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Abstract

Accurate control of heating processes remains an ongoing topic of research due to the wide

variety of applications in the process, semiconductor and manufacturing industries. This

report investigates the in-domain control of the average temperature in a one dimensional,

insulated rod using multiple heat sources.

To this end, the heat diffusion in the rod is modelled by the heat equation which is a partial

differential equation. The report introduces a method to spatially discretize the system

to obtain a finite dimensional state-space representation in the form of a linear system

of ODEs. This model is used to design an LQR feedback controller and a feedforward

controller.

The control algorithm is implemented in C-Code and incorporated into a simulation en-

vironment by compiling it to a MATLAB executable file in order to increase the compu-

tational efficiency and to perform Software-in-the-Loop tests.

Simulations are performed to investigate the open- and closed-loop behavior of the sys-

tem. The controller is able to track a variety of different reference inputs as long as the

bandwidth of the reference is limited and a tracking error is acceptable. Future research

directions include the use of output feedback to improve tracking and disturbance re-

jection as well as methods from optimal control like Model Predictive Control to take

constraints of the heat sources into account.
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1 Introduction

In the realm of control theory and thermodynamics, the regulation of temperature within

one-dimensional systems is a fundamental challenge with applications spanning from ma-

terials science to industrial processes. The one-dimensional heat equation provides a

mathematical foundation for understanding heat transfer in such systems, describing how

temperature evolves over time and along a single spatial dimension. Employing con-

trol strategies to influence and maintain desired temperature profiles in one-dimensional

systems is critical for achieving desired outcomes in various engineering and scientific

endeavors.

[1] shows how heat plays a crucial role in the ongoing decarbonization of industry. Novel

control methods for heat management play an important role in improving the efficiency of

these processes and thereby reducing emissions. Applications of heat control can be found

for instance in the production of steel [2] or in heat treatment to improve certain material

properties [3][4]. Precise heating is also required for applications in the semiconductor

industry [5] and electronics manufacturing [6].

While the concrete mechanism of heating differs depending on the applications, the same

physical laws can be used to describe a wide range of systems.

In this report, we will dive into the fundamental concepts and techniques behind state-

space control, matrix discretization, and their application to the one-dimensional heat

equation. Understanding these principles is crucial first step in solving real-world problems

related to temperature regulation and heat management. This report is intended to be

a logical starting point before considering more advanced methods for simulation and

control.

We consider the problem of controlling the average temperature within an idealized, one-

dimensional, insulated rod. While this scenario might seem overly simple, it illustrates

many of the same considerations required for more realistic applications.

To start, chapter 2 discusses state-of-the-art simulation and control methods for heating

systems. Next, in chapter 3.1 the system under consideration in this report is introduced

and a model is developed. This model is then used in chapter 4 to develop an LQR feed-

back controller and a feedforward controller to regulate the average temperature in the

rod. Chapter 5 provides details regarding the implementation of the simulation and con-

trol algorithm. Finally, chapter 6 presents simulation results during open- and closed-loop

operation and discusses the strengths and weaknesses of the developed control method.
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2 State of the Art

Heat simulation and control is a topic of interest in almost every engineering domain span-

ning from automotive to process to energy applications. This explains the vast number

of techniques that evolved to enable modelling and simulation of heat processes.

Lately, modeling and simulation techniques and the use of high-speed computers have

greatly improved the accuracy of thermal and heat transfer-related analysis. An increasing

amount of models is being developed, tested, and applied. This allows engineers to gather

reliable results and to predict system behavior. As a short overview, an excerpt of methods

used to simulate heat transfer is listed below [7]

• Molecular Dynamics Simulations

• Monte Carlo Simulation

• Normal Mode (Harmonic) Analysis

• Computational Fluid Dynamics (CFD)

• Finite Difference Method (FDM)

Molecular dynamics is a technique in which physical movements of atoms and molecules

are simulated using computers. The method allows atoms and molecules to interact for

some time in a simulation. This generates a view of the motion of individual atoms. The

results of molecular dynamics simulation can be used in various fields such as thermody-

namics, biology, chemistry, materials science and engineering, statistical mechanics and

nanotechnology. [8]

Monte Carlo methods/simulations are a set of simulation techniques that rely on repeated

random sampling to compute their results. They are often used in computer simulations of

physical and mathematical systems. Monte Carlo methods are especially useful for simu-

lating systems with many coupled degrees of freedom such as fluids, disordered materials,

strongly coupled solids, and cellular structures. [9]

Normal mode (harmonic) analysis is a method of simulation in which the characteristic

vibrations of an energy-minimized system and the corresponding frequencies are deter-

mined assuming its energy function is harmonic in all degrees of freedom. Normal mode

analysis is less expensive than molecular dynamics simulation but requires much more

memory. [10]
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Computer Fluid Dynamics is often used to simulate the flow of fluids and heat transfer in

systems with fluid involvement, such as air or liquid cooling in electronic devices, HVAC

systems, and industrial processes [11]. Finite Difference Method supports numerical anal-

ysis of heat transfer problems through discretization and approximation of the governing

equations. When analyzing a problem in a CFD application, the first step is to discretize

the partial differential equation, then approximate and calculate heat transfer to derive a

numerical solution. In different heat flow systems, systems designers can use CFD solvers

to apply the finite difference method to heat transfer equations. [12]

The finite difference method is the closest to the approach used in this report. This

reduces the continuous simulation domain to a finite dimensional state which enables the

application of state-space methods. A short introduction to state-space representation

can be found in [13].

Linear state-space representations of Multiple-Input-Multiple-Output (MIMO) systems

lend themselves to LQR control. LQR control has successfully been applied to high-

dimensional problems [14]. For instance in [15], LQR control is applied to selectively cool

steel profiles. In [16], the same authors present an efficient method to numerically solve

the LQR problem in the high dimensional case without explicitly solving the Algebraic

Ricatti Equation. In [17], ten different methods to control the heat in a rod are compared.

The LQR controller ranks among the best performing methods in this comparison.

