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Abstract

In the production and further processing of modern materials and com-
ponents, such as metal alloys or semiconductor products, thermal energy
is applied to the raw material in order to achieve a temperature increase
and thus cause a transformation to the end product. This is achieved by
means of actuators, such as laser beams or heating elements, which sup-
ply a heat flow on the surface of the treated object.

In this dissertation, we create a mathematical model of such thermal
processes for rectangular and cuboidal objects. We consider materials
with temperature-dependent parameters and anisotropic thermal conduc-
tivity. In addition, we treat cooling effects that take place as heat trans-
fer and thermal radiation at the surface. Thus, we obtain a quasilinear
heat equation with nonlinear boundary conditions. We approximate this
model with the finite volume method in space and we obtain a large sys-
tem of nonlinear differential equations. We then discuss the special case
with constant material parameters, where we obtain a linear state space
model, and we present numerical methods for the temporal integration of
the differential equations.

Based on the thermal model, we design a concept for heat supply by
means of multiple actuators distributed over the surface. We distinguish
between two phases in the heat supply. In the first phase, the measured
temperatures should follow a predefined reference. To this end, we de-
velop a model-based control system using the theory of differential flat-
ness and numerical optimization. In the second phase, heat is to be con-
tinuously tracked by means of a control system in order to compensate
for thermal losses and to keep the measured values at the reference value.
Here we take up known approaches from linear-quadratic and model pre-
dictive control and we adapt them for our thermal model. Finally, we
demonstrate the methods presented in two comprehensive examples.

As part of this work, the author developed the two software packages
“Hestia.jl” and “BellBruno.jl” in the Julia programming language and made
them freely available. We use “Hestia.jl” to create thermal models in code
as differential equations and “BellBruno.jl” to calculate the derivatives of
the reference signal for the flatness-based control.
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Kurzbeschreibung

Bei der Produktion und weiteren Verarbeitung moderner Werkstoffe und
Komponenten, wie Metalllegierungen oder Halbleiterprodukten, wird dem
Ausgangsmaterial thermische Energie von aullen gezielt zugefiihrt um ei-
ne Temperaturerh6hung zu erreichen und somit eine Transformation hin
zum Endprodukt hervorzurufen. Dies geschieht mittels Aktuatoren, wie
zum Beispiel Laserstrahlen oder Heizelementen, die einen Warmefluss an
der Oberfldche des behandelten Objektes einbringen.

In dieser Dissertation erstellen wir ein mathematisches Modell solcher
thermischen Prozesse fiir rechteckige und quaderférmige Objekte. Dabei
betrachten wir Materialien mit temperaturabhédngigen Parametern und
anisotroper Warmeleitung. Auflerdem behandeln wir Kiihlungseffekte, die
als Warmetibergang und Warmestrahlung an der Oberfldche stattfinden.
Somit erhalten wir eine quasilineare Warmeleitungsgleichung mit nicht-
linearen Randbedingungen. Wir approximieren dieses Modell mit dem
Verfahren der finiten Volumen im Raum und erhalten ein grof3es System
nichtlinearer Differentialgleichungen. Anschlielend besprechen wir den
Spezialfall bei konstanten Materialparametern, bei dem wir ein lineares
Zustandsraummodell erhalten, und wir stellen numerische Verfahren zur
zeitlichen Integration der Differentialgleichungen vor.

Aufbauend auf dem thermischen Modell entwerfen wir ein Konzept zur
Wirmezufuhr mittels einem oder mehreren Aktuatoren, die verteilt auf
der Oberfliche wirken. Bei der Warmezufuhr unterscheiden wir zeitlich
zwei Phasen. In der ersten Phase sollen die gemessenen Temperaturen
einer vordefinierten Referenz folgen. Dafiir entwickeln wir, mit Hilfe der
Theorie der differentiellen Flachheit und der numerischen Optimierung,
eine modellbasierte Steuerung. In der zweiten Phase soll mittels einer
Regelung stetig Warme nachgefiihrt werden, um thermische Verluste zu
kompensieren und um die Messwerte an dem Referenzwert zu halten. Hier
greifen wir bekannte Ansétze aus der linear-quadratischen und modell-
pradiktiven Regelung auf und passen diese fiir unser thermisches Modell
an. Abschlieend demonstrieren wir die vorgestellten Verfahren an Hand
von zwei umfassenden Beispielen.

Im Rahmen dieser Arbeit wurden die beiden Softwarepakete , Hestia.jl*
und , BellBruno.jl“ in der Programmiersprache Julia entwickelt und frei zur
Verfiigung gestellt. Wir nutzen , Hestia.jl“ um thermische Modelle als Dif-
ferentialgleichung zu erstellen und mit ,BellBruno.jl“ berechnen wir die
Ableitungen des Referenzsignals fiir die flachheitsbasierte Steuerung.
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Introduction

“Marzenia zawsze zwyciezq rzeczywistosé, gdy im na to pozwolic.”

“A dream will always triumph over reality, once it is given a chance.”
— Stanistaw Lem

Heat conduction is an essential physical process, which describes the
transfer of thermal energy in a medium like gas, liquid or solid. The re-
markable feature of this process is that the material does not move itself
on a macroscopic level, as in case of advection or convection. Energy is
only transferred via microscopic activity, e.g. oscillation, and interaction
of atoms and molecules. The state of this particle activity is quantified by
the temperature: a low value means less and a high value means inten-
sive activity. The temperature is denoted in the units Kelvin, Celsius and
Fahrenheit (United States of America), where Kelvin and degree Celsius
are SI units, see [1, page 133]. One may say that zero Kelvin corresponds to
a physical state at which no particle activity is present. At approximately
273.16 Kelvin (or zero degree Celsius), we have the triple point of water,
which is also known as ice point. At this point, all three phases of water
(gas, liquid and solid or ice) are in a thermodynamical equilibrium state at
atmospheric pressure of approx. 101.325 Pascal, see triple point in [2]. In
several of our examples, we assume an ambient temperate of 300 Kelvin or
approx. 27° Celsius, which is in a suitable range of the room temperature
in Germany.

In this thesis, we consider heat conduction in a solid with a cubic ge-
ometry, e.g. a one-dimensional rod, a two-dim. rectangle or a three-dim.
cuboid. The one- and two-dim. geometries do not exist in reality but they
approximate physical phenomena and they simplify their analysis, simu-
lation and control. We do not specify the solid material, but we assume
in our examples metals like aluminum or iron and mixtures of metals or
alloys like steel. Heat conduction is described mathematically by the vari-
ation of temperature in time and space in form of the heat equation. The
standard heat equation is a linear partial differential equation (PDE)! with
one first order derivative in time and second order derivatives in space.
Due to its simplicity, it is an elementary example for the analysis and nu-
merical simulation of PDE, see [3, p. 44] and [4, p. 75]. The PDE only
describes the spatio-temporal dynamical behavior inside an object. Addi-
tionally, we need to specify the data along all boundary sides for a com-
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Figure 1.1: Mlcroscoplc model of oscillat-
ing solid particles in a crystalline grid. The
stronger the oscillations the higher is the
thermal energy. Thermal energy is trans-
ferred via collisions of multiple particles.

!We denote the singular and plural form
(equation/equations) as PDE.



plete problem formulation. In the analysis of PDE, we distinguish Dirich-
let and Neumann-type boundary conditions?, where the first one fixes the
data and the latter one defines a spatial gradient. In case of the heat con-
duction, the Dirichlet boundary data is a constant or time-varying tem-
perature value and the Neumann boundary condition represents a heat
flux, which goes inwards or outwards the object. Dirichlet boundary con-
ditions are easier to understand and implement because they affect the
thermal dynamics explicitly. For example: if both sides of a one-dim. rod
have a fixed temperature, e.g. low value on the left side and a high value
on the right side, then we know that the temperatures inside the rod con-
verge to values between the low and high value on both boundaries, see
Fig. 1.2. Dirichlet boundary conditions do not suit for our purposes in this
thesis because we are interested in thermal interaction of the object with
its surrounding. This interaction is realized via Neumann boundary con-
ditions in form of a heat flux and this exchange of thermal energy along
the boundary sides results in a cooling-down or heating-up procedure.

In the first part of this thesis, we create a numerical model to simulate
heat conduction including thermal emissions, which cause a cooling. In
the second part, we design a control system to heat up the object such
that its surface reaches a desired temperature. On one hand, we supply
thermal energy via actuators, like heating elements, to increase the ob-
ject’s temperature and on the other hand we have convective and radiative
emissions towards the surrounding, which disturb our control aims. This
general concept is embedded in a framework that enables several design
options for the geometry and material of the object, the interaction with
the surrounding, and the setup of actuators and sensors.

As heat conduction is a very wide field of research with many applica-
tions, we present two examples in the subsequent sections: laser welding
and semiconductor fabrication. We select these applications because the
physical modeling and the considered control approaches may (partially)
fit to our proposed heat conduction framework. So, we describe the con-
nections and the differences between these examples and our framework.

1.1 Laser Welding

Laser welding is a central processing step in the production of modern
materials and components because it enables us to create objects with
complex shapes. The technical procedure of welding is the melting and
subsequent solidification of material at the interface of adjacent objects.
In other words, the treated material changes its phase from solid to liquid
and the resulting weld pool connects the interface of both objects. This
procedure is well analyzed in research in order to understand the thermal
dynamics and to avoid material fatigue along the weld seam, see [5-7].

In the subsequent paragraph, we briefly describe the thermal behavior
in a single-spot pulsed laser welding process according to the article [8]
and doctoral thesis [9]. The laser supplies a constant amount of power on
a single spot in a short time interval, e.g. 1 to 50 milliseconds [9, page 33].
The temperature at this spot increases and the material changes its phase
at the solidus temperature to a mixture of partially solid and liquid. While

2In the literature one may also find Robin
boundary conditions, which combine the
Dirichlet and Neumann type.
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Figure 1.2: Example temperature distribu-
tion in one-dim. rod with Dirichlet bound-
ary conditions. The temperature on the
left boundary is fixed at a low temperature
and the right boundary has a high value.



the laser treatment continues, the phase at the welding spot changes com-
pletely to liquid and the resulting weld pool is growing. When the desired
weld pool size is reached (after 1 to 50 ms), the laser intensity is decreased
until it is shut down. Thermal conduction and loss via heat transfer and ra-
diation to the environment force the weld pool to cool down and its phase
transits back from liquid to solid. We depict the temperature distribution
of a laser welding example in Fig. 1.3 (a).

In this laser welding procedure, we find a few physical processes, which
we model and simulate in this thesis, too. As the laser supplies a high
amount of power to change the solid state into a weld pool, the treated
material reaches very high temperature values, e.g. 1000 Kelvin in case
of a specific class of aluminum alloys, see [8]. We even find higher tem-
peratures for other materials, e.g. in [5]. These high temperatures lead to
intensive thermal emissions via convective and radiative energy transfer.
In Section 2.5, we model these emissions and we find the heat radiation
as a nonlinear boundary condition. When the solid material turns into
a (partially) liquid medium, then a circular convective heat transfer oc-
curs inside the liquid weld pool as depicted in Fig. 1.3 (b), see [9, p. 78].
It moves material from the weld pool center towards its boundary in ra-
dial direction, then to the bottom and back. A convection can be mod-
eled as transport equation, see [4, p. 6, 7], but the authors of [8, 9] avoid
such a temperature-depending switching of the system model from a pure
heat equation to a heat and transport equation.® Instead, they consider
an anisotropic thermal conductivity, which means that heat transfer op-
erates better towards the radial than axial direction. Furthermore, the
phase transition is modeled with material properties, which are designed
as functions of the temperature. So, we find in article [8, Fig. 2] a signif-
icant difference in the thermal conductivity between the solid and liquid
phase. This fact is also noted in [9, p. 76 in Fig. 5.16, p. 78 in Fig. 5.19].

In Section 2.2, we propose an anisotropic thermal conductivity and tem-
perature-dependent material properties, but we do not explicitly consider
a phase transition.

