

200

300

Parameter 2 Global Vs Local

Local Optimizer P=10
Global Optimizer P=10

(b) p2

t
0 50 100 150 200

P1

0

50

100
Parameter 2 Global Vs Local

Local Optimizer P=10
Global Optimizer P=10

(c) p3

Figure 37: Prediction horizon=10 parameters variation local vs global optmizer.

One of the objectives of this thesis is to generate a continuous MPC signal, which necessitates that
parameter variations are continuous as well. Achieving perfect continuity is inherently impossible as data
is sampled at discrete points. However, by reducing the sampling time and minimizing abrupt parameter
changes, we can approach a notion of continuity. Figure 38 illustrates that the parameter variation is notably
smoother with only minor deviations, Plus as the system stabilizes the parameter values becomes constant,

48

t
0 50 100 150 200

Am
pli

tud
e

1

2

3

4

5

Parameter variation with local optimizer

p1
p2
p3

Figure 38: p1, p2 and p3 variation for a polyopt.

5.4 Control Horizon Variation

As we observed in the previous section, the prediction horizon exerts a significant influence on the overall
MPC implementation. Now, let’s shift our focus to another critical factor known as the control horizon (M),
which dictates the duration for which control signals are applied to the system following the prediction.
Examining Figure 39, a noteworthy trend emerges: reducing the control horizon results in a more precise
tracking of the reference signal with fewer perturbations. These results have been obtained using a global
optimizer (particle-swarm) with N=8 (system order).

49

Time
0 200 400

Am
pli

tud
e

0.0

0.5

1.0

1.5

2.0

MPC for M=5

Output without MPC
Reference
Output with MPC

(a) M=5

Time
0 100 200 300 400 500 600

Am
pli

tud
e

0

1

2

3

MPC for M=4

Output without MPC
Reference
Output with MPC

(b) M=4

Time
0 200 400

Am
pli

tud
e

0.0

0.5

1.0

1.5

MPC for M=3

Output without MPC
Reference
Output with MPC

(c) M=3

Time
0 100 200 300 400

Am
pli

tud
e

0.0

0.5

1.0

MPC for M=2

Output without MPC
Reference
Output with MPC

(d) M=2

Time
0 50 100 150 200

Am
pli

tud
e

0.0

0.5

1.0

MPC for M=1

Output without MPC
Reference
Output with MPC

(e) M=1

Figure 39: MPC control horizon variation with global optimizer.

Another noteworthy observation was made when solving MPC with a local optimizer while varying the
control horizon from 1 to 2. As depicted in Figure 40, using a control horizon (M) of 2 resulted in highly
erratic behavior, with the output going out of control and exhibiting significant fluctuations.

Time
0 50 100 150 200

Am
pli

tud
e

0.0

0.5

1.0

MPC for C=1

Output without MPC
Reference
Output with MPC

Output without MPC
Reference
Output with MPC
Output without MPC
Reference
Output with MPC

(a) M=1

Time
0 100 200

Am
pli

tud
e

-2.0×10⁸

0

2.0×10⁸

MPC for M=2

Output without MPC
Reference
Output with MPC

(b) M=2

Figure 40: MPC control horizon variation with local optimizer(Polyopt).