This motivates the use of an LQR controller for the task of in-domain heat control in a

rod that is considered in this report.
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3 Development of a Heat Model

In this chapter, the physical system under consideration is introduced. A mathematical

model to describe this system is first formulated in continuous time as a Partial Differential

Equation (PDE). First, this model is discretized in space to obtain a state-space model.

Then, the model is also discretized in time to obtain a discrete-time system of Ordinary

Differential Equations (ODEs) which enables numerical simulation. The model developed

in the following chapters is subsequently used in Chapter 4 to develop a control system.

3.1 Heat Equation

Figure 3.1 shows a graphical depiction of the physical setup investigated in this report.

The rod of length L is assumed to be infinitely thin, i.e. the temperature distribution

along its width is constant. Therefore, this reduces to a one-dimensional problem in

x. The core objective of this study is to develop an algorithm to control the localized

heat sources u in a way that achieves the control objective (e.g. to keep the average

temperature along the rod constant). To this end, this chapter introduces the theoretical

foundations necessary to develop a simulation which is in turn used to develop and test

the control algorithm.

Insulated
Boundaries Metal Rod

Figure 3.1 – Metallic rod of length L with thermal diffusivity α, three localized heat sources u and
insulated boundaries.

This involves solving the heat equation, a PDE that describes the variation of temperature

in the rod, using numerical methods [18, p. 3]. Equation 3.1 introduces the heat equation

where T (x, t) is the temperature as a function of the position in the rod x and time t.
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∂T

∂t
= α

∂2T

∂x2
(3.1)

The heat equation relates the time derivative of the temperature with the second spatial

derivative. α is the thermal diffusivity [19]. It is a positive constant and describes how

quickly heat diffuses. Intuitively, it can be understood as a measure of how fast, large

differences in temperature along the object of interest smooth out. A large value of α

corresponds to a fast diffusion.

We assume that the rod is completely insulated and that there is no heat radiation. This

assumption leads to the boundary conditions for the ends of the rod shown in equation 3.2.

∂T

∂x
(0, t) = 0 (3.2a)

∂T

∂x
(L, t) = 0 (3.2b)

These boundary conditions are also known as Neumann Conditions and they ensure that

there is no heat flow across the ends of the rod [20].

Since we are concerned with control of some aspect of the heat distribution, the heat

sources u need to be introduced in the formulation of the heat equation. This is shown

in equation 3.3 where the dependence on the position x along the rod is made explicit.

∂T

∂t
(x) = α

∂2T

∂x2
(x) +

∑
i

bi(x)ui(t) (3.3)

ui refers to the i-th heat source input and is in general a function of time. Depending on

the control law, it might also be formulated as a function of the state i.e. the temperature.

bi is a function that describes the effect of heat source ui at position x. Figure 3.2 shows

the input functions for idealized, uniform heating. The functional description of bi(x) can

be formulated as follows where xleft,i and xright,i are the left and right boundary of the

heat source ui and bi is a scaling factor

bi(x) =

bi if x ∈ [xleft,i, xright,i]

0 otherwise.
(3.4)

3 Development of a Heat Model 5



Metal Rod

Figure 3.2 – The functions bi(x) model the effect of the heat source inputs ui as a function of the position
along the rod. Here, an idealized, uniform heating behavior is shown.

This is often a limiting assumption since it is physically unrealistic to have a discontinuous

heat input that does not affect neighboring positions. One possible way to make the model

more realistic is by using a continuous functional representation that more accurately

reflects the physical characteristics of a heat source. Figure 3.3 shows the functions bi(x)

for smooth, gaussian-like heat inputs.

Equation 3.5 is one way to mathematically model this behavior.

bi(x) = bi exp

(
−(x− xi)

2

2σ2
i

)
(3.5)

σi is a lenght-scale parameter that is used to adjust the steepness of the bell curve. A low

value for σi corresponds to a steep, impulse like heating and a large value for σi describes

a smoother, more uniform heat source.

To complete the modelling of the physical system and to obtain a well-posed problem, an
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Metal Rod

Figure 3.3 – To model a non-uniform heat input, a more complex functional form like a gaussian function
can be chosen for bi.

initial condition has to be provided to specify the heat distribution at time t = 0

T (x, 0) = T0(x). (3.6)

3.2 Spatial Discretization

The model developed in this chapter aims to provide insights into the thermal dynamics of

solid objects, which is crucial in many engineering applications, including material science,

thermal management, and the design of cooling systems. To simulate the heat in the rod,

a discretized model formulation is necessary. More importantly, a finite-dimensional state

is necessary for the development of a suitable control algorithm in Chapter 4.

The methodology adopted in this report revolves around the spatial discretization of the

continuous system (the rod). This is achieved by applying the finite difference method

for spatial discretization.
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More precisely, the second order central difference method is used to discretize the spatial

domain as shown in equation 3.7 [21].

∂2T

∂x2
(x) ≈

T (x+∆x)−T (x)
∆x

− T (x)−T (x−∆x)
∆x

∆x
=

T (x+∆x)− 2T (x) + T (x−∆x)

∆x2
(3.7)

∆x is the spatial discretization step size as depicted in Figure 3.1. The choice of ∆x is

a trade-off between simulation fidelity and computational cost. This is crucial for the

development of a controller on hardware with limited computational resources. Since

simulation and control have different hardware constraints, a finer discretization could be

chosen for simulation and a larger discretization step could be used for control. To keep

the following sections consistent and easy to follow along, the same discretization step is

used for simulation and control.

Spatial discretization only allows the evaluation of the temperature at discrete steps ∆x.

If required, the values in between can be obtained for example through linear interpolation

or by using piece wise cubic splines. This is an alternative way to obtain a smooth result

with a comparatively large discretization step.

Applying the spatial discretization to equation 3.1 results in equation 3.8.

∂T

∂t
(x) = α

T (x+∆x)− 2T (x) + T (x−∆x)

∆x2
(3.8)

Through the spatial discretization, the heat equation is now expressed as a linear system

of coupled ODEs in time which can be solved by standard methods for linear state-space

models and ODE systems. The resulting linear system is shown in equation 3.9.