Regarding the control of laser welding, we have one laser in article [8]
and we can only evaluate the results after its operation. We do not mea-
sure the temperature or the weld pool size during the laser treatment and
so we cannot apply a feedback controller. Instead, we need to design a
feed-forward control approach, which computes the proper input signal
based on the full knowledge of the thermodynamical model. In article [8],
the authors compute a feed-forward control algorithm with optimization
techniques. They formulate and implement an optimal control problem
for a shut-down operation of the laser and solve it numerically. Numerical
optimization approaches offer a wide range of options, e.g. various norms
and hyperparameters, to design the control problem. Thus, we need to
evaluate the found input signal and the resulting simulation data to guar-
antee a proper operation. We can only apply the computed input signal on
the real system, here a laser, if the treated system really behaves as desired.
Otherwise, we need to recalibrate the optimization options and restart the
optimization routine as depicted in Fig. 1.4. Moreover, numerical optimal
control is a computationally costly approach, in particular for systems de-
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Figure 1.3: Visualization of a laser welding
example. The temperature distribution in
(a) shows a temperature gradient from the
hot weld spot towards the cold regions in
radial and axial direction. The blue arrows
in (b) symbolize a circular convective heat
transfer inside the weld pool according to
[9, page 78].

3 As the heat equation is also known as dif-
fusion equation, a model with heat and
transport is called diffusion-convection
equation.
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scribed by PDE because it solves an optimization problem iteratively for
each time step of the sampled temporal dynamics. In case of the heat
equation, we approximate the object in space and sample the time to yield
a temperature value for each spatial grid node and time step. Depending
on the problem complexity and hardware equipment this cooperation of
numerical simulation and optimization of the thermal dynamics may be
computationally costly and take a long time.

In Chapter 7, we derive the input signal in two steps to avoid such high
computational costs. In a first step, we derive an analytical feed-forward
control approach for a simplified heat conduction model, which is close
to an applicable solution. In the second step, we transfer the analytical
input signal to an optimization-based control approach for the realistic
heat conduction problem and solve it.

1.2 Semiconductor Fabrication

In the second application, we present heat conduction scenarios in semi-
conductor fabrication to produce electronic components like integrated
circuits. This technology consists of several complex, highly precise and
clean processing steps. Hence, we are not able to describe all thermal
treatments, but we select three processes: crystal growth, lithography and
rapid thermal processing, which represent a specific thermal treatment
and dynamics.

In the first step of semiconductor fabrication, a single crystal in form of
a cylinder is produced and afterwards cut into disks. These disks are called
wafers and they are treated in subsequent steps physically and chemically
in order to establish electrical circuits on a very small scale.

Crystal Growth

In crystal growth the semiconductor raw material is thermally treated in
a crucible to yield a single crystal. Here, we briefly discuss the Vertical-
Gradient Freeze (VGF) method, where we have very high temperatures,
e.g. above 1000 Kelvin, and a phase transition, liquid to solid, similar to
the welding example in Section 1.1. This VGF method and its control ap-
proaches are described in the articles [10, 11], in the book [12, p. 3] and
in the doctoral thesis [13]. In these contributions, the authors describe
a plant with heaters on the bottom, on the top and on the jacket of the
crucible. These heaters specify a desired temperature gradient in the melt
such that the single crystal grows from the bottom to the top, as depicted
in Fig. 1.5. This heating process is steered with flatness-based control,
see [11], [12, p. 7] and [13, p. 60], and model predictive control in [10].

In this thesis, we cover both approaches, because they are well-known
representatives of open-loop and closed-loop control methods. In Chap-
ter 7, we introduce the flatness-based control and we discuss its applica-
tion for the prototyping of a feed-forward control system. In Section 8.2,
we describe the model predictive control for our heat conduction model
framework.
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Freeze process according to [10, Fig. 2].
Heaters supply thermal energy to steer the
solidification of a melt from bottom to top.
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(d) Post-Exposure Bake

(c) Exposure

Lithography

The produced single crystal is sliced and cleaned for the further processing
steps of lithography. Lithography is one of the core technologies to con-
vert a (silicon) wafer into integrated circuits, e.g. microelectronic compo-
nents. The wafer topside is coated with a photoresist, which is exposed by
radiation. The type of lithography is distinguished by the radiation: for ex-
ample ultraviolet light in photolithography, electron beams or ion beams
in charged-particle lithography [14, p. 139]. In this manner, patterns of a
photomask are transferred on the photoresist and the resulting prototype
pattern structure is treated in subsequent processing steps like the inser-
tion of ions or other material, and etching, see [15, p. 2]. We have baking
procedures after the coating (soft bake) to evaporate the solvent from the
photoresist, and after the exposure (post-exposure bake) to trigger chem-
ical reactions in the photoresist at the exposed zones, see [16]. These first
processing steps of lithography are depicted in Fig. 1.6, further informa-
tion about it is noted in article [16] and in the books [15, p. 1] and [17, p.
2].

The initial manufacturing steps of wafers and photomasks are similiar.
A substrate made of (quartz) glass is coated with resist, followed by pat-
terning with an electron beam, a post-exposure bake and subsequent pro-
cesses like etching and cleaning, see [19, p. 7] and [20]. Hence, we denote
wafers and photomasks subsequently in the general term as substrate. For
the post-exposure bake (PEB), the substrate with resist is placed on top of a
metal plate with multiple controllable heating zones.* In the literature, we
find cylindrical forms in [16, 21] and cubic plate shapes in [22-24], where
the first one is rather used for wafers and the last one for photomasks. The
substrate may be placed on pins, which separate it from the heating plate
in close proximity. Additionally, the substrate and heating plate are cov-
ered with a lid on top to avoid thermal losses and external disturbances,
see patent [24] and datasheet [25].
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Figure 1.6: A selection of first processing
steps in lithography. The wafer is cleaned
and positioned on a rotating chuck. A lig-
uid photoresist is applied as a drop on top
of the wafer and the rotation distributes
the liquid uniformly in (a) according to
[18]. The liquid photoresist is heated to
solidify at ca. 100° Celsius in (b). A high
energy radiation is guided through a pho-
tomask and lens to expose predefined pat-
terns in the photoresist in (c) according to
[15, p. 4, Fig. 1.2]. The treated wafer with
photoresist are baked at ca. 100° Celsius
again in (d) to prepare them for the further
processing steps.

* This plate is called hotplate, heating plate
or bake plate.
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Heat Supply via Multiple Heating Elements

Regarding the heating process, multiple heating elements on the plate’s
underside supply thermal energy. This heat conducts through the plate
and is transferred further towards the substrate. Modern baking devices
can be operated up to 230° Celsius [25], whereas we find in the literature
PEB temperatures of 95° up to 150° Celsius, see [16,23] and [21]. We re-
mark that the substrate’s temperature shall be steered in this process and
we know that the heat transfer from plate to substrate depends on the dis-
tance between both objects. As the heating plate with lid is completely
closed, one may assume that the substrate reaches the plate’s temperature
after some time. However, the bake shall operate quick and advantageous
to save energy and guarantee a well treatment of the substrate and resist.
Hence, a well-performing control system is necessary to steer the thermal
process accordingly. Here, we find the issue that temperature sensors are
located inside the plate [16,26]. Thus, only the plate temperature can be
measured during the real operation. This problem can be solved in the
development and test of the heating plate using a sensor mask instead of
a substrate. The sensor mask measures the temperature at several dis-
tributed points, e.g. with PT1000 elements as in [22,23], and transmits the
data via a cable to a computer as depicted in Fig. 1.8.

In the literature, we find that the thermal dynamics of a heating plate
is modeled as linear differential equations, see e.g. [27] and [28, p. 18, 19].
These models are derived via an approximation of the heat conduction
using electrical circuit analog models, where the thermal resistance and
capacity are replaced by the electrical quantities. Such an electrical cir-
cuit model of a heating plate with three segments is exemplified in Fig.
1.9 according to the doctoral thesis [28, p. 19]. In such models, electrical
currents describe heat fluxes and voltages correspond to temperature dif-
ferences. On one hand these simplified models offer an intuitive way to
design modern control approaches, e.g. model predictive control in the
article [16, 27,29, 30], but on the other hand they reduce the entire spatial
thermal dynamics to a single temperature value, which behaves like the
charging and discharging of an electrical capacitor. The latter statement
might be explained by the fact that only single, isolated, sensors are in-
stalled inside the heating plates. Hence, we are only able to measure iso-
lated temperature points - in contrast to distributed measurements with
e.g. thermal imaging. Regarding the control design of heating plates, we
also find standard PID control approaches, in which the parameters are
found numerically in real experiments using sensor photomasks as de-
picted in Fig. 1.8, see [22,23].
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Figure 1.7: Simplified side view of a multi-
ple zone hotplate with wafer or photomask
during the post-exposure bake, see [24,
Fig. 2]. The wafer or photomask is posi-
tioned with pins on the hotplate. Heat is
supplied via multiple heating elements on
the underside. A metal cover captures the
thermal energy inside and avoids distur-
bances like air fluctuations.
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Figure 1.8: Topview of a multiple zone
heating plate with sensor photomask on
top according to [23]. The 25 zones vi-
sualize the heating elements on the hot-
plate’s underside. The sensor mask with 25
PT1000 sensors (blue circles) is mounted
on top of the hotplate for calibration, see
[23].
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In this thesis, we take up various aspects of PEB, but we introduce and
treat them in the light of spatially distributed thermal dynamics. In Chap-
ter 2, we describe the shape as a cuboid, where the temporal and spa-
tial temperature evolution takes place. The thermal losses, which are ap-
proached as currents through resistances R, , in Fig. 1.9, are modeled in
Sections 2.4 and 2.5 as boundary conditions of the heat equation using
heat transfer and heat radiation. Similarly, we describe the heat supply
via multiple spatially distributed heating elements in Section 6.1 as heat
fluxes. In contrast to the described temperature sensors inside the heat-
ing plate, we assume temperature measurements only on the surface of
the cuboid. This idea also corresponds to the measurement using a sensor
photomask as depicted in Fig. 1.8. Since the modelling and simulation of
the spatially distributed thermal dynamics is significantly more complex
than a small system of linear differential equations, we focus primarily on
feed-forward control in Chapter 7 to design the control system. Subse-
quently, a predictive feedback control approach is intended in Chapter 8
to stabilize the measured temperature at the reference value while com-
pensating thermal losses.

Rapid Thermal Processing

Finally, we take a look at rapid thermal processing (RTP) to heal defects in
the crystal structure of wafers, which are caused by ion implementation,
see e.g. [31, p. 316] and [32, p. 5]. In this process, the wafer is heated up
quickly for a short time and cooled down afterwards via thermal emission,
e.g. convection and radiation. There are different designs of RTP systems,
see [31, p. 317, Fig. 31.2]. They have in common that powerful lamps,
e.g. (tungsten) halogen lamps [32, p. 9], supply a high amount of thermal
energy to the treated wafer and a pyrometer measures its temperature. In
Fig. 1.10, we depict a simplified version of one possible RTP design. The
wafer reaches very high temperatures, e.g. 1000 Kelvin, but only for a cou-
ple of seconds, see [33] and [31, p. 318]. Such high temperatures force the
material properties to change. Hence, the thermal conductivity and the
heat capacity are modeled in article [33] as functions of the temperature.®
This fact underlines our temperature-dependent modeling of the material
properties in Section 2.2.
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Figure 1.9: Analog electrical circuit model
of a cylindrical heating plate consisting of
three segments according to [28, p. 19].
The current sources exemplify the heating
elements, the electrical currents i corre-
sponds to the heat flux and the voltages u
relate to temperatures. The voltages u; 2
and up 3 stand for the temperature dif-
ference between the plate segments, and
Ug1l,...,Ug3 are temperature differences
between the plate and its surrounding.
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Figure 1.10: Simplified side view of rapid
thermal processing according to [31, p.
317, Fig. 31.2 (b)] and [32, p. 10, Fig. 1.2].

51In Section 1.1 we noted the temperature-
dependent material properties in the laser
welding modeling.



1.3 Contribution and Outline

The previous application examples provide a brief overview about the wide
field of research in thermal process engineering. As we are not able to
cover all these interesting research topics, we choose a few ideas in the
domain of modeling, simulation and control of thermal problems and we
gather and arrange them in a preferably general and practical framework.
In the subsequent paragraphs, we outline the topics in each chapter and
we state the scientific contribution including the previously published ar-
ticles.