50

Conclusion

In conclusion, the research presented in this thesis delves into the challenges of optimizing higher-order
circuits and explores various methods to align system performance with desired reference outputs. Several
key findings have emerged from this investigation.
First, it was observed that flatness-based control, although effective for certain systems, struggles to optimize
higher-order systems, particularly when the reference signal does not exhibit specific steepness characteristics.
This limitation raises questions about its suitability for complex systems.
Optimization-based control, on the other hand, demonstrated promising results, with the Polyopt algorithm
emerging as the preferred optimizer due to its ability to minimize loss. However, it is important to note that
the use of Polyopt is constrained by its inability to incorporate constraints, which may limit its applicability
in certain scenarios.
Model predictive control (MPC) highlighted the significance of choosing the right optimizer, whether global
or local. Global optimization methods proved capable of following reference signals effectively, even with
shorter prediction horizons. In contrast, local optimization techniques required a longer prediction horizon
but excelled in managing continuous parameter variations, which in turn produces a continuous MPC input
signal. Nevertheless, it should be acknowledged that MPC, especially when utilizing global optimizers, can
introduce high levels of output fluctuations or noise that necessitate further investigation.
One overarching takeaway from this research is the emphasis on the steepness of input signals in the op-
timization process, as this parameter plays a crucial role in system performance. This insight underscores
the importance of understanding and controlling input signal characteristics to optimize complex systems
effectively.
While this study has made significant strides in addressing the challenges of higher-order circuit optimization,
there are areas that warrant further exploration. Notably, the issue of noise introduced by global optimizers
in MPC requires additional research to develop strategies for noise reduction.
The findings of this thesis hold promise for practical applications in power electronics and motor control,
offering the potential for smoother responses and improved control methods in systems such as power convert-
ers, clippers, and clampers. Moreover, the use of tangent hyperbolic functions to smooth system responses
could prove invaluable in real-world applications.
In summary, this research contributes valuable insights into the optimization of higher-order circuits, offering
practical implications for enhancing the performance of various systems while highlighting areas for future
investigation and development.

51

References

[1] Fabian Pedregosa. Residual polynomials and the chebyshev method. http://fa.bianp.net/blog/
2020/polyopt/, 2020.

[2] Heeyoul "Henry Choi, Sookjeong Kim, and Seungjin Choi. Trust-region learning for ica. volume 1,
page 46, 08 2004. ISBN 0-7803-8359-1. doi: 10.1109/IJCNN.2004.1379867.

[3] Niklas Donges. Gradient descent in machine learning: A basic introduction. URL https://builtin.
com/data-science/gradient-descent.

[4] Matlab. Run field oriented control of pmsm using model predictive control. URL https://de.
mathworks.com/help/mcb/gs/run-foc-pmsm-using-model-predictive-control.html.

[5] MATHworks. Mpc block diagram. URL https://de.mathworks.com/help/mpc/gs/what-is-mpc.
html.

[6] Dr S Somanath. Chandrayaan 3 india’s moon exploration. Prof S Pradeep Memorial Lecture, IISC,
Banglore, 2023. URL https://www.youtube.com/watch?v=fZ2sNRP1opY&t=3240s.

[7] Daniel Peters. Evaluation of dynamic mode decomposition for cascaded electrical oscilla-
tors. URL https://forschung.rwu.de/sites/forschung/files/2023-03/2023_DMD_Cascaded_
RLC_Daniel_Peters.pdf.

[8] Alberto Isidori, CH Moog, and A De Luca. A sufficient condition for full linearization via dynamic state
feedback. In 1986 25th IEEE Conference on Decision and Control, pages 203–208. IEEE, 1986.

[9] Michel Fliess, Jean Lévine, Philippe Martin, and Pierre Rouchon. Flatness and defect of non-linear
systems: introductory theory and examples. International journal of control, 61(6):1327–1361, 1995.

[10] Richard M Murray et al. Optimization-based control. California Institute of Technology, CA, pages
111–128, 2009.

[11] Moritz Diehl and Sébastien Gros. Numerical optimal control. Optimization in Engineering Center
(OPTEC), 2011.

[12] Stephan Scholz. N-th derivative of tanh. URL https://en.wikipedia.org/wiki/User_talk:
StephanSp3#N-th_derivative_of_tanh.

[13] Grzegorz Rzadkowski. Derivatives and eulerian numbers. The American Mathematical Monthly, 115
(5):458–460, 2008.

[14] Vaibhav Dixit. Optimizationpolyalgorithms. https://github.com/SciML/Optimization.jl/tree/
master/lib/OptimizationPolyalgorithms, 2023.