∂T1/∂t

∂T2/∂t
...

∂TN/∂t

 =



−2 2 0 . . . . . . . . . 0

1 −2 1 0 . . . . . . 0

0 1 −2 1 0 . . . 0
...

. . . . . . . . . . . . . . .
...

0 . . . . . . 0 1 −2 1

0 . . . . . . . . . 0 2 −2




T1

T2

...

TN

 (3.9)

The first and last lines are different to account for the boundary conditions introduced

in equation 3.2. As a shorthand, standard state-space notation is adopted by defining a

3 Development of a Heat Model 8



state vector T⃗

T⃗ =


T1

T2

...

TN

 (3.10)

and by rewriting the system in matrix-vector notation

˙⃗
T = AT⃗ . (3.11)

To include the heat sources u in the spatially discretized model, an input matrix B is

added to the system for the example with three inputs u1, u2, and u3

˙⃗
T = AT⃗ +Bu⃗ = AT⃗ +

b1(x) b2(x) b3(x)


u1

u2

u3

 . (3.12)

with the input vector u⃗ defined as

u⃗ =

u1

u2

u3

 . (3.13)

Matrix B contains the input functions bi(x), evaluated at the spatial discretization steps.

For the uniform input function shown in Figure 3.2 the input matrix B is defined in

equation 3.14.

3 Development of a Heat Model 9



B =



0 0 0

1 0 0

1 0 0

1 0 0

0 0 0
...

...
...

0 0 0

0 1 0

0 1 0

0 1 0

0 0 0
...

...
...

0 0 0

0 0 1

0 0 1

0 0 1

0 0 0



(3.14)

The size of the input matrix is B ∈ R(N,m) where N is the number of spatial discretization

steps and m is the number of inputs ui. Here, the heat sources act uniformly across a

range corresponding to three discretization steps ∆x.

Figure 3.4 shows the block diagram of the state space model developed in this section

with dynamics matrix A, input matrix B and output matrix C.

Figure 3.4 – Block diagram of the linear state-space model obtained by spatially discretizing the heat
equation with input u⃗.

The output matrix/vector C is used to calculate the output y as a linear combination

of states. C is defined according to the control objective. In this report we consider the

regulation of the average temperature in the rod. The average temperature is calculated

3 Development of a Heat Model 10



according to equation 3.15 and can directly be expressed in matrix-vector notation. In

this case C is a row vector.

y =
1

N
(T1 + T2 + · · ·+ TN) =

[
1
N

1
N

. . . 1
N

]

T1

T2

...

TN

 = CT⃗ (3.15)

3.3 Discretization in Time

To simulate the behavior of the system over time, standard methods from numerical

simulation of ODE systems are considered. While we are considering a linear system

of ODEs which can be solved by more efficient methods using matrix exponentials [22,

pp. 35–41], we choose to adopt a framework that enables the solution of arbitrary nonlinear

systems of ODEs to allow future extensions of the model that incorporate nonlinear effects.

The simplest possible method is the discretization of the continuous time dynamics of

equation 3.12 through Euler’s Method [23, Ch.2]. Euler’s method for integration of a

system of ODEs
˙⃗
T = f(T⃗ , u⃗) with state-vector T⃗ is shown in equation 3.16. In our case,

the function f is the right-hand side of equation 3.12.

T⃗k+1 = T⃗k +∆t · f(T⃗k, u⃗k) (3.16)

Forward Euler is a first order method i.e. the error scales linearly with the discretization

step size ∆t. To improve the accuracy of the discretization, higher order methods where

the error scales more favorably can be used. This requires a higher computational effort

but the resulting increase in accuracy of the numerical solution can be significant.

For the simulations in this report, we choose the standard fourth-order Runge-Kutta (RK4)

method to solve the linear state-space system [23, p. 74]. As shown in equation 3.17,

this method calculates intermediate steps within each time interval to estimate the value

of the state at the next timestep, significantly improving the accuracy of the solution

compared to first order methods like Forward Euler.

3 Development of a Heat Model 11



k1 = f(T⃗k, u⃗k)

k2 = f(T⃗k +
∆t

2
· k1, u⃗k)

k3 = f(T⃗k +
∆t

2
· k2, u⃗k)

k4 = f(T⃗k +∆t · k3, u⃗k)

T⃗k+1 = T⃗k +
∆t

6
(k1 + 2k2 + 2k3 + k4)

(3.17)

• k1 is the slope of the system of equations at the beginning of the interval, using T⃗k

(current temperature distribution at timestep k)

• k2 uses the midpoint of the interval between the current and next timestep, to make

a slope estimate by evaluating the ODE system at T⃗k +
∆t
2
· k1.

• k3 is similar but uses the slope k2 for the midpoint estimate

• k4 calculates the slope at the end of the interval, by evaluating the ODE system at

T⃗k +∆t · k3

The final value for the temperature distribution T⃗k+1 at the next timestep k+1 is obtained

by combining these four estimates to give a weighted average for the next step.

Alternative approaches to solve the system of ODEs include implicit methods like the

Backward Euler method [24] and adaptive step-size solvers. These methods will not be

considered further in this report since the RK4 method provides a sufficient accuracy and

computational efficiency.

To conclude, we summarize the physical parameters used to describe the system and the

hyperparameters required for discretization, simulation and control below:

• α: Thermal diffusivity of the rod material

• L: Total length of the rod

• T0(x): Initial temperature distribution of the rod

• N : Number of spatial discretization steps along the length of the rod

• ∆x: Spatial step size, determined based on L and N

3 Development of a Heat Model 12



• ∆t: Temporal step size for simulation and control

The implementation of the simulation in MATLAB using the model developed in this

chapter is discussed in Chapter 5.
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4 Control Algorithm Development

This chapter focuses on designing and implementing an LQR (Linear Quadratic Reg-

ulator) controller to optimize the rod heating system. LQR controllers are known for

their efficacy in stabilizing linear systems by minimizing a carefully crafted quadratic cost

function through a linear full-state feedback control law. The cost function quantifies sys-

tem performance, considering both, the state variables and control inputs. LQR control

strikes an optimal balance between stability and control effort, ensuring efficient system

operation. This trade-off can be adjusted by modifying the tuning parameters of the cost

function.