Thesis Outline

This thesis is divided into two main parts: firstly modeling and simulation
of the heat conduction, and secondly the control design of the heating-
up procedure. In the first part, we derive a mathematical heat conduction
model and approximate it in space. We analyze the mathematical struc-
ture of the approximated thermal model and present numerical methods
to solve the large-scale differential equation in time. In the second part,
we design a feed-forward control approach to heat up the object and we
propose feedback methods to stabilize the reached temperature in pres-
ence of thermal emissions.

In Chapter 2, we introduce the geometrical objects with its temperature-
dependent material properties. We derive the fundamental quasilinear
heat equation and we specify its boundary conditions, which cause a
cooling or heating of the object.

In Chapter 3, we approximate the entire heat equation formalism in space
using a finite volume method and we obtain a large-scale ordinary dif-
ferential equation. In case of constant material properties, we yield a
linear system consisting of sparse matrices.

In Chapter 4, we describe the algebraic structure of the approximated lin-
ear system. We compute the eigenvalues and eigenvectors, which we
use to construct an analytical solution.

In Chapter 5, we present the numerical solvers to integrate the approxi-
mated heat equation in time. We introduce the Euler integration ap-
proaches and Runge-Kutta methods and compare them with respect to
an application on the heat equation.

In Chapter 6, we model the spatially distributed multiple actuators and
sensors on the boundary faces. We also sketch the heating-up proce-
dure, which is driven by a feed-forward control approach and the sub-
sequent stabilization with a feedback controller.

In Chapter 7, we design a feed-forward control to heat up the object. Ina
first step we derive an analytical prototype input signal for a simplified
heat conduction model and in an second step we adjust the input func-
tion with optimization-based methods. The whole feed-forward design
approach is exemplified in a comprehensive two-dim. example.
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In Chapter 8, we construct a feedback law to stabilize the reached tem-
perature such that the supplied power compensates the thermal emis-
sions. We present a linear-quadratic regulator concept and a model
predictive control technique, and we discuss the applicability of both
controllers for the considered heat conduction phenomena. Further-
more, we apply the feed-forward and feedback control on an example
with a three-dimensional geometry.

In Chapter 9, we summarize the findings of this thesis and we state four
promising concepts and methods to enhance the proposed heat con-
duction framework.

In Appendix A, we state a brief introduction to the analytical solution of
the heat equation for Neumann and Dirichlet boundary conditions. The
analytical solution for the Neumann problem provides true data for
a comparison with the numerical solvers in Chapter 5. Furthermore,
we derive the Riccati equation, which is a central fact to compute the
linear-quadratic regulation in Chapter 8.

In Appendix B, we list the evaluations of numerical experiments and their
corresponding source code listings.

Scientific Contribution

The topics of this thesis were presented in seven articles [34-40]. More-
over, the author developed with the JULIA programming language the soft-
ware libraries Hestia.jl [44] to model and approximate the heat conduction
scenarios and BellBruno.jl [45] to compute the derivatives of the reference
signal in the flatness-based control in Section 7.1. Further available nu-
merical simulations are cited in the mentioned articles. Additionally, the
author contributed to the articles [41-43], which discuss the system re-
construction from given simulation or measurement data. This topic is
not covered in this thesis.
We visualize the scientific contributions in the mind map below.
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2

Heat Conduction

The thermal dynamics in a solid object is the fundamental phenomenon
in this work. It is described by the heat conduction inside the object and
the heating and cooling processes on the boundary surfaces of the object.
In this chapter, we introduce a heat conduction model in continuous time
and space. This model incorporates the geometrical object, the material
properties, the heat equation and the boundary conditions. We discuss
our heat conduction problems in this work for the one-dimensional rod,
the two-dim. rectangle and three-dim. cuboid and so we present these
geometries in Section 2.1. The object is further characterized with its ma-
terial properties in Section 2.2. Their values determine the speed of tem-
perature variation inside the object. From the physical laws of heat trans-
fer, we derive the heat equation in Section 2.3, which contains the core
elements for all further ideas regarding the simulation and control. The
heat equation operates inside the object and so describe the interaction
with the object’s surrounding in Section 2.4. Finally, the natural cooling
via convective and radiative emissions is explained in Section 2.5.

The heat conduction modeling with cooling and heat supply is based
on our article [34].

2.1 Geometric Cubic Model

In this thesis, we consider three geometries for our heat conduction phe-
nomena:

¢ aone-dimensional rod Q; := (0, L),
¢ atwo-dim. rectangle Q, := (0, L) x (0, W) and
¢ athree-dim. cuboid Q3 := (0, L) x (0, W) x (0, H)

with a fixed length L > 0, width W > 0 and height H > 0. We identify the
number of spatial dimensions by N; = {1,2,3}. In general, the boundary is
defined by 0Qy, := ﬁNd \ Qp, where ﬁNd denotes the closed set of Q.
One may think of the boundary as an infinitesimal thin interface between
the object and its surrounding. The boundary plays an important role be-
cause the supplied and emitted heat is specified on the boundary and it
drives the thermal dynamics inside the object. A position inside the ob-
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All three geometries have a western and eastern boundary side By and Bg;
the rectangle and the cuboid have a southern and northern side Bs and
Bpy; and only the cuboid has a underside By and topside Br. The bound-
ary sides of the cuboid are portrayed in Fig. 2.1 and the specifications of all
boundary sides are noted in Table 2.1. In case of the one-dim. rod Q,, we
only have two boundary sides By and Bg which are separated points. This
simple situation limits significantly the possible boundary specification as
we are only able to supply or emit thermal energy on these two sides, see
also Section 2.4. In the literature, one-dim. models are assumed

* to study the analytical and numerical behavior of the heat equation,
and

* to design control and observer algorithms for thermal systems with one
actuator (on one boundary side) and one sensor (on the opposite bound-
ary side)!, see e.g. [46,47].

We consider one-dim. heat conduction examples in the modeling, sim-
ulation and control design to highlight the discussed physical processes.
We illustrate the thermal dynamics inside the rod and on the boundary
sides in the subsequent Sections 2.3, 2.4 and 2.5. Furthermore, the one-
dim. heat equation helps us to understand the numerical approximation
in Chapter 4 and 5, and we note the continuous analytical solution of the
one-dim. problem in Appendix A.1. Finally, it is a fundamental system to
derive the feed-forward and feedback control algorithms also for two- and
three-dim. objects in Chapter 7 and 8.

The two-dim. rectangle has four one-dim. connected boundary sides
Bw, Bg, Bs and By, see Fig. 2.2. These sides enable us to design simu-
lations with multiple actuators and multiple sensors along the boundary
sides, and thermal emissions with a relevant cooling impact. The two-
dim. rectangular is still an approximation of the real three-dim. situa-
tion. Due to computational aspects it may be useful in several cases to
discuss the two-dim. geometry rather than the full three-dim. object be-
cause the simulation and optimization in three dimensions require usu-
ally more data storage and more computing steps than the two-dim. case.
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Figure 2.1: Three-dim. cuboid with
boundary sides. The boundary sides

Bg (east, blue),

Bg (south, green) and

Bt (topside, purple) are visible.

Not visible are

By (west; opposite to Bg),

By (north; opposite to Bg) and

By (underside; opposite to Br).

!Such systems are called single-input
single-output (SISO) systems.

Bs

Bw Qo Bg

By

Figure 2.2: Rectangle object with boundary
sides By (west), Bg (east), Bg (south) and
By (north).



Name Symbol Rod Rectangle Cuboid

West Bw {0} {0} x[0,W] {0} x [0, W] x [0, H]
East Bg {Ly {Lyx[0,W] {L}x[0,W]x[0,H]
South Bg [0, L] x {0} [0, L] x {0} x [0, H]
North By [0,L] x {W} [0,L] x {W} x [0, H]
Underside By [0,L] x [0, W] x {0}
Topside Br [0,L] x [0, W] x {H}

Two- and three-dim. geometries are often utilized in simulations to inves-
tigate realistic scenarios like physical or chemical phenomena and experi-
ments. Based on these simulations, optimization-based control strategies
can be designed to steer the dynamical system, e.g. the temperature. We
consider the cuboid as geometry to formulate the heat equation because
it represents appropriately a realistic scenario, such that physical proper-
ties, units and laws fit to the mathematical model.

2.2 Material and Physical Properties

We consider a metal or metal alloy as the material of the object and it has
the properties: mass density p, specific heat capacity ¢ and thermal con-
ductivity A. These properties specify the ability of an object to store or con-
duct thermal energy and this means that they influence how fast the tem-
perature varies inside an object. We showcase the speed of thermal con-
duction in a small numerical experiment, see Fig. 2.3. Here, we assume a
one-dim. rod with length L = 0.1 meter, simulation time T'f;,4; = 10 sec-
onds, specific heat capacity ¢ = 1, density p = 1 and two different values
of the thermal conductivity. In the first simulation, we assume 1 =5- 1076
and we notice only a small temperature variation in Fig. 2.3 (a). In the sec-
ond simulation, we have A = 2- 10> and we obtain a fast conduction Fig.
2.3 (b) such that the temperature is almost in an equilibrium state at the
final time.

The condition of a material may depend on its age, composition (in
case of alloys), temperature and further internal and external influences.
We neglect most of these dependencies and only consider two facts: the
temperature of the material and a possible anisotropy of the thermal con-
ductivity. Hence, we model the material properties with temperature 0 as
polynomial functions

Np

p©):=) p,6" and 2.1)
n=0
Ncap

c@):= ) c,0" 2.2)
n=0

This general setup shrinks to constant values if Ny, =0 or N¢qp = 0 and so
we have p = pg or ¢ = ¢yp. The mass density p, the mass mgq and the volume
Vq of object Q are related via the physical law mq = p V. This means that
a change of p(0) via a variation in 6 affects physically either the mass mq
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Table 2.1: Specification of Boundary Sides.

5
Length in [cm]

(a) Slow, 1 =5-1076

1.0 0 aresseaeeans . |=t=0
N M t= Tpinu/2
: V== T
0_57/\‘\f1
0'07........: ; A ;

5
Length in [cm]

(b) Fast, A=2-107°
Figure 2.3: Comparison of slow and fast
heat conduction in a one-dim. rod with
c¢=p=1and Ty;p4 =20 seconds. Therod
is insulated on both boundary sides, By,
and Bg, as explained in Section 2.4.
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(b) Half, t = ~final  (c) Final, t = Tfpal

(a) Initial, =0 5

or the volume Vg. In this work, we neglect both effects and we assume
hereby only (very) small variations of p(6) and so % p(0) =0.

The thermal conductivity is assumed to be depend on the temperature,
too0.2 Additionally, we distinguish isotropic and anisotropic heat conduc-
tion, see also [49, p. 330]. In the anisotropic case, the thermal conductivity
differs for each spatial direction, which is only plausible for geometries
in two and three dimensions. Anisotropic heat conduction implies that
the temperature varies faster along one spatial orientation than along the
other(s). We define the thermal conductivity as diagonal matrix®

A1)
A0) = A2(0) (2.3)
A3(0)
with the polynomial function
Ny
Aj0):= > Aj,0" for je{1,2,3} (2.4)
n=0

similar to the mass density and the specific heat capacity above. If the
thermal conductivity does not depend on the spatial orientation as 1, () =
A2(0) [= 13(0)] = A(0), then we have an isotropic scenario. We visualize in
Fig. 2.4 the effect of anisotropic heat conduction for a two-dim. square
geometry with L = W = 0.1 meter and material properties
5-107°
c=p=1, /1—( 2_105).

We see that the temperature varies faster in x,-direction than in x; -direction
because 1, > A;.

In material science, the identification of these material properties, in
particular for a temperature range, is a specialized field of research. We
find tables with the material properties for various metals in [50, p. 21] and
in the doctoral thesis [51, p. 124]. In the latter contribution [51, p. 120], the
author notes the specific heat capacity and thermal conductivity as poly-
nomials of the temperature for some specific types of steel. Furthermore,
the document [52] provides a large data set of material properties for var-
ious temperatures. In the most of our examples, we assume steel as the
treated material but we do not specify the steel.
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Figure 2.4: Anisotropic heat conduction in
arectangle with

A = diag(5-1076,2:107°%), ¢ = p = 1,
and Tfipq = 10 seconds. The tempera-
ture varies faster in y-direction than in x-
direction.

2The concept of temperature-dependent
thermal conductivity is also known from
the Wiedemann-Franz law % =L-0
with the electrical conductivity o and the

Lorenz number L, see [48].