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[16] Akash Ajagekar. Adam. URL https://optimization.cbe.cornell.edu/index.php?title=Adam.

[17] Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2000.

[18] Charles George Broyden. The convergence of a class of double-rank minimization algorithms 1. general
considerations. IMA Journal of Applied Mathematics, 6(1):76–90, 1970.

[19] Donald Goldfarb. A family of variable-metric methods derived by variational means. Mathematics of
computation, 24(109):23–26, 1970.

[20] Philip Wolfe. Convergence conditions for ascent methods. SIAM review, 11(2):226–235, 1969.

52

[21] Michael JD Powell et al. The bobyqa algorithm for bound constrained optimization without derivatives.
Cambridge NA Report NA2009/06, University of Cambridge, Cambridge, 26, 2009.

[22] Steven G Johnson and Julien Schueller. Nlopt: Nonlinear optimization library. Astrophysics Source
Code Library, pages ascl–2111, 2021.

[23] P Mogensen and A Riseth. Optim: A mathematical optimization package for julia. Journal of Open
Source Software, 3(24), 2018.

[24] John A Nelder and Roger Mead. A simplex method for function minimization. The computer journal,
7(4):308–313, 1965.

[25] Zhi-Hui Zhan, Jun Zhang, Yun Li, and Henry Shu-Hung Chung. Adaptive particle swarm optimization.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(6):1362–1381, 2009.

[26] Liuping Wang. Model predictive control system design and implementation using MATLAB®. Springer
Science & Business Media, 2009.

53

Source Code

A, B and C matrix calculation

N = 6;
Tf = 400;
M = diagm(ones(Int, N)) # matrix with all diagonal element as 1, square matrix with size N by N
D = diagm(ones(Int, N)) # matrix with all diagonal element as 1, square matrix with size N by N
S = diagm(ones(Int, N)) # matrix with all diagonal element as 1, square matrix with size N by N
for i = 1 : N, j = i+1 : N

M[i,j] = 1 # above the diagonal element value 1
D[i,j] = 1 # above the diagonal element value 1

end

for i = 1 : N-1
S[i+1,i] = -1

end

R1 = 1
L1 = 1
C1 = 1

Now calculating the values of A,B and C, For state space representation
A = zeros(2N,2N) # 2N by 2N matrix
A[1:N, N+1:2N] = diagm(ones(Int,N)) # the top-right side of the matrix is Identity matrix
A[N+1:2N, 1:N] = (-inv(M)*S) / (L1*C1) # lower left side we have S~ matrix
A[N+1:2N, N+1:2N] = (-inv(M)*D) * (R1/L1) # lower right side we have D~ matrix

B = vcat(zeros(N), 1/(L1*C1), zeros(N-1)) # first N element zero then 1/LC, after that N-1 values are
zero

C = vcat(zeros(N-1),1,zeros(N))’

Loss Function

function loss(param) # defining the loss function here
sol = solve(prob, Tsit5(),saveat=0.1, p = param) # what is p here ? p is parameter
err = sum(abs2,sol[N,2000:1:4001]) -refval # considering reference to be 1
loss = sum(abs2, err)/length(err)
return loss #, sol # return loss value along with solution

end

AN calculation

function matrixmul!(mat::Matrix{Float64} , n)
m = zeros(2N,2N)
m = copy(mat)
for i = 2:n

m[1:N, 1:N] = m[N+1:2N,1:N] # A1 update to top left corner
m[1:N, N+1:2N] = m[N+1:2N, N+1:2N] # A2 update to top left corener
temp1[1:N,1:N]= m[N+1:2N,1:N] # A1 old backup before modification
temp2[1:N,1:N] = m[N+1:2N, N+1:2N] # A2 old backup befrore modification
m[N+1:2N,1:N] = temp2*A[N+1:2N, 1:N] # A1(New) = A2(old)*A1
m[N+1:2N, N+1:2N] = temp1 + temp2*A[N+1:2N, N+1:2N] # A2(new) = A1(old) + A2(old)*A2