4.1 Controllability Analysis

The controllability of a system indicates the extent to which a control algorithm can

influence the system. It is therefore an important prerequisite for designing a controller.

The controllability depends on the way the inputs influence the states which is described

by B. To check whether a system is controllable, the controllability matrix is calculated

as shown in equation 4.1.

C =
[
B AB A2B . . . AN−1B

]
. (4.1)

According to [25], a system is fully controllable if the controllability matrix has full rank

rank (C) !
= N. (4.2)

As a result, the state can be driven to any desired value by providing suitable inputs. In

MATLAB, the controllability matrix can be checked with the command rank(ctrb(A,B)).

For the input model B and parameters that are chosen in this report, the controllability

condition is fulfilled. The system is therefore fully controllable.

4.2 Optimization Problem

Without loss of generality, the goal of the controller is to quickly drive the state to

zero with minimal control effort. The cost function of an LQR controller evaluates the

performance of the control loop under these considerations. It is based on the states
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and control variables of the system. Specifically, the quadratic cost function for a linear

time-invariant system in state space that defines an LQR controller is [22, p. 113]

J =

∫ ∞

0

(
T⃗⊤(t)QT⃗ (t) + u⃗⊤(t)Ru⃗(t)

)
dt. (4.3)

This cost function must now be minimized subject to the constraints imposing the dy-

namics and initial condition of the system

˙⃗
T (t) = AT⃗ (t) +Bu⃗(t) (4.4a)

T⃗ (0) = T⃗0. (4.4b)

The matrices Q and R determine how the LQR controller balances the individual costs

on the state and control input variables. Appropriate selection of these factors is crucial

to achieve the desired performance of the control loop. It often requires experimental

adjustments and testing to find optimal values that meet the specific requirements of the

system.

The Q matrix must be positive semidefinite (T⃗⊤QT⃗ ≥ 0 ∀T⃗ ) and influences the perfor-

mance by penalizing deviations of the state variables from the goal state. By choosing

high weights in Q, the state will rapidly converge but this happens at the expense of a

large control effort. An additional requirement is that the pair (A,Q) is observable. This

can be achieved by making Q a positive definite matrix.

The matrix R has to be positive definite (u⃗⊤Ru⃗ > 0 ∀u⃗ ̸= 0) such that the integrant is

always positive. R is the weighting matrix for the control effort. If large values for the

elements in R are chosen, the state only decays slowly to its final value but the control

effort is minimized.

The choice of weighting matrices depends on the specific requirements of the system. An

attempt is often made to find a compromise between tracking the reference signals and

minimizing the control effort.

The weight matrices Q and R are chosen as diagonal matrices in the following form

Q = q · INxN (4.5a)

R = Imxm. (4.5b)
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Since all state variables are equally important, the state weights are all set to q. Similarly,

the control effort is penalized equally for all inputs. The weights of R are set to 1 since

only the relative weights between Q and R are relevant. This reduces the manual tuning

effort to a single parameter.

With the state and input vectors as defined previously in equations 3.10 and 3.13, the

cost function can be rewritten explicitly as

J =

∫ ∞

0

[
T1(t) T2(t) . . . TN(t)

]

q 0 . . . 0

0 q . . . 0
...

...
. . .

...

0 0 . . . q



T1(t)

T2(t)
...

TN(t)



+
[
u1(t) u2(t) u3(t)

]1 0 0

0 1 0

0 0 1


u1(t)

u2(t)

u3(t)

 dt.

(4.6)

4.3 Solution to the Optimization Problem

The optimal feedback control law of the LQR controller has the following form

u⃗(t) = −KT⃗ (t). (4.7)

where the feedback gain matrix K is given by

K = R−1B⊤P. (4.8)

As described in [22, p. 113], P is the solution to the symmetric, positive definite algebraic

Matrix Riccati equation given by

A⊤P+PA−PBR−1B⊤P+Q = 0. (4.9)

Solving the Riccati equation for the matrix P allows to derive the gain matrixK that min-

imizes the associated cost function. Due to its complexity, the algebraic Riccati equation

can generally no longer be solved analytically. The calculation is done by a specialized

solver that is called by the lqr function in MATLAB.
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Once the gain matrix K is determined, the closed-loop equation can be defined as

˙⃗
T (t) = AT⃗ +Bu⃗ = AT⃗ +B

(
−KT⃗

)
= (A−BK) T⃗ . (4.10)

This equation describes the closed-loop dynamics of the control loop in which the feedback

control is applied to the state vector T⃗ using the gain matrixK. The closed-loop dynamics

matrix Acl = A−BK fully describes the behavior and stability of the system.

4.4 Feedforward Control

To enable tracking of reference signals, a feedforward matrix W is added to the input of

the system as shown in Figure 4.1. The feedforward filter matrix scales the reference input

to achieve the desired input-output behavior. It is determined empirically by applying a

constant step input to the system and observing the steady-state output value. The ratio

between these two values is used to calculate the elements of the (one-dimensional/vector)

feedforward matrix W such that the steady-state gain is 1. For the system parameters

assumed in this report, the following feedforward matrix values have been determined to

enable accurate tracking of the average temperature

W =
[
0.258 0.258 0.258

]
. (4.11)

As can be seen in Figure 4.1, the final control law therefore consists of the feedback and

feedforward terms as follows

u⃗(t) = −KT⃗ (t) +Wr⃗(t). (4.12)

Figure 4.1 – Block Diagram of the LQR control method with linear feedback gain matrix K and feedfor-
ward matrix W.
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Simulations and results obtained from this controller architecture with various tuning

parameters for q are presented in Chapter 6.