*In case of a rectangle, N; = 2, we have
A(0) := diag(11(0),12(0)).



2.3 Formulation of the Heat Equation

This section provides a basic introduction to the mathematical modeling
of heat transfer in solid objects. We explain the fundamental elements of
the first law of thermodynamics in accordance with the literature, see [49,
p- 118] and [53, p. 54], and we guide step-by-step towards the heat equa-
tion in integral and differential form. We consider the three-dim. cuboid
Qg3 for this formulation to yield a proper physical interpretation, and we
showcase how to transfer these ideas to the one-dim. heat conduction in
the end of this section. The core element of this derivation and further
calculations is function

9:10, Tinail x Q@ — Rso (2.5)

with final time Tf;pq1 € R>o. It describes the variation in time and space
of the temperature distribution inside the geometry and on the boundary
sides. Hence, 9(t, x) is the solution of the heat equation. As we introduce
several physical properties in this section, we list them in Table 2.2.

First of all, we find the specific internal energy u via the integration of
the specific heat capacity ¢ over temperature 6 as

fﬂ c(0)d0 =: u(6) (2.6)
o
and we see that u may be noted as polynomial function like c in Eq. (2.2).
The specific internal energy expresses the internal energy per mass. So, we
find the internal energy U : [0, Tfinqa1] — R>o as we sum up u over each in-
finitesimal small mass element. The mass equals an integration of density
p over the volume of Q, and thus we yield the internal energy

U = fp(f)(t,x)) u(d(t,x))dx. (2.7)
Q

According to the first law of thermodynamics, the rate of change of the
internal energy AU is driven by the stored heat Q and the supplied work
Was?

AU(1) = Q1)+ W(1). (2.8)

We assume the net energy transfer W into the system (or object) as posi-
tive and from the system as negative. We reformulate Eq. (2.8) in terms of
a variation in time as

iU(t) = i (1) + P(v) (2.9)
dt B dtQ ’

with power P(t) := %W(t). We formulate each part of Eq. (2.9) sepa-
rately in the next steps. We differentiate U(¢) in Eq. (2.7) to yield

d _ [dp@)ad du(9) a9
EUU)_[ a0 atu(z‘))+p(19) 70 thx

Q
3 dp(9) 0
_([[ 70 u(®) + p) c(9) atq‘)(t,x) dx
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Table 2.2: Thermodynamical Variables.

Sym. Property Unit
u Specific int. energy %z
0] Internal energy J
Q Stored heat J
w Supplied work J
P Supplied power w
Q Rate of heat flow w
; i w
q Heat fluxin Q )
[7) Power density on 6Q %

*In some contributions, the first law of
thermodynamics is noted with the inexact
differential 6 or d on the right-hand side as
dU =6Q+ 6 W with dU as the total differ-
ential of U. See also [54, p. 81].



with 9 = 9(¢, x) and u(H) = ¢(0) from Eq. (2.6). We neglect a variation of
the mass and the volume, 26 0(0) =0, and so we obtain

d 0
EU(I) = ([p(ﬁ(t,x)) c((t, x)) aﬁ(t,x) dx. (2.10)

On the right-hand side of Eq. (2.9), the rate of heat flow %Q(t) describes
how much thermal energy (or heat) is transferred per time in the cuboid.
It is defined by

iQ(t) = —f 1(t,x)-ndx (2.11)
dt T b ‘

with heat flux® § and the outer normal vector on the boundary 7 L Q.
The heat flux describes motion of heat from warm to cold areas. According
to Fourier’s law, it is defined as

q(t,x) := —A9(t, x)) VI(t, x) (2.12)

with the temperature gradient

T

VIt x):= 6i19(t X), — ﬁ(t x), ﬁ(t X)
X1

As the temperature gradient VI(t, x) points towards the hot regions, the
heat flux g forces the hot regions to reduce the temperature while the tem-
perature in the cold regions increase. The rate of heat flow describes the
thermal dynamics inside the cuboid. Therefore, we apply the divergence

theorem ©

f v(x)-ndx= fdiv(v(x))dx
o0 Q
on Eq. (2.11), see [3, p. 20]), and we obtain the rate of heat flow as

d T
S, Q0= —fdlv[q(t,x)] dx
o)
= fdiv[)t(f)(t,x)) VI(t,x)] dx. (2.13)

The integrand in Eq. (2.13) can be noted as
o 0
div[A(9(£, ) VI(t,x)] = ) — [Ai(ﬁ(t, x)) —9(t,x) (2.14)
i 16xl- 6)61'

with N, = 3. If the thermal conductivity is temperature-independent, then
we note the integrand as
Ny 2
diviA VI(t,x)] =) A;—=9(t,x).
[A VO, )] ; Fr: (t,x)
The second term on the right-hand side of Eq. (2.9) describes the supplied
and emitted power P(t). It expresses the transition of heat from the object
to its surrounding and backwards and so it acts on the object’s boundary.
We define the power analog to the rate of heat flow as

P() := fd)(t,x)-ﬁ(x) ax (2.15)
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5 g is also known as heat flux density.

5The divergence theorem is originally
described by and also named after Johann
Carl Friedrich GauBB (x1777,11855),
Mikhail Vasilyevich Ostrogradsky
(%1801,11862) [55] and George Green
(¥1793,11841).



with outer normal vector on the boundary 7i L 6Q which is defined by

-1 ifxe By UBsU By,
fix) = WEESERY 2.16)
+1 ifxe BUBNUBT
and power density
¢(t,x) := A(I(¢, x)) VI(t, x) (2.17)

analog to the heat flux in Eq. (2.12). The power density ¢ and the heat
flux g are equivalent physical objects but we distinguish both as ¢ occurs
inside the geometrical object Q2 and ¢ operates on the boundary Q. In
Section 2.4 we introduce the boundary conditions and discuss the power
density ¢ with respect to its cooling and heating behavior. We summarize
Eqg. (2.15, 2.17) to note the supplied power

P(t) = f[]L(f)(t,x)) VIt x)]-n(x)dx. (2.18)
4Q
Finally, we assemble Eq. (2.10, 2.13, 2.18) in the first law of thermodynam-

ics (2.9). Thus, we yield the integral form of the quasilinear heat conduc-
tion

fp(ﬁ) c(9) %19(t,x) dx = fdiv[/l(i‘)) V(L x)] dx+f [A@) VI(t, x)] - ni(x)d x. (2.19)
Q Q 4Q

s [ ~ v

~

HUW® 4Qw) P()

This integral equation (2.19) provides the core element to derive the finite
volume approximation in Chapter 3 and to design energy-based control
approaches in Section 7.5 and in Chapter 8.

Now, we reformulate the heat equation (2.19) in differential form. We
integrate on both sides over the same volume Q and so we omit the inte-
gral and note the partial differential equation of the heat conduction.

Definition 2.1 (Quasilinear heat equation)
We note the quasilinear heat equation as

p ) c(9) %ﬁ(t, x) = div[A(9) VI(¢, x)] (2.20a)
for (¢, x) € (0, Trinal x Q and with boundary condition
[A(t, x)) VO(t, x)] - 1i(x) = ¢(t,x) for xe€0Q (2.20b)
and initial condition
900,x) =9¢(x) for xeQ. (2.20c)

O

A partial differential equation is called quasilinear if it has coefficients
with the unknown variable (here: temperature ) and its highest order
derivative is linear and lower order derivatives may be nonlinear. This
description is not clearly recognizable in Eq. (2.20a) but we find it, if we
evaluate the differential operators in Eq. (2.14) and we note the nonlinear
expression



) 3 8% 9 ) 2
div[A(9(¢, %)) VI(t,x)] = FZI Ai (9(t, x)) @f)(a x) *38 A (9(¢, x)) (6—)@«9(@ x))

——
linear

For further information on quasilinear PDE, we refer to the book [3, p. 2]
and to the doctoral thesis [56, p. 2]. We remark that the term “quasilinear
heat equation” is not unique because some authors denote other types of
the heat equation with it.

In this thesis, we do not discuss the analysis of the quasilinear heat
equation explicitly because it is out of scope of this work and much more
complex than the linear heat equation, see e.g. [56, p. 2, 4]. In contrast, we
rather consider the spatially approximated quasilinear heat equation for
the controller design, which is introduced in Chapter 3.

If we assume constant material properties, as A = diag(A;, A2, A3) with
p € Ry and ¢ € R, then we obtain from Eq. (2.14) and (2.20a) the well-
known (anisotropic) linear heat equation

Ny 2

0 1 0
—0(t,0)=—) Ai—0(t,x). 2.21
- 0(6,%) cpz;'ax? (t,%) (2.21)

In the next chapters, we also note the linear heat equation (2.21) with
diffusivity a; = CA—;) for I € {1,2,3}. We consider the linear heat equation
as an important special case because it helps us to understand the spa-
tial approximation and its numerical behavior, see Section 3.4 and Chap-
ter 4. Furthermore, the linear system is one of the central elements of
the flatness-based control design in Chapter 7. In Appendix A.1, we note
the analytical solution of the one-dim. heat equation with zero Neumann
boundary condition: ¢(¢, x) = 0.

We refer to the literature [3, p. 44], [4, p. 75] for further information
about the mathematical analysis of the linear heat equation.

Example: Temperature-dependent Heat Conduction

As we have a formal description of quasilinear heat conduction now at
hand, we apply these ideas on a one-dim. rod model with length L = 0.2
meter to showcase the thermal dynamics. Such a reduction of a real three-
dim. object to a one-dim. model might be reasonable, if the width and
the height are much smaller than the length or if the heat conduction in
the directions x, and x3 are not relevant. We assume an object made of
steel with a specific heat capacity ¢ = 400, a mass density p = 8000, and a
temp.-dependent thermal conductivity as noted in Table 2.3. We have five
data samples in Table 2.3 and so we approximate the curve by a quartic
function

AO) = Ao+ 110 + 120% + 1360° + 1,0*

where we find the approximated parameters as

Ao, ..., A4l = [370,-2.85,8.458-1073,-107°,4.1667 - 1077].

—_—
nonlinear

Table 2.3: Th. conductivity data.

0 in [K]

300
400
500
600
700

A

40
50
70
85
90
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The graph of the thermal conductivity function is portrayed in Fig. 2.5.
Consequently, we note the one-dim. quasilinear heat equation as

0 1 0 0
—I9(t,x) = —— [AO(t, —I(t,
6t(x) o cox ((X))ax(x)
with thermal conductivity
A0) = 370-2.850 +8.458-107302 - 107°60% +4.1667-107%0*.  (2.22)

We assume the initial temperature distribution

300 forxel0,%],

9(0,x) =
700 forxe[é,L].

The one-dim. rod has two boundary sides By, and Bg. We assume that
both boundary sides are insulated, which means we have a heat flux or
power density of ¢(t, x) = 0. We know from identity (2.16) that 7z = —1 on
By and 71 = +1 on Bg. So, we yield the boundary conditions

-A9(t, x))%ﬁ(t, x) =0 forxe By and

A(t, x))%ﬁ(t, x)=0 forxe€Bg.

The one-dim. rod is approximated, see Chapter 3, and the heat equation is
simulated for T;,4; = 800 seconds. The simulation results are visualized
in Fig. 2.6, in which Fig. 2.6 (a) portrays the temperature in each position
x € Q at five time stamps; and Fig. 2.6 (b) presents the temperature varia-
tion in time at five positions. We find that the high temperatures close to
boundary By decrease faster than the low temperatures close to B rise.
This behavior is caused by the strong thermal conductivity for high tem-
peratures. All temperatures approach for t — oo the mean temperature of
500 Kelvin because both boundary sides are insulated.