54

end
return m

end

ODE Function

function my_ode(dx, x, p, t)
u_in = input_tanh_new(t,T,p) # sin(t)

dx[1:N] = x[N+1:2N]
dx[N+1:2N] = (-inv(M)*S) / (L*C) * x[1:N] + (-inv(M)*D) * (R/L) * x[N+1:2N] + G/(L*C) * u_in
dx .= A*x + B*u

end

Optimization Based Control

using Optimization, OptimizationPolyalgorithms, SciMLSensitivity,
Zygote, OptimizationOptimJL,LineSearches, OptimizationNLopt

adtype = Optimization.AutoFiniteDiff()
adtype allows us to choose the type of Automatic differentiation we use.

optf = Optimization.OptimizationFunction((x, param) -> loss(x),adtype)
x is variable , param is initial value of the parameters

optprob = Optimization.OptimizationProblem(optf, param,lb=[0.1,0.0] , ub=[100.0,50.0])
#Final problem defination

opt_sol_Para_temp= Optimization.solve(optprob, Optim.ParticleSwarm(lower = optprob.
lb, upper = optprob.ub,
n_particles = 200), callback = cb_new, maxiters =4)
opt_sol_Para_temp is initial optimized parameters obtained,
they would be fed to local optimization
technique in order to reach optimized solution
param_new=[1.0188661066056204, 61.593282512921746]

new_adtype = Optimization.AutoFiniteDiff()

optf_new = Optimization.OptimizationFunction((x, param_new) ->
loss(x),new_adtype) #now using obtained parameters as input to the system

optprob_new = Optimization.OptimizationProblem(optf_new, param_new,lb=
[0.1,0.0] , ub=[100.0,10.0])

new_optparameters= Optimization.solve(optprob_new,
Optim.ParticleSwarm(lower = optprob_new.lb, upper = optprob_new.ub,
n_particles = 200), callback = cb, maxiters = 50)

par_2= [new_optparameters[1], new_optparameters[2]]

optf_new_2= Optimization.OptimizationFunction((x, par_2) -> loss(x),new_adtype)

optprob_new_2 = Optimization.OptimizationProblem(optf_new_2, par_2)

55

new_optparameters_2= Optimization.solve(optprob_new_2,
Optim.GradientDescent(), callback=cb_drop95percent ,maxiters = 4);

par_3= [new_optparameters_2[1], new_optparameters_2[2]]
optf_new_3= Optimization.OptimizationFunction((x, par_3) ->
loss(x),new_adtype)

optprob_new_3 = Optimization.OptimizationProblem(optf_new_3, par_3,lb=
[0.1,0.0] , ub=[100.0,1300.0])

new_optparameters_3= Optimization.solve(optprob_new_3,NLopt.LN_BOBYQA(),
callback=cb_drop99percent ,maxiters = 50);

Model Predicitve Control

prob_mpc = ODEProblem(my_ode_new, x0, (0,t_ph),param)
for i =1:Nsteps

define the problem
optprob = Optimization.OptimizationProblem(optf, next_param);

new_optparameter = Optimization.solve(optprob,PolyOpt(),callback=cb_new, maxiters =
30); # Now optimize the problem with the param
println(new_optparameter)
paramArray[:,i+1] = new_optparameter.u
next_param= new_optparameter.u

prob1 = remake(prob_mpc; tspan=(0+t_ch*(i-1), t_ch*i))

solution = solve(prob1,alg,
p=[new_optparameter.u[1],new_optparameter.u[2],new_optparameter.u[
3]],alg_hints=[:stiff], saveat=0.1)
sol_ar[i,:]=solution[N,:]
println(sol_ar[i,:])

prob_mpc = remake(prob_mpc; u0=solution[:,end] ,tspan =(0+i*t_ch,t_ph+(i*t_ch)))
end

56