4.5 Stability Analysis

To show that the system is stable, we need to calculate the eigenvalues of the closed-loop

matrix Acl which is defined as

Acl = A−BK. (4.13)

This matrix describes the dynamics of the controlled system. For higher order systems,

the calculation of the eigenvalues becomes complex, so the calculation is done numerically

in MATLAB. The diagrams show that all eigenvalues are on the left-hand side of the

imaginary axis in the complex plane, which means that all eigenvalues have a negative

real part. This indicates that the system is stable [26]. The position of the eigenvalues

provides information about the reaction speed of the system. Eigenvalues that are further

away from the origin make the system react faster. Figure 4.2 shows that the pole furthest

from the origin is at λ = −0.16, which indicates that it reacts the fastest.

Figure 4.2 – Eigenvalues of the closed-loop matrix Acl

The slowest pole is at λ = −0.01. Eigenvalues with an imaginary part indicate oscillatory

behavior. In this specific case, no oscillation can be observed as all eigenvalues have a

purely real part. Therefore, the closed-loop system behavior is well-damped.
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5 Implementation

5.1 Simulation of the Control Algorithm

The simulation of heat evolution in the rod is implemented in MATLAB, allowing for

intricate data handling, complex calculations, and detailed visualization.

To summarize the theoretical considerations from Chapter 3, the different parts of the

simulation are outlined in the following sections.

State-Space Representation

The spatially discretized dynamics of heat transfer are described using the state-space

representation first introduced in equation 3.12

˙⃗
T = AT⃗ +Bu⃗. (5.1)

The state equations relate the rate of change of temperatures (state variables) to the

current temperatures and external heat source inputs.

Here, T⃗ is the temperature vector, A is a matrix capturing the thermal interactions be-

tween different segments, B is a matrix mapping the heat sources’ effects into temperature

changes, and u⃗ is the control input vector representing the heat sources.

Program code 5.1 shows the calculation of the the right-hand side of the differential

equation in MATLAB. The function takes in the current state, control inputs, and the

system matrices A and B to return the rate of change of temperature. This function is

called multiple times per timestep by the RK4 algorithm to calculate the various slopes

as previously explained in section 3.3.

1 %% State Space Equation for the Dynamics

2 function dT = heat_equation(T, u, A, B)

3 dT = A * T + B * u;

4 end

Program Code 5.1 – Implementation of the B Matrix
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Matrix A - System Matrix

The MatrixA is central to the state-space representation, encapsulating the spatial aspect

of the heat equation. It is formed considering the second spatial derivative requirement

of the heat equation, accounting for the conduction between neighboring segments, and

influenced by the thermal diffusivity α. Program Code 5.2 shows the implementation of

the matrix A in MATLAB. The function requires the user to specify the number of states

and the size of the spatial discretization step ∆x.

1 function A = compute_A_matrix(N, alpha , dx)

2 A = full(gallery('tridiag ',N,1,-2,1));
3

4 A(1,2) = 2;

5 A(N,N-1) = 2;

6

7 A = A .* alpha/dxˆ2;

8 end

Program Code 5.2 – Implementation of the A Matrix

Matrix B - Input Matrix

The Matrix B specifies how the control inputs (heat sources) affect the temperature in

the system. It defines how the individual spatially discretized segments of the rod are

influenced by each heat source. As an example, program code 5.3 shows the calculation

of the input matrix for the case with uniform heat inputs of Figure 3.2.

Simulation Loop

The simulation loop is outlined in Algorithm 1. The simulation is initialized by specifying

the initial temperature distribution and the reference trajectory that is used as the input

to the system. In each loop iteration, the next controller value is calculated based on the

current state and reference input. With this information, the temperature distribution at

the next timestep is calculated using the RK4 algorithm. With the new state, the output

y is calculated which is then used to evaluate the tracking error e. The tracking error e

can then be used to evaluate the performance of the controller.
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1 function [B] = compute_B_matrix(N)

2 N5 = N/5;

3 N10 = N/10;

4

5 n_raw = zeros (6,1);
6 n_raw (1) = N10+1;

7 n_raw (2) = n_raw (1)+N5 -1;

8 n_raw (3) = n_raw (2)+N10+1;

9 n_raw (4) = n_raw (3)+N5 -1;

10 n_raw (5) = n_raw (4)+N10+1;

11 n_raw (6) = n_raw (5)+N5 -1;

12

13 n = zeros (6,1);
14 n(1:2:5) = ceil(n_raw (1:2:5));
15 n(2:2:6) = floor(n_raw (2:2:6));
16

17 B = zeros(N,3);
18 B(n(1):n(2) ,1) = 1;

19 B(n(3):n(4) ,2) = 1;

20 B(n(5):n(6) ,3) = 1;

21 end

Program Code 5.3 – Implementation of the B Matrix

Results and Visualizations

The study employs several visual aids to elucidate the temperature dynamics within

the rod. Examples of these are shown when discussing the results of the simulation in

Chapter 6.

5.2 Low-Level Implementation of the Control Algorithm

One of the main considerations in developing a control algorihm for embedded systems is

the computational cost of the algorithm. High-level programming languages like MAT-

LAB and Python are often not suitable in these systems. This is explained in part by

the dynamically typed nature of these languages which leads to a lower computational

efficiency with regard to the speed and memory usage.

In real-time systems, runtime guarantees and a safe memory usage are among the main

priorities. Reliability is also a key factor in these systems because typically there is

no way to update the software once the system is deployed. For these reasons, low-

level programming languages like C or C++ are used for the implementation of control
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Algorithm 1 Simulation Loop

1: Initialize buffers for the state vector T⃗ , control inputs u⃗, output y and tracking error
e

2: Initialize the state vector T⃗ with the initial conditions
3: Calculate the initial output y
4: for each timestep k do
5: Update the reference input r
6: Calculate the control input u⃗
7: Calculate the state vector T⃗ at time k + 1 using RK4 integration
8: Calculate the new output y
9: Evaluate the tracking error e

10: end for

algorithms running in embedded systems. These languages are statically typed. This

allows for stricter control of the memory usage and a higher computational efficiency.

Nevertheless, low-level programming languages are often not suitable for prototyping of

control algorithms because of a longer development time. Development of low-level code

comes with a higher complexity caused by the need to consider implementation details

that are of secondary importance in the functional design of the algorithm itself.