2.4 Emitted and Supplied Heat Flux

Boundary condition (2.20b) describes the interaction between the ther-
mal dynamics inside the object and the surrounding. We introduced in
Section 2.1 the boundary sides, see Table 2.1, and we stated that bound-
ary 0Q is an infinitesimal thin interface between object Q and its sur-
rounding. In Section 2.3, we explained that thermal energy can be sup-
plied to or emitted from the object. The overall sum of supplied and emit-
ted power P is noted in Eq. (2.18). According to the first law of thermo-
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Figure 2.6: Heat conduction with non-
linear thermal conductivity in a one-dim.
rod. The snapshots of the temperature dis-
tribution in (a) and the thermal dynamics
at five points in (b) show that temperatures
converge to the mean value of 500 Kelvin.
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Figure 2.5: Nonlinear thermal conductivity
A(0) asin Eq. (2.22).




dynamics, see Eq. (2.8, 2.9), the amount of internal energy U(t) is de-
termined by the rate of heat flow %Q(t) inside the object and the sup-
plied and emitted power P(t) on the boundary sides. We do not have
heat sinks or sources inside the geometry, and so only the power via “ex-
ternal” processes P(t) increase or decrease the level of internal energy.
This idea includes the fact that %Q(t) =0, but we remark that it does not
mean div[A(9(t, x)) VI(¢, x)] = 0. If the overall power is positive, then the
amount of internal energy and equally the mean temperature increase,
whereas a negative power implies a decreasing internal energy and mean
temperature. We distinguish the processes on boundary 6Q as

1. P <0 cooling down: thermal emissions cause a temperature drop,
2. P >0 heating up: heat supply leads to a temperature rise.

The emission of heat is assumed to occur naturally, which means that it
depends on the physical properties of the object and its surrounding. This
natural process is assumed to be driven by heat transfer and heat radia-
tion as are explained in Section 2.5. In contrast to this, we consider the
heat supply as an artificial process, which is carried out by actuators op-
erating on the boundary. We assume thermal actuators like heating ele-
ments or lasers. Although some thermal actuators like Peltier elements
might be able to heat and to cool, we only consider actuators, which are
solely able to heat. The actuators are considered to operate on a subset
of the whole boundary, B;; < 0Q. This actuator’s boundary B;, might be
identical with a boundary side like By, B, etc. or an union of boundary
sides for example B;,, = By U Bs. We might have thermal emissions on the
actuator’s boundary B;j, too.

In the previous Section 2.3, we introduced the supplied power as the
integral of heat flux or power density ¢ over the boundary. This heat flux
consists of thermal emissions ¢, from the object to the surrounding and
of heat supply ¢;, from the actuator to the object. The emitted and sup-
plied heat flux are described below in Def. 2.2.

Definition 2.2 (Emitted and supplied heat flux)

The emitted and the supplied heat flux vary in time ¢ and space x. The
emitted heat flux is defined on the whole boundary 6Q to be less than
or equal to zero. The supplied heat flux is only defined on the actuator’s
boundary B;;, < 0Q and is considered to be greater than or equal to zero.
So, we note emitted heat flux as ¢ep, : [0, Trinarl x 0Q — (—00,0] and the
supplied heat flux as ¢y, : [0, Tinail X Bin — [0,00).

We summarize these ideas and we note the total heat flux as

(1) = Gin(t, X) + Pem(t,x) for x € Bip, (223
’ Pem(t,X) for x € 0Q\ B;j,. '

O

We conclude from Definition 2.2 to distinguish the boundary condition
(2.20b) for the actuated boundary side x € B;, as

AO(,x) VI, 011t = Pin(t, X) + Pem(t, X)
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and for the remaining (not actuated) boundary x € 0Q\ B;,, as
[AO(t, ) VI, X)]-Ti = Pem(t, X).

If a boundary side has a vanishing emitted heat flux, ¢¢;, (¢, x) =0, then
we denote it as insulated. If all boundary sides are insulated and no heat
supply is active then all temperatures converge towards the mean temper-

— 1
9= V—Qfﬁﬁo(x)dx

with initial values 9y (x) and volume Vo = L- W - H in the three-dim. case.

ature

Furthermore, we distinguish the supplied power
Pin(1) :=fB Gin(t,x)dx (2.24)
and the emitted power

Pom (1) := f Gem(t,x)dx. (2.25)
aQ
We stated in the beginning of this section that the overall power
P(8) = Pin() + Pem (1)

drives the internal energy and the mean temperature either to increase, to
decrease or to hold. In the second part of this thesis, we design control
approaches to heat up the object and stabilize the reached temperature.
Hence, we need to guarantee that

>0 during the feed-forward control and
P(t) = Pin(t) + Py (1)
=0 in the temperature stabilization.

We consider the remaining case P(f) < 0 as an undesired behavior because
the temperatures leave the desired reference values.

Example: Balanced and Unbalanced Heat Supply and Emission

We demonstrate the findings of this section with an example of a one-dim.
rod with length L = 0.2 and material properties A = 50, ¢ = 400, p = 8000.
This rod has a pure heat supply ¢;,, on boundary By and an emission ¢,
on Bg. We study two scenarios: firstly, the amount of supplied and emitted
heat is equal ¢;,, = —¢e;, = 10%; and secondly, the supply is higher than the
emissions with ¢;,, = 2-10* and ¢, = —10*. The whole rod has an initial
temperature of 300 Kelvin. We see in Fig. 2.7 that the temperature rises
on the left side (next to By/) and declines on the right side (next to Bg)
in both scenarios. In the first scenario, in Fig. 2.7 (a), the temperature
increases on the left side with the same value as it decreases on the right
side because the inflow and outflow of heat are equal. So, we see that the
average temperature in the rod is constant as

1 L
—f 9(t,x)dx = 300 Kelvin
LJo

at every time 7 € [0, Tf;,4;]. We may denote this thermal situation as bal-
anced. In the second scenario, in Fig. 2.7 (b), the temperature increases
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stronger on the left side than it drops on the right side. This unbalanced
situation also means that the internal energy and the average temperature
in the rod increase by time.

The emissive heat flux ¢, is described next in detail with the linear
(convective) heat transfer and nonlinear heat radiation, and the supplied
heat flux ¢;,, is explained in the second part of this thesis, in Chapter 6.

2.5 Heat Transfer and Heat Radiation

We assume that the cooling process of the object is mainly influenced by
heat transfer ¢;, and heat radiation ¢, ,4 to the ambient environment as

Pem(t, X) = Pir (£, X) + Praalt, x) (2.26)

for x € 0Q), t € [0, Tfinall- In the first part of this section, we introduce the
convective heat transfer ¢, and second part we discuss the heat radiation
¢raq- For a comprehensive introduction, we refer to [49, p. 12], [53, p. 19]
for heat transfer, and to [49, p. 28], [53, p. 28] for heat radiation.

Convective Heat Transfer

The solid object is surrounded by a quiescent or moving fluid like a liquid
or a gas. The boundary 0Q is an interface between two media and so we
need to distinguish the emitted heat flux in the solid object”

$sotia(t, %) := Asoria VOsotialt, X)

and in the fluid
G riuia(t, x) := Agiuia VOfiuia(t, x) (2.27)
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Figure 2.7: Temperature distribution for
heat supply on the left side at x = 0 and
heat emission on the right side at x = 0.2.
In the first scenario (above), we assume
¢in =10% and ¢er = —10%. In the second
scenario (below), we assume ¢;,, = 2-10*
and ¢em = -10%.

“We neglect the possible temperature-
dependency in A in this paragraph to im-
prove the readability. See also Eq. (2.17).
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along the boundary as x € Q2. We know that both emissions have to be
identical as
Ger(t, %) = Psorialt, ) = Priuia(t, x) (2.28)

but their thermal conductivity values are different, e.g. Aso1iq # A f1uia be-
cause the material (solid / fluid) is different. This fact implies that the tem-
perature gradients are different as

VOso1ia(t, X) # VO f1yia(t, x).

Next, we derive the convective heat transfer with the heat flux in the fluid
®Pem, fiuia- Here, we denote the boundary temperature as 95q and the
fluid temperature far away from the boundary as the ambient tempera-
ture 9 4,,p. The temperature in the fluid 9¢;,;4 does not change suddenly
from 95q to 9,mp because there exists a very thin space, a so called ther-
mal boundary layer®, between the object’s boundary and the surrounding
with a smooth temperature profile. The thermal boundary layer is defined
as the space where the inequality
19fluial = Damb >0.01
’96(2 - 19amh
holds, see [53, p. 277]. The temperature profile with the boundary layer in
the near field of the boundary is illustrated in Fig. 2.8.
The exact physical description of the fluid’s behavior and its thermal in-
teraction with the object may be hard to describe. Thus, the heat transfer
emission is approached by the formula

riuia(t, %) =—h [95q(t,X) = amp) , (2.29)

see [49, p. 12] and [53, p. 276]. Heat transfer coefficient 4 sets the intensity
of the emission, and it can be determined with Eq. (2.27) as

VOfiyia(t, x)

h= A pigig— L
fluid g (6, X) = Damp

We consider the heat transfer coefficient /2 and the ambient temperature
Jamp to depend on the position on the boundary as h : 0Q — R and
Damp : 0Q — Rxo. We explicitly neglect that the ambient temperature varies
in time. This simplification may not be physically accurate as the object’s
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Figure 2.8: The heat is transferred from the
solid object Q to its fluid surrounding. The
fluid temperature 9,4 decreases from
the boundary with 95 until it reaches the
ambient temperature 9 ;. This temper-
ature drop occurs mainly in the bound-
ary layer, which has a distance of §,; from
boundary 0Q. This figure is inspired by
[49, p. 13, Fig. 1.7].

8The boundary layer is firstly discovered
and described by Ludwig Prandtl (*1875,
$1953) [53, p. 272, 273].



temperature directly influences the ambient temperature. In accordance
with identity (2.28), we note the emissions of the heat transfer as

e (t,x) = —h(x) [0(£, x) = 0 gymp (X)] (2.30)

with (t,x) € [0, Ttinal x 0Q). If we only consider heat transfer without
heat radiation, then we find the boundary condition (2.20b) as

A8, ) VI, 017 = —h(x) [9(2, X) = 0 amp (X)] (2.31)

with A as the thermal conductivity of the solid object.

Heat Radlation

Each object which has a temperature above zero Kelvin? emits heat radia-
tion in form of electromagnetic waves. The transport of thermal energy via
heat radiation does not depend on a (solid or fluid) medium like air or wa-
ter and so thermal energy can be transmitted through vacuum. The ability
to emit heat radiation depends on the material and its surface condition,
e.g. the surface color or if it is polished or oxidized. This information is
stored in the emissivity value ¢ € [0, 1]. If the object is unable to emit heat
radiation, then we have € = 0 and on the opposite we have € = 1 in case of
ablack body. In real experiments, we face the issue to have several objects
in the neighborhood of our test object, and all of these neighbor objects
emit heat radiation towards the test object. Here, we neglect all of these
neighbors and we only deal with the heat radiation of the considered ob-
ject. Hence, we define the heat flux of the heat radiation as

Graa(t,x) :=—0 (x) (t,x)* (2.32)

w
m2K4*
that the emissivity depends on the position x € Q2 because each boundary

with the Stefan-Boltzmann constant o = 5.67-1078 10 We assume
side may have a different surface condition. A list of emissivity values for
certain properties in noted in [53, p. 542]. We summarize the findings of
this section in the following definition.

Definition 2.3 (Heat transfer and heat radiation)

The emitted heat flux in Eq. (2.26) consists of a heat transfer term (2.30)
and a heat radiation term (2.32). The heat transfer coefficient / : 0Q2 — Rx
in Eq. (2.30) and the emissivity € : 9Q — [0,1] in Eq. (2.32) scale the in-
fluence of convective heat transfer and heat radiation for each position on
the surface x € 0Q. In conclusion, we note the total emitted heat flux as

Gem(t,x) 1= —h(x) [O(t, X) = gmp(x)] — 0 €(x) I(t,x)* (2.33)
with the ambient temperature 9, : 0Q — R>o and the Stefan-Boltzmann
constant 0 = 5.67-1078 . O

m=K’

We remark that we find nonlinear expressions in two parts of our heat
conduction problem: in the quasilinear diffusion div[A(9(t, x)) VI(t, x)]
and in the heat radiation (2.32). Both facts imply the need to approximate
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9We consider temperatures below zero
Kelvin as physically not realizable.

jozef Stefan (*1835, 11893) and his
student Ludwig Boltzmann (*1844,11906)
worked initially on the heat radiation phe-
nomena as in Eq. (2.32) [49, p. 29].
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the heat equation in space and time properly. In case of constant mate-
rial properties and no heat radiation, we are able to find an approximated
closed-form solution, see Section 4.3.