One typical approach used in the development of control algorithms is to write high-level

code (e.g. MATLAB/Simulink) for prototyping and once the algorithm is validated, to

rewrite the algorithm in a low-level language.

An alternative approach that is gaining increased importance is the use of automatic code

generation that automatically compiles the high-level code to a low-level language. Due

to the simple computational nature of the control algorithm developed in the previous

section, automatic code generation will not be further considered here.

Instead, the control algorithm is manually rewritten as C-Code, using the MATLAB C-

Code API [27]. The C-Code is then compiled as a MATLAB Executable (MEX) [28]. This

allows the C-Code to be called from within the MATLAB environment. Therefore, the

previous simulation code can be reused with the same C-Code that could then theoretically

be deployed to actual hardware.

This constitutes a simplified form of a Software-in-the-Loop (SIL) simulation. SIL refers

to methods that test software in a simulated environment (strictly speaking, the software-

under-test should be run in a separate process) [29]. In this report, the actual physical

environment i.e. the rod is simulated to test the performance of the control software in the

simulation. This approach of combining low-level MEX files with high-level code is also

5 Implementation 22



useful to accelerate simulations by replacing parts of the code that are computationally

expensive with a MEX file.

While the design of the linear feedback controller described in Chapter 4 requires careful

consideration of the control task at hand, the actual computation of the control law is

straightforward. The control law is restated in equation 5.2

u = −K · x+W · r. (5.2)

In the next part, the dimensions are defined as follows: u ∈ Rm is the control input,

x ∈ Rn is the state vector, K ∈ Rm×n is the feedback gain matrix, W ∈ Rm×1 is the

feedforward gain or static filter matrix and r ∈ R is the reference input. Therefore, the

task of the control algorithm is to compute two matrix multiplications and one vector

addition. The code that implements this control algorithm is shown in program code 5.4.

1 // Functionality - Linear Regulator to compute u = W * r - K * x

2 void linear_regulator_filter(double *x, double *K, double *r, double *

W, double *u, mwSize N, mwSize P, mwSize M) {

3 // Initialize u to zero

4 for(mwSize i = 0; i < M; i++) {

5 u[i] = 0;

6 }

7

8 //Matrix -Vector multiplication u = -K*x

9 //K is stored sequentially with the columns concatenated

10 //Row index i, Column index j

11 for(mwSize i = 0; i < M; i++) {

12 for(mwSize j = 0; j < N; j++) {

13 u[i] -= K[i+j*M] * x[j];

14 }

15 }

16

17 //Matrix -Vector multiplication u += W*r

18 // Column index i, row index j

19 for(mwSize i = 0; i < M; i++) {

20 for(mwSize j = 0; j < P; j++) {

21 u[i] += W[i+j*M] * r[j];

22 }

23 }

24 }

Program Code 5.4 – C-Code implementation of the control algorithm for the linear regulator.

First, the control input vector u is initialized to zero. Then, the two matrix multiplications
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Figure 5.1 – Illustration of the column-major array layout.

are computed. The matrix multiplications are implemented as nested for-loops. The two

dimensional matrices K and W are stored as one dimensional arrays in Column-Major

Array Layout [30]. This means that all elements of the matrix are stored sequentially in

memory/in an array with the columns concatenated, i.e. starting with the elements of the

first column, then the second column and so on. Using i as the row and j as the column

index for the matrix elements, the index of the element (i, j) in a matrix is computed as

i + j ·M with M as the number of rows in the matrix. This is illustrated in Figure 5.1.

On the left, the elements of a matrix are shown in their two-dimensional layout. On the

right, the corresponding representation in memory with the elements stored sequentially

is shown.

In addition to the function of code 5.4, an interface function to map between the MATLAB

and C-Code is required. A snippet of this function is presented in code 5.5.

The function input and output arguments are passed to the C-Code via pointers to arrays.

Error checks are performed to ensure the correct usage of the function. New pointers

are declared and bound to the input and output arguments before being passed to the

control algorithm in program code 5.4. Considering that the direct implementation of

the linear regulator code in MATLAB is a single line of code, the overhead is clearly

evident. Hence, a careful consideration between the need for computational efficiency

and the effort required to implement functionality in low-level code is required. Once the

C-Code is fully written, it is compiled to a MATLAB executable file which allows the

function to be called as if it was a native MATLAB function. Unit tests are written in

MATLAB to ensure the correct functionality of the C-Code before integrating it with the

simulation code.

To confirm the runtime improvement of the C-Code, profiling of the code is conducted

for a typical simulation with a timestep of 50 ms for a total time of 300 s. With these

parameters, there are a total of 6000 calls to the control algorithm.
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1 // Gateway to MATLAB

2 void mexFunction(int nlhs , mxArray *plhs[], int nrhs , const mxArray *

prhs []) {

3 //nlhs: Number of output arguments --> size of plhs array

4 //nrhs: Number of input arguments --> size of prhs array

5 //plhs , prhs: Arrays containing output and input arguments

6

7 // Checking of the input arguments omitted for brevity

8 ...

9

10 // Declaration of variables for computational routine with

functionality

11 mwSize N; //size of state vector x

12 mwSize P; //size of reference vector P

13 mwSize M; //size of control vector u

14 double *x; //Nx1 state vector x

15 double *K; //MxN gain matrix K

16 double *r; //Px1 state vector x

17 double *W; //MxP filter matrix W

18 double *u; //Mx1 control vector u

19

20 u = -K*x + W*r; // Compute control input u

21

22 //Read input data

23 x = mxGetPr(prhs [0]); //Get state vector x input argument

24 K = mxGetPr(prhs [1]); //Get gain matrix K input argument

25 r = mxGetPr(prhs [2]); //Get reference vecotr r input argument

26 W = mxGetPr(prhs [3]); //Get filter matrix W input argument

27

28 N = mxGetM(prhs [0]); //Get number of rows of state vector

29 P = mxGetM(prhs [2]); //Get number of rows of reference vector

30 M = mxGetM(prhs [1]); //Get number of rows of gain matrix

31

32 // Prepare a real -valued Mx1 matrix as the output

33 plhs [0] = mxCreateDoubleMatrix(M,1,mxREAL);

34 u = mxGetPr(plhs [0]); //Get a pointer to the output matrix

35

36 //Call the actual function

37 linear_regulator_filter(x, K, r, W, u, N, P, M);

38 }

Program Code 5.5 – Implementation of the interface code between MATLAB and C.
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The following time measurements are obtained:

• MATLAB: 0.024 s

• C-Code: 0.017 s

While the absolute time difference is small, the relative difference is clearly evident. The

difference in runtime corresponds to an improvement of 29%. For the simple control

algorithm considered here, this is insignificant but for more complex methods and simula-

tions with a longer time horizon, the C-Code implementation leads to significant runtime

improvements.

Simulation results with the C-Code implementation instead of the MATLAB prototyping

code are omitted since both implementations are mathematically identical.

To summarize, the use of low-level C-Code compiled as a MATLAB exectuable enables

testing of hardware-ready code in a simulation environment. This allows for early perfor-

mance analysis and testing of the control algorithm. Additionally, complex simulations

can be accelerated by integrating computationally expensive parts of the code as MEX

files.
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6 Results

6.1 Open-Loop Behavior of the Heat in the Rod

To validate the model, open loop simulations without a control input are performed.

The following simulations consider a rod of length 100 cm discretized into 20 sections of

5 cm each resulting in a 21-dimensional state vector.

Without an external input u⃗, the initial heat along the rod is expected to diffuse until an

equilibrium is reached and the temperature at each position is the same.

To show this, the temperature is initialized such that it linearly increases from 0 at

x = 0 cm to 100°C at x = 100 cm.

The temperature distribution is simulated for 3000 s (50 minutes) with a time step of

50 ms for a rod with thermal diffusivity of α = 5 cm2

s
. Figures 6.1 and 6.2 shows that the

temperature profile matches the expected behavior and the diffusion can be observed.

Figure 6.1 – Simulation of the heat diffusion along the rod until an equilibrium is reached.

This shows that the behavior of the rod is inherently stable as proven in Chapter 4.5.

To show the effect of the thermal diffusivity α, the simulation is repeated with α = 1 cm2

s
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Figure 6.2 – Contour plot of the heat diffusion along the rod.

and α = 10 cm2

s
.

The evolution of the temperatures for the different diffusivities is shown in Figure 6.3. As

expected, the diffusion is faster when α is higher. This is also evident in the eigenvalues

of the spatially discretized system matrix A. Table shows the maximum eigenvalue for

the three values of α used in Figure 6.3. With increasing α, the maximum eigenvalue

becomes more negative and the system dynamics become faster.

α max(λ(A))

1 cm2

s
-0.136

5 cm2

s
-0.683

10 cm2

s
-1.366

Table 6.1 – Maximum eigenvalue of the spatially discretized system matrix A for different thermal diffu-
sivities α.

Depending on the material properties, the heat diffusion might be too fast or too slow

for a given application. Since changing the material properties or the material itself is

often not an option, active control methods are required to achieve the desired dynamic

behavior.
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(a) Heat along the rod with a thermal diffusivity of α = 1 cm2

s
.

(b) Heat along the rod with a thermal diffusivity of α = 5 cm2

s
.

(c) Heat along the rod with a thermal diffusivity of α = 10 cm2

s
.

Figure 6.3 – Heat diffusion along the rod for different thermal diffusivities.
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6.2 Closed-Loop Behavior of the Heat in the Rod

LQR control utilizes the control inputs to achieve the dynamic behavior that optimizes

the quadratic cost introduced in Chapter 4.2. Under the (unrealistic) assumption that

arbitrarily strong control inputs are permissible (no actuator constraints in the optimiza-

tion problem), there are no constraints and the system dynamics can be sped up to any

desired specification.

When applying the linear feedback gain matrix obtained from the LQR controller by

applying full-state feedback, the eigenvalues of the system are shifted to new locations.

For the following investigation, a thermal diffusivity of α = 1 cm2

s
is used.

The cost matrices Q and R are chosen to be a diagonal matrices. More precisely, all states

are weighted the same and all inputs are weighted the same to simplify the analysis.

Figure 6.4 shows the effect of the linear regulator in driving the temperature across the

rod to 50°C which is equivalent to the natural equilibrium. The matrix R is an identity

matrix in all cases. The first subplot shows the open-loop behavior as before. Q is chosen

to be 10−5I in Figure 6.4b and 10−3I in Figure 6.4c.

The LQR controller speeds up the dynamics according to the relative cost on the states

specified by Q and on the inputs specified by R. If the values in Q are higher, the

cost on the state error is higher and therefore larger control inputs are used to drive the

state faster to the goal (in this case 50°C). This can be seen in the faster convergence of

Figure 6.4c compared to Figure 6.4b where the cost on the state error is lower by a factor

of 100. The resulting trajectories with an LQR controller are similar to the trajectories

on a rod with a higher diffusivity. Additionally, the LQR controller introduces feedback

and is able to correct for disturbances. Figure 6.5 illustrates the downside of increasing

the cost on the state error. The faster dynamics are achieved by larger input signals and

therefore require stronger heat sources. In this report we assume that the heat sources

are also able to cool the rod which explains the negative values of one of heat input u3.

If actuator constraints have to be considered in the LQR optimization problems, differ-

ent techniques that can directly reason about complex constraints like Model Predictive

Control (MPC) should be considered.
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(a) Open-loop behavior without linear feedback.

(b) Behavior with linear LQR feedback with Q = 10−5I

(c) Behavior with linear LQR feedback with Q = 10−3I.

Figure 6.4 – Dynamics of the heat distribution with linear feedback and different LQR cost function
parametrizations.
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(a) Heat inputs for linear LQR feedback with Q = 10−5I.