Example: Comparison of Heat Transfer and Heat Radiation

In the end of this section, we present a small simulation example of heat
transfer and heat radiation. We assume a one-dim. rod with length L =0.2,
material properties A = 50, ¢ = 400, p = 8000 and an initial temperature of
90(x) = 600 Kelvin for x € Q = [0, L]. The rod is assumed to be insulated on
the left side, ¢/ (x) = 0 for x € By, and non-insulated on the right side,
®em(x) = 0 for x € Bg. We distinguish three scenarios of emissions:

1. pure heat transfer as e (t, x) = ¢ (8, x) = —h [9(¢,X) — 9 amp] with
h=5and 9,4, =300,

2. pure heat radiation as e, (£, X) = Praq(t, x) = —0e (¢, x)* withe=0.2
and

3. heat transfer and heat radiation as ¢, (x) = ¢ (X) + Py gq (x) with h =5,
amp =300 and € =0.2.

We evaluate these three emissions for a temperature range of 300 to 700
Kelvin in Figure 2.9 (a). We notice that the heat radiation plays an impor-
tant role in particular for high temperatures, e.g. above 500 Kelvin. This
implies that we cannot neglect the nonlinear heat radiation when we sim-
ulate heat conduction phenomena with high temperatures. In Fig. 2.9 (b),
the temperature on boundary Br of the one-dim. rod drops stronger for
the heat transfer than for the heat radiation. So, the heat transfer influ-
ences mainly the cooling-down process but the heat radiation has a sig-
nificant impact, too.

We notice that this example shall only demonstrate the heat transfer
and heat radiation. It does not provide a qualitative statement like “heat
transfer is always stronger than heat radiation” because both physical pro-
cesses depend on the condition of the object and its surrounding.
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Figure 2.9: Comparison of heat transfer
with & = 10, 94, = 300 versus heat ra-
diation with € = 0.2. The linear behavior
of the heat transfer ¢p; and the nonlinear
heat radiation ¢, ., are visualized on the
left side (a). The cooling-down process on
boundary Bg of the one-dim. rod is plot-
ted on the right side (b).
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Spatial Approximation

Partial differential equations like the heat equation need to be solved in
time and space. For some simple scenarios, we are able to find an ana-
lytical solution. For example, in appendix A.1, we derive an analytical so-
lution for the one-dim. linear heat equation with zero Neumann bound-

ary conditions.

However, we usually need to find a numerical solution
of the (partial) differential equation. Due to the wide range of types and
specifications of partial differential equations, there exist a lot of numeri-
cal methods to solve a them: for example the well-known finite difference,

finite volume and finite element methods as well as
¢ radial basis function methods [57, 58],

¢ pseudo-spectral methods [59] and

¢ physics-informed neural networks (PINN) [60,61].2:3

In this work, we approximate the integral equation (2.19) with finite vol-
umes because it preserve the temperature-dependent heat conduction and
we can implement it with a simple meshing. This spatial discretization
leads to alarge scale (nonlinear) ordinary differential equation (ODE) which
is solved with numerical integration approaches like Runge-Kutta meth-
ods, see also Chapter 5. The finite volume approach is noted for a two-
dim. model in our article [34] and implemented in Hestia.jl, see [35,44].

General Formulation of the Finite Volume Method

Finite volume methods are designed originally to solve partial differential
equations of the type*

%z(t,x)+div(f(z, £,x))+g(t,x)=0 3.1

for (¢, x) € (0, Ty) x Q. The state z: [0, Tf] x Q — R corresponds to a physi-
cal quantity like mass or energy, see, f: R x [0, Tf] x Q — R is called flux
function with dimension d € {1,2,3}, and g : [0, Tr] x Q—R might be in-
terpreted as a source term. We refer for a brief introduction to the online
article [64] and for detailed explanations to article [65] and book [66]. We
omit to specify a certain boundary condition for Eq. (3.1) here because it
is less relevant for our further explanations. We integrate Eq. (3.1) over the

! Insulated boundaries as ¢(z,x) = 0.

2The article [60] occured also as long
preprint version in two parts [62,63].

3 In Chapter 9, we state a short outlook on
the use of PINN to solve heat conduction
problems.

*Such differential equations are also de-
noted as conservation laws and hyperbolic
partial differential equations [66].



whole space Q, apply the divergence theorem and obtain
0 .
f —z(t,x) +div(f(z, 1, x)) + g(t,x) dx
Q 0t

= i[ z(t,x) dx+f f(z,t,x)-ﬁdx+f gt,x)dx=0 (3.2)
ot Jo oQ Q

Now, we subdivide the space Q in N, > 0 finite volumes Q; and cell
boundaries 0Q2;, and we say that Eq. (3.1) holds in each finite volume Q;.

Nc
The sum of all finite volumes is the geometry as Q = J Q;. The sum of
i=1

all cell boundaries is more than the boundary 0Q bec;lse cell boundary
0Q); is the interface of each cell to its neighbors and so we find it on the
boundary sides 0Q2 and inside the geometry Q2. We formulate the integral
equation (3.2) for a finite volume as

i z(t, x) dx+f flz(t,x),t,x)-idx+ glt,x)dx=0 (3.3)
ot Jo, 0Q; Q;

with index i € {1,2,...,N;}. An example of a single cell with its fluxes is
sketched in Fig. 3.1. The finite volume Q; is also called control volume
or cell and it might be realized via quadrilateral [67], triangular [68] and
other meshing types [69]. The approximation of flux f(z,t,x) at the cell
boundaries 0Q); is a key factor to ensure proper numerical results. We ap-
proximate each term of Eq. (3.3) and we yield the ODE

0 = _
Ezi(t)"'fi(zi(t)yt)*'gi(t):0 (3.4)
for the i-th finite volume with the spatial approximations Z;, f; and g;.

In Section 2.3, we derived the heat equation with flux

F@(,x)) = A(9(t, x)) VI(t, x)

to describe the heat flux inside the object, see Fourier law in Eq. (2.12),
and the supplied and emitted thermal energy on the boundary sides in Eq.
(2.17). As a result of this derivation, we noted the quasilinear heat equa-
tion in integral form in Eq. (2.19). We compare the quasilinear heat equa-
tion (2.19) and Eq. (3.2) and we find that the source term is zero: g(¢,x) =0
and we need to split integral faQ f(z,t,x)-fid x into two parts: heat flux in-
side Q and thermal emission and power supply on Q2. Hence, we derive
the ODE for the inner domain of Q in Section 3.2, and we approximate the
exchange of thermal energy along the boundaries in Section 3.3 with the
supplied and emitted heat flux ¢, see also Definition 2.2.

3.1 Meshing with Finite Volumes

In this section, we describe the spatial approximation of the geometric
shapes from Section 2.1: one-dim. rod, two-dim. rectangular, three-dim.
cuboid. These objects are subdivided in many small cells and we assume
that each cell contains a certain thermal energy. Such a cell is an interval
in case of a rod, an area in case of a rectangular or a volume in case of a
cuboid. The subsequent derivation of the finite volume approximation is
explained for the three-dim. cuboid, but might be easily reduced to the

36

A
DY
f-hiw
S
f-ng
foiis |
~

Figure 3.1: A single finite volume with flux
f on cell boundaries and the outer normal
vectors iy, Iig, 1is, 1N.



one- or two-dim. case by neglecting the corresponding dimension(s). A
cuboid has a length L > 0, width W > 0 and height H > 0 and so we note
the total volume |Q| = L- W - H. This total volume is subdivided in small
finite volumes Q; ,,  at position (j, m, k) € ¢ x .4 x & with sets

F:={1,2,---,N;} , M :={1,2,--- ,Np} , £ :=1{1,2,---, Ni}.
Along each axis we have the dimensions and the numbers of cells as

* Ax;>0and N;j eN for x1,
e Axpy =0and N, €N for x, and

¢ Ax3=0and Ni € N for x3.

We note the relations in Table 3.1. These properties are reduced in the
one-dim. case as Axy =0, N, =1 and Ax3 =0, Ni = 1, and in the two-dim
case as Axs =0, N = 1. We find the volume of a cell as

L-W-H Q|
Nj N Ne  Ne'
with the total number of cells N; = N;-Ny,- Ni.. We define the finite volume
at position (j, m, k) as

|Qj,m,k| = Ax1 AXZ AX3 = 3.5)

Qo= [J Ax1, (j+1) Axy] x [m Axz, (m+1) Axy]
x [k Axs, (k+1) Axs]. (3.6)

and we note the corresponding position of its central point as

) (li-3]an
xl k=g = [ [m- 1] Ax,
xy ) \[k-3]Axs

We call a cell via its central point x/"F in the subsequently when we de-
rive the numerical approximation of the quasilinear heat equation. The
temperature values in all cells Q; ;, i are stored in a vector.® To call one
element of this vector, we use the global identifier

i(j,mk) = j+(m—1)-Nj+(k—1)-Ny,-Nj. (3.7
Inversely, we find the local position (j, m, k) as

j=(G{-1) modN;+1 ,
i-j

m=—— modN,;+1 and
N;j
L [mi-m-D N
- Nj-Np,

where expression mod denotes the modulo operation. A grid of finite
volumes is depicted in Fig. 3.3 to exemplify the relation between position
(j, m, k) and its corresponding global identifier i. In the next section, we
discuss the finite volumes at following positions in detail:
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Table 3.1: Size of a finite volume.

Length Axp:= &
g 1 Nj

Width  Axp:= N—“jﬂ

Height  Ax3:= Nﬁk

1 Ax) |

Figure 3.2: Finite volume Q; ,

°We store the temperature data in vectors
because we use CPU-based algorithms. In
case of GPU-based computations, we rec-
ommend to store the data in matrices, ten-
sors or multidimensional arrays.

i

i i i Lomefpomd
Q21 | Q221 | Q3,21

i=Nj+1 i=N]-+2 i=Nj+3 i

_____ / )L._._.
Q1,11 | Q2,11 | Q3,11 :
i=1 i=2 i=3
-/

Figure 3.3: A grid of finite volumes with the
relation between global index i and posi-
tion (j, m, k).




Name Symbol J m k

West L 1 el ex

East Sk Nij el ex

South Fs ey 1 eXx

North N ey N, €eX

Underside Su e g eM 1

Topside SFr e g el N
i(j-1L,mk)=i(j,mk) -1 for je{2,...,Nj},
i(j+1,mk)=i(j,mk)+1 for je{l,...,N;—1},
i(j,m-1,k)=i(j,m,k)- N; forme{2,...,Nu},
i(j,m+1,k)=i(j,m,k)+N; forme{l,...,Ny—1},
i(j,mk-1)=i(j,mk)—Nj-Np forke{2,...,Ng},
i(j,mk+1)=i(j,mk)+N;j-Np forke{l,..., Ny —1}.

At the remaining positions, e.g. i(j — 1, m, k) for j = 1, we assume “virtual”
cells to derive the approximated boundary conditions in Section 3.3.

We distinguish the cells inside the object versus the cells at the bound-
ary sides. The index set of all finite volumes is defined by

F={i(j,mk) | je & mel, ke &} (3.8
and the indices of inner domain are stored as
L :=1i(j,m k) | j€ £ \{1,N;}, me M\{1,Np}, ke & \{1,Ni}}.

Consequently, the set of indices of all cells next to the boundary sides is
found as . \ . Table 3.2 lists the index sets for each boundary side sep-
arately. We remark that the i-th index may occur in multiple sets of the
boundary sides because the corners and edges intersect, which means

(Fw N F) U (Fw NIN) U (Fw N Fy) U (Fww N Sy) # {} and
(FENFS) U (SENIN)U(FENSy) U(FENSFy) # .

We have the cardinality of the index set as
|#| = Nj Ny, Ny = Ng.

This box-shaped meshing with finite volumes of the same size provides us
an intuitive approach to approximate the heat equation in the next sec-
tion. Though, we need to remark that this approach leads to high com-
putational costs because the number of cells grow cubically, see the cardi-
nality above. We visualize the finite volumes as two-dim. boxes in the next
sections but we consider small three-dim. cuboids.
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Table 3.2: Index set of finite volumes next
to boundary sides.



3.2 The Finite Volume Method

We consider a physical quantity z: [0, Tfipa1l x Q — R, which represents
for example the thermal energy or temperature. We consider the value of
z in the cell (j, m, k) as the average

x:+ x;?w% x{+%

f z(t,x)dx1dx,dx3

z(t, xky =
|Q]mk|

= f z(t,x)dx (3.9

with [Q; ;,, x| as in Eq. (3.5). This averaging approach is visualized in Fig.
3.4, and it is applied on the Eq. (2.19) to yield the integral form of the heat
equation in each cell (j, m, k) as

[ p(9) 0(19) 19(t x)dx =

]mk
. )
~

|Q]mk|

d
a1 Ujm k()

f div[A () VI(t, x)] dx
|Q] mk|
]mk

~~

LQjmr®

+ f [A@) VI(t,x)] - ndx. (3.10)
|Qj,m,k| %)
Jj,mk

~ J
-

Pjm, k(1)

We see in Eq. (3.10) that the first and second term, %Uj,m,k(t) and
% Qj,m,x (1) affect all cells, but the third term P; ,,, x.(¢) only affects bound-
ary cells, see Table 3.2. This implies that P; , x(¢) = 0 for all cells of the
inner domain.

The left-hand side of Eq. (3.10), describes only the variation in time and
not in space. Therefore, we find its approximation as

f p((t,x)) c(O(t, x)) w.‘)(t x)dx

]mk

|Q]mk|

19(1‘ X) . (3.11)

x=ximk

~pwumnwum)

In the next step, we evaluate the term %Q j,m,k(2) on the right-hand side
of Eq. (3.10). We recapitulate from Section 2.3 that we derived %Q with
the heat flux g and divergence

3.0
div(g(t,x) =) —q(t,x)
q ;ﬁmq
in Eq. (2.13). Here, we approximate the derivatives aixl g, foraxisl €{1,2,3}
in a first step and afterwards we approximate the temperature gradient
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Figure 3.4: Averaging in one-dim. finite
volume as in Eq. (3.9).



32 0(1, %) in
0
G1(9(t, x)) = =A;(9(, %)) =—9(¢, %), (3.12)
axl

see also Eq. (2.12).
We find the finite volume approach of 2;Q(» in Eq. (3.10) as

f div[A(A(¢, x)VI(t, x)]1d
|Q] mk|
]mk

f div([g(9(t,x))] dx

]mk

f Z —ql(ﬁ(t x))dx

]Wlk

|Q]mk|

|Q]mk|

-1
|Q]mk|l 1

f a—qz(ﬂ(t ,x))dx. (3.13)

]mk

In accordance with the fundamental theorem of calculus, we solve the lat-
ter integral as

f —Qz(ﬂ(t x))dx
]mk

=Axy, Axy, (3.14)

671(19(1? X+ 5—)) —671(1‘)(t x- %))

with the central point % := x/"™*, distance §x; = Ax; e; and standard basis
vector e; € R3 for I € {1,2,3} and indices

li:=[l mod3]+1 and L:=[(I+1) mod3]+1

which determine orthogonal directions of e;. We see that Axy, - Ax;, de-
Ax -AXx,
notes an area and we find ll kiz = A o . We continue our ideas from Eq.

(3.13) with the latest ﬁndlngs in Eq. (3.14) as

f —ql(ﬁ(t x))dx

]mk

=-1) — |qO|t,x+
Elel [ql(

|Q]mk|l 1,

5
))—c/z(ﬁ(z‘ i- %))

and we replace ¢; as in Eq. (3.12) to yield

f div[A(I(t, x))VI(t, x)]dx
Al(ﬁ(t,m@)) iﬁ(t,m@)
2 2

P o P
A (ﬂ(r %- xl)) —a(t,x—ﬂ)
2 0x; 2

The derivative 0%11‘) (t,fci %) in Eq. (3.15) is approximated with a cen-

|Q]mk|

(3.15)

tered finite difference approach as

0 o 1)
a—f(x)=— [f( xl) f(x—ﬂ) +O(IAx 1%,
X1 2
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which we derive via Taylor series approximation, see [71, p. 3], and we find
the finite difference approximation at position x + 57 as

0 ox
e (x 7’) —[f(x+6xl)+f(x)] (3.16)

We apply the finite difference stencil in Eq. (3.16) on derivative 3%19 in
Eq. (3.15) and we conclude

f div[AO(t, x))VI(L, x)1dx
|Q] mk|
j,mk

t,5c+%))«9(t,5c+6xl)
+/1,(19(r,x— %)) 9(t,%—6x))

5
- Am‘)(afm% 3.17)

)+/11(19( x—%))] 9, %) |.

We do not have access to the temperature 9(t, X + %), which occur inside
the thermal conductivity in Eq. (3.17), and so we approximate it via

1‘)(t,5ci %) - % [0(2, %) + 9(t, ¥+ 6x))].

To improve the readability, we change the notation from position (j, m, k)
to global identifier i(j, m, k), see Eq. (3.7), and we note the cell tempera-

tures as
0;(1):=9(t,%) and O;4,(1):= I(t,X+5x)) (3.18)
with offset
1 ifl=1,
H=4 N; ifl=2, (3.19)

N;j-Ny, ifl=3.
Temperatures with index i + p are geometrically adjacent to the i-th tem-

perature as portrayed in Fig. 3.5, but for / € {2,3} in Eq. (3.19) they are not
adjacent in the vector of stored temperatures

T

0:= 61)---)®Nj)®Nj+lr--'rOZNj)---n@m eru'r@Nij

n;:l m=2
Furthermore, we define

Ay(wr, wp) := Aq([wy + wp]/2) (3.20)

as the thermal conductivity along a cell boundary and we note

_ 0x A, %) +9(t,X+£6x)) =
100 (t,xi —’)) ~ /11( : )= 1,04,0:5,).

Consequently, we formulate Eq. (3.17) in terms of ©;, ©;+, and Aas

f div[A(9(¢, x))VO(t, x)1 d
|Q] mk
j,m,k

3 1 _ _
=) N [A1(©1,0i14) Oy (D) +11(04,0;_,) ©; (1)
1

— [A1(81,0i10) + 11(0;,0,_,)] ©;(1)]. (3.21)
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Figure 3.5: Neighboring temperatures of
the i-th cell inside the object.



Summarizing the results of the spatial approximation in Eq. (3.11) and
(3.21), we find diffusion for all cells of the inner domain i € . as

PO c©)) = @ (1) =

3
Z A Al(®z:®z+u) ®l+u(t)+ll(®l!®l ,u) ;- u(t)

[Az(@),,%) +11(0;,0;_,)] ©;(1)]. (3.22)

3.3 Spatial Approximation of Boundary Conditions

The thermal dynamics inside the cuboid is described by Eq. (3.22) in terms
of %Uj,m,k(t) and %Qj,m'k(t) in Eq. (3.10). Additionally, we need to de-
scribe the influence along the boundary sides with P ,,, . (#) as in Eq. (3.10),
because the temperatures 0;,,, and ©;_, are not known for i € S USNUST
and i € Sy U Ss U Sy, respectively. For this purpose, we assume virtual (or
ghost) cells outside, which are adjacent to the cuboid as depicted in Fig.
3.6 and 3.7. So, we calculate the temperature gradients between the inner
cell and the virtual cell, see Definition 2.1. We begin with the boundary
condition
A, x))VI(t, X) - Tilx=pq = P, x)

where ¢ : [0, T] x 0Q — R represents the supplied and emitted energy flux
as noted in Definition 2.2.

The outer normal vector 7 is orthogonal to the boundary side and is
positive if it is parallel to x;, x» or x3, and negative if it is antiparallel to
these directions. Accordingly, we note the gradients on the boundary sides

as
09(t,x)

~ox for x € By,
09(t,x)

o for x € Bg,

——a%(;;) for x € Bg,

VI(t,x)- 1= o

(t,x)

% for x € By,
09(t,x)

~ o for x € By,
09(t,x)

o for x € Br.

We approximate the boundary condition with finite differences in case of
the negative outer normal vector as

A9 (t,x—0x;12)) ﬁ [9(t, x—0x;) —9(¢, X)] = (¢, %) (3.23a)
1

for (X — 0x;/2) € By U Bs U By; and in case of the positive outer normal
vector as

A9 (t, % +6x112) ﬁ [9(t, % +6x1) — 91, B)] = Py (£, 0) (3.23b)
1

for (Xx+ 6x;/2) € B U By UB7. In Eq. (3.23), we consider ¢; at position
because we claim
G185, XF6x12) = ¢y (¢, %).

42

Bw
ao o b
g o (e [ e )
P Qo [ Qp,1, I Q21 J
e \
| Oy 1 Qop \B
R oL N
1
Ydo
dxy

Figure 3.6: Cells next to boundary sides
By and Bg for an arbitrary k-th index. The
temperature gradients — j—fl and — % are

antiparallel to x; and x.



Furthermore, we distinguish ¢; for axis [ € {1, 2,3} because cells with two
or three boundary surfaces have different fluxes for each side. Now, we
step over to the spatially discrete case where all nodes % = x’ = x/"F are
inside the object. Here, we lose the unique relation between the position
on the boundary and its outer normal vector because a cell may have two
or three boundary sides. Thus, we need a decision variable to connect the
position and its associated direction as

1 if(l,i) € {1} x Fy U {2} x F5 U {3} x Ay,
pos(l,i) =<2 if(l,i) € {1} x FrU{2} x FyU{3} x Fr,

0 else.

We identify the cell temperatures as ©;(¢) = 9(¢, X+ 6x;), see Eq. (3.18) and
the averaged thermal conductivity in Eq. (3.20), and we formulate

Or_u(0) = 0;(n) + 2XLPLX) (3.242)
A1(©;,0;_)

with x? = xUm8 1y as in Eq. (3.19), [ € {1,2,3} and all i € Sy U SsU Sy,
which guarantee pos(/,i) =1 and

i
O p(t) = 0;(n) + 2XL PLX) (3.24b)
Al(®i»®i+p)

for [ €{1,2,3} and i € Sg U Sy U St such that pos(l,i) = 2. The approxi-
mation of the supplied and emitted heat flux for the /-th direction can be
condensed as a mapping

®1: 10, Tfinar) — RENm Nk
$2:10, Tfina) — R*NiNe  and
$3: [0, Tfingr) — R*NiNm

with the heat flux vectors® as
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Figure 3.7: Side view on the cuboid, on
boundary side Bg, with finite volume cells
inside object and virtual cells outside. The
vectors % and % represent the temper-
ature gradients on boundary sides B and
Br.

5We drop the time-dependency of ¢;(1)
for a better readability.
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$2,ia,1,1)
$2,iv;,1,1)
$2,i(1,N,,1)
$1,ia,1,1) G2,i(N;, Ny, 1) o
(pl,i(Nj,Ll) 3,i(1,1,1)
Priazy $2,i1,1,k) $3,i(j,m,1)
$1,iv;,2,1)
$2,iv;, 1,00 $3,i(N;, Ny, 1)
1= P2 = — and ¢3= ! (3.25)
b1,i1,m,k) $2,i(1, Ny, k) $3,i1,1,Np)
bri;,m k)
P2,i(Nj, Ny, ) P3,i(j,m,Np)
(pl,i(l,Nm,Nk) : (p?),i(Nj,Nm,Nk)
D1i(N;, Ny, Np) $2,i0,1,Np)
$2,i(N;,1,Np)
$2,i(1, Ny, Ny)
b2,i(N;, Ny, Np)
in which ¢y ;(j,m k) is a short notation for
¢l,i(j,m,k)£¢l(t,xj’m'k) = ¢y(t,x")
with global index i = i(j, m, k). If ¢; represents the thermal emissions as
noted in Def. 2.3, we note the approximated heat flux as
Gomi (1, %) := =y (x") [0; (1) = Damp, (x)] -0 £,(x) ©;(D*  (3.26)
and we distinguish here h;, €, and 9, for each direction / € {1,2,3}.
According to Eq. (3.22), the diffusion in the [-th direction is approximated
by
[A104,0i41) iy (1) + 110,80, ) ©; (1) = [11(01,0:1,) + 1/(0;,0;_,)] ©;(1)] IAx]
and we identify the unknown temperatures at i + 4 with the identities (3.24).
We find the diffusion in each direction [/ € {1,2,3} as
11(0;,0i1y) (0i1,—0;) /Ax? if pos(l,i) =1,
11(01,0;_,) (©;-,—0;)/Ax? if pos(l,i) =2,
D101,0; 1,04y i={ (©i-u=0i) 1A%, P (3.27)

[11(0:,0:4)80 sy + 11(0;,0;_,)0;_

~[A1(0i,04) + 11(0,0;_)] ©;] | Ax?

and we note the “external” processes on the boundary

¢i(t,x")/Ax; if pos(l,i) €{1,2},

& (t,x") = (3.28)

else.

We conclude this section by summarizing the numerical approximation of
the quasilinear heat conduction in the following definition.

else



Definition 3.1 (Spatially approximated quasilinear heat conduction)

We consider an object with length L > 0, width W = and height H = 0. This
object is discretized with N = N; - Ny, - N finite volumes with the dimen-
sions Ax; = NL]-’ Axp = N—V‘:n and Ax3 = Nﬂk, see Table 3.1. We note the cell
temperatures as © € R¥ and we approximate the thermal conductivity at
the cell boundaries 1 ; asin Eq. (3.20). The left-hand side of the quasilinear
heat equation (2.20) is approximated as in Eq. (3.11). The diffusion inside
the object Q as in Eq. (3.22) is equipped with the boundary conditions and
the temperatures in the virtual cells is found as in Eq. (3.24). In conclusion,
we formulate the spatially approximated quasilinear heat conduction as

d 3 ,
c(©) pO) 0i( = Y. [21(0:,01-,O1s) + E1(1,x)|.  (3:29)
=1

with offset p in Eq. (3.19), approximated diffusion 2; in Eq. (3.27) and
“external” processes & in (3.28). O

3.4 Sparse Representation of the Linear System

In the end of Section 2.3, we introduced the linear heat equation (2.21)
with constant material properties A = diag(1;,A2,13), p > 0 and ¢ > 0.
Here, we approximate the linear heat equation with the finite volume ap-
proach and we note the ODE (3.29) in matrix-vector notation as

d Na o ¢i(1)
—0O(1) = ——D; O(t) + E;—— 3.30
det (1) ;Axlz 109(7) lel (3.30)

with Ny € {1,2,3}, diffusion matrices D; € RNe*Ne, temperature vector
0:10, Trinall — RNe and number of finite volume cells N, = Nj - Np - Ng.
The approximated boundary conditions are specified by

Ey e RNX2NmNe ¢1:10, Tfinar) — RN,
E2 € RNCXZNij , (,bz :[0’ Tfinal) - RZNij,
E3 e RNex2NiNm ®3:10, Trinar) — RENiNm,

The heat flux vectors ¢; are specified in Eq. (3.25), and the sparse’ matri-
ces D; and E; are described in detail next. We recommend to compare the
definition of the index set in Eq. (3.8) and the corresponding Table 3.2 for
boundary cells to follow the subsequent ideas. In Eq. (3.27) with u =1, we
have the diffusion at the boundary sides as

0;

®i+1_®i=(—1,1)'( ) for i € Ay,

i+1
0,

@,-_1—@),-:(1,—1)-( (; 1) for i € S,
i

and elsewhere as
©;-1
;41 +0;.1-20;=(1,-2,1)-] ©;
®i+1
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“The term sparse means that a vector or
matrix consists of many zero entries. This
fact may be used to reduce the storage or
to accelerate the computation of a matrix-
vector multiplication.



We formulate these iterations as the matrix

jt 1 2 3 N;
-1 1 0 0
1 -2 1
D, = o . . . ol (3.31)
c -2 1
0 .. 0 1 -1

which is stacked to form the diffusion along direction x; as

D1 = diag(Dl,...,Dl).
——
Ny, N blocks

The sparse pattern of matrix D, is visualized in Fig. 3.8. The position of

flux ¢; at #y and Ff corresponds to j =1 and j = N; and so we note the
matrices

1 0
_ o : L 5
E1= , Elzdlag( El,...,El )
: N———
-0 Ny, N blocks
0 1

We continue with direction x, and we find the boundary conditions in
Eq. (3.27) with u = N; as

0;

Oji41

Oi+n; —0; = (-1,0n;-1,1) forie s,

®i+Nj
Oi-n;

G),'_Nj—@iZ(l,ONj_l,—l) G)' forie Sy
i-1

0;

and for all other indices i € . \ %5 U ¥y, we note the diffusion
Oi-n;
O

Oirn; +0Oi-N; —20; = (1,0n5;-1,-2,0n;-1, 1) | O;
®i+1

®i+N]’

We iterate over j € {1,...,N;}, me {1} U{2,..., Ny — 1} U {Np,} to yield the
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o=-2 Oo=-1 o=+1

Figure 3.8: Sparse pattern of matrix D; to
express the diffusion in x; -direction.
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matrix blocks
m 1 2 3 Ny,
-In, Iy, Oy, ... Oy
In;  —2In; Iy _
Dy = on, o oy | 3.32)
Iy, -2Iy;, Iy,

ONj ONj IN]. _INj Dy =

which are summarized via an iteration over k € {1,..., N} as

Dg Zdiag(Dg,...,Dg).
——

Ny blocks

o=-2 o=-1 o=+1
Figure 3.9: Sparse pattern of matrix Dy i
An example of the sparse pattern of the sub-matrices D,  is expressed in to express the diffusion in x;-direction in

: . layer k€ {1,..., N¢}.
Fig. 3.9. The heat fluxes occur at m = 1 and m = Ny, for N; cells in each

“layer” k € {1,..., Ni} and so we note the matrices

INj ONj
- On; 7 2
EZ — N] , EZ :diag(EZ,--'yEZ)'
N——
ONj Nj blocks
ONj INj

The diffusion in x3-direction is noted in Eq. (3.27) with u = N; - Ny, for
the boundary sides as

0;
®i+1 .
©i+N;N,, —0i = (-1,0n;N,,-1,1) . forie Sy,
Oi+N; Ny,

Oi-N;N,,

©i-N;N,, —©i = (1,0n;N,,-1,—1) : forie Sr
O;1

0;

and we find for all other indices i € &\ Hy U Fr
Oi-N; Ny,
©;

©i+N; N, +Oi-N;N,, —20; = (1,0N;N,,-1, =2, 0N, N, -1, 1) 0;
Oj41

Oi+N;N,,

The boundary conditions are active at “layer” k = 1 and k = Nj for all
(j,m)efl,...,N;} x{1,..., Ny}, and for all other layers k € {2,..., N, — 1} we
have the diffusion matrix blocks (I NjNp» =21 Nj N> I N; N,,)- Consequently,



we note the matrices
k: 1 2 3 N
-InN,  INiN,  OnjN, ON; Ny
IniN,,  —2IN;N,, IN;N,,
Dy = - - .. (3.33)

ON; N, : . . ON; N,

IniN,,  —2INjN,,  IN;N,,

ON; N, On;jNy  INjN,  —INgN,

and
IN;N,,  ON;N,,

ON;
E, = | ONiNm

ON; N
0NN, INjN,,

We see that D; and E; with [ € {1,2, 3} are large-scale matrices with only
few nonzero entries and so its summation in Eq. (3.30) leads to a large-
scale sparse matrix again.

Due to these large-scale and sparse matrices, the evaluation of Eq. (3.30)
should not be implemented as s matrix vector operations in a CPU-based
computation because of potentially high computational costs. However,
the linear system formulation in Eq. (3.30) provides a suitable form to an-
alyze the eigenvalues, eigenvectors, and related properties like the analyt-
ical and numerical stability, stiffness, etc. of the linear system in Chapter
4. Furthermore, we consider the linear system for the design of the open-
loop and closed-loop control in Chapter 7 and 8.

We conclude this section by summarizing the diffusion matrices Dy, D»
and Dj to formulate the system matrix A for the one-, two- and three-dim.

case.

Definition 3.2 (State space formulation of the free system)

We consider the spatially approximated heat equation (3.30) with ther-
mally insulated boundary sides and without actuation, e.g. ¢;(f) = 0 for
1 €{1,2,3}. We denote the state space formulation as

d
EGU) = An,0(1) (3.34)

with Ny € {1,2, 3}, system matrix
Ng

aj
AN, =) —D (3.35)
= Axlz

and diffusivity a; := CA—;). We distinguish the temperature vector for each
geometry as temperature states

©: 10, Tfinal —RYI ifNg=1,
©: [0, Tfinags] — RNINm if N; =2 and
©: [0, Ttina] — RNiNmNk if Ny =3.

Subsequently, we formulate Ay, for each Ny € {1,2,3}. In the one-dim.
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case (Vg = 1), we find the tridiagonal system matrix

a] -~

(1]
- 2
Axl

=3 € RNi*N; (3.36)
X
1

Ay 1

with the tridiagonal matrix D asin Eqg. (3.31).We formulate the state-space
of the two-dim. heat equation (N = 2) as
a _ _ ar ~
Ay = — diag(Dy, ..., Dy) + —5 Dy
Axl N——— sz
N, blocks
Az,o Az,z
Azp Azn Ao
= € RNiNm*NjNm (3.37)
Ay Ay Agp
Az Az

with D, as in Eq. (3.32) and the matrix blocks

a a; -~ (4%

Asp=A——=T= —D1—-—=1 )

20 ! Ax% Axf ! Ax%

- 2a a; -~ 2a

A2,1=A1——221= —12D1——221 and
sz Axl sz

~ a

App=—21.

2
Ax;

We continue our previous ideas for the three-dim. scenario (N = 3) and
we formulate the system matrix as

A=+ 2p,+ Bp
3 Ax? ! Ax3 2 Ax2 3
Asp  Asp

. ' ¢ RN/ NmNixNj N N (3.38)
Asp  Asy Asp
Aszz Azp

with D; as in Eq. (3.32) and the matrix blocks

An=A _ﬁj
so=A2=5l
3
a - - ar -~ a
= —diag(Dy,..., D)+ —5 Do~ —>51
Ax] —— AX; Ax3
N, blocks
Ay =Ap— 293
31 = A2 Ax§
a - - Ay ~ 2a
= —L diag(Dy,...,D1) + —=D, - =1 and
5 d1ag 3 2
Ax] —— AX; Ax3
N, blocks
A —&[
2 AxZ
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4

Approximated Linear System

In this chapter, we discuss the system properties of the linear heat conduc-
tion phenomena as described in Definition 3.2. In particular, we compute
the eigenvalues! , € C and eigenvectors 1 € C" of the system matrix Ay, A ! The common eigenvalue symbol A is re-

in Eq. (3.34) for N, € {1,2,3}. A general linear differential equations served for the thermal conductivity.

iz(t) = Az(1) (4.1)
dt

RY*N and number of states

with states z : [0, Tf] — RY, system matrix A €
N €N, represents a heat conduction problem with zero-Neumann bound-
ary conditions as in Eq. (3.34). In this setting, we have a system matrix
A:= Ap,, states or temperature values z(f) := ©(f) and the number states
of finite volume cells N := N.. We find the eigenvalues p, of matrix A in

Eq. (4.1) by solving the well-known eigenvalue problem
Ay =uy orequivalently (A—pDy =0. (4.2)

In case of small-scale systems, e.g. N € {1,2,3,4}, we may find the eigen-
values through manually solving the characteristic polynomial

p(u) := det(A— ul) = 0.

In case of larger systems, such a computation is usually much more com-
plicated for arbitrary matrices and need be evaluated numerically. How-
ever, in some cases we may derive the eigenvalues directly: for example in
case of diagonal and upper or lower triangular matrices as

a a2 a3 a, N ap1
ar2 a3 a2,N a1 G2
or as) asp
aN-1,N-1 GaN-1,N : D . an-1,N-1
an,N ay1 anz2 ... GANN-1 4NN

we yield the eigenvalues as diagonal entries u, = a,,,. If matrix A is not in
a triangular or diagonal form then it may be transformed to such a form.
System matrix Ay, is not diagonal or triangular, but it is a tridiagonal
matrix for N; = 1 and a tridiagonal block matrix for N, € {2,3}, see Defi-
nition 3.2. Thus, the eigenvalues are not the diagonal elements and they
need to be calculated numerically as discussed in Section 4.1. In Section



4.2, we analyze the matrix properties of Ay, and the system behavior of
the related differential equation using the found eigenvalues and eigen-
vectors. We continue these ideas in order to derive the solution of differ-
ential equation (3.30) in Section 4.3 and we exemplify our findings with
small-scale simulations.

4.1 Computation of Eigenvalues and Eigenvectors

In Definition 3.2, we formulated the system matrix Ay, for each number
of dimension Ny € {1,2,3}. In the one-dim. case, we have A; = ;—;%Dl
and we see that D contains ones on the upper an lower