(b) Heat inputs for linear LQR feedback with Q = 10−3I

Figure 6.5 – Heat source inputs with linear feedback and different LQR cost function parametrizations.
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6.3 Feedforward Control of the Average Temperature

The stabilization, regulation and adjustment of the process dynamics is achieved through

LQR control as shown in the last section. This allows direct output control through a

simple feedforward structure as was illustrated in Figure 4.1.

Figure 6.6a shows the step response of the average temperature with the initial temper-

ature at a constant 0°C along the rod. The step response has aperiodic behavior, it is

strongly damped without any overshoot.

Figures 6.6b shows the temperature trajectories at different positions during the step.

This illustrates an overshoot in temperature at the positions where the heat sources act.

Once the average temperature converges, the individual temperatures also converge to

constant values. This becomes easy to see when looking at the heat inputs in Figure 6.6c.

During the initial rise, the control inputs are active and provide heat energy to the system.

Once the correct amount of heat energy corresponding to the average temperature of 50°C
is in the system, the heat sources converge to constant values, the average temperature is

correct and the system reaches an equilibrium.

Step responses are important to characterize the system behavior. In practice however,

it is clear that step changes in temperature are not achievable. Therefore, the behavior

with more practical reference inputs is considered next. To show this behavior, a ramp

change in average temperature to the same final value of 50°C is applied.

The average temperature tracks the ramp change closely but exhibits a mostly constant

tracking error. The state trajectories again converge to constant temperatures but not to

the average temperature.

Finally, the frequency domain characteristics are investigated qualitatively by exciting the

system with a sinusoidal input as illustrated in Figure 6.8. The temperature in the rod is

initialized at a constant 50°C and the reference input varies sinusoidally by 20°C around

this constant bias with a period of 500s.

The closed-loop behavior exhibits low-pass behavior as is evident in the reduced mag-

nitude in the output and the phase-lag between reference input and the actual average

temperature in Figure 6.8a.

To quantify the bandwidth of the controller, simulations are performed with a sinusoidal

input signal with varying frequencies. The magnitude and phase is calculated for each

frequency and the result is depicted in the bode plot of Figure 6.9.
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(a) Step response of the average temperature.

(b) State trajectories during the step change in average temperature.

(c) Tracking error and heat inputs during the step change in average temperature.

Figure 6.6 – Step response of the average temperature to 50°C starting at 0°C.
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(a) Tracking behavior of the average temperature with a ramp input.

(b) State trajectories during the ramp change in average temperature.

(c) Tracking error and heat inputs during the ramp change in average temperature.

Figure 6.7 – Tracking behavior of the average temperature for a ramp change from 0°C to 50°C.
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(a) Tracking behavior of the average temperature with a sinusoidal reference input.

(b) State trajectories during the sinusoidal excitation in average temperature.

(c) Tracking error and heat inputs during the sinusoidal excitation in average temperature.

Figure 6.8 – Tracking behavior of the average temperature for a sinusoidal reference signal with 20°C
amplitude and a frequency of 500 s.
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Figure 6.9 – Frequency characteristics of the closed-loop system.
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This shows, that the controller bandwidth, defined by the 3 dB cut-off frequency of the

closed-loop transfer function, is at 2.5 mHz which is equivalent to 400 s. The system

has first order behavior as is evident in the 45° phase lag at the cut-off frequency and

approaches 90° for large frequencies.

6.4 Discussion

The previously shown results confirm the fundamental assumptions about the system

made in the development of the controller in Chapter 4. Nevertheless, there are multiple

aspects of the control architecture that are suboptimal and can be improved in future

work.

Tracking might be improved by using more advanced control structures like the state-space

integral feedback controller discussed in [22, p. 152]. This is also a promising approach to

reject disturbances which have not yet been considered. The main idea is to add output

feedback instead of pure feedforward control for reference tracking.

An alternative approach is the use of a model-reference design like the servo-compensator

introduced [22, p. 159]. This also works by including output feedback in the control

structure. Additionally, a reference model that generates dynamically feasible trajectories

for the system is designed.

In this report, we have assumed perfect knowledge of the system dynamics and noiseless

measurements of the complete state. This is unrealistic in practice where sensors are

expensive and most likely only available at a few positions along the rod. This motivates

further investigations into the observability of the system and the possible use of an

observer to obtain information about the full state.

We have assumed, that the heat inputs are able to perform heating and cooling. In

many applications, this is not the case. The standard LQR control problem does not

take these actuator constraints into account. A promising approach to explicitly model

the constraints, is the use of MPC. In an MPC framework, a similar control objective

to the LQR cost function can used. The formulation of the optimization problem can

then be augmented with the constraints of the heat sources. Since the time-dynamics

of the system considered here are slow compared to the time scales at which a modern

microprocessor operates, complex optimization problems can likely be solved fast enough

for real-time control.
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7 Conclusion

Based on our study on in-domain control of average temperature in one-dimensional

insulated rods, our results demonstrate a promising development in the field of control

strategies. Using the heat equation and spatial discretization, a controller that combines

feedback and feedforward control has been developed. The LQR feedback controller allows

modification of the system dynamics while the feedforward controller leads to accurate

tracking control, especially when handling constant inputs. During transient reference

signal changes, a substantial tracking error demonstrates a potential area for further

improvement.

Identification of first-order low-pass behavior of the closed-loop system provides crucial

insight into the system’s dynamics for controlling it more effectively. This might also

serve as a starting point for the development of a system identification method to de-

termine the parameters of a real-world implementation of the system. In the future, we

should capitalize on the insights about the system dynamics obtained in this report while

simultaneously addressing tracking errors. With this dual approach, the average tempera-

ture of one-dimensional insulated rods will be regulated more accurately and responsively,

pushing the limits of accuracy and responsiveness.

By implementing the control algorithm in C-Code, we introduce a Software-in-the-Loop

simulation method to accelerate the speed of development and verification. The C-Code

implementation leads to an increase in computational efficiency. Compiling the C-Code

as a MATLAB executable file allows easy integration of the embedded control software

into the simulation environment. This approach will especially benefit the development

of more complex models and control strategies for which this report serves as a starting

point.
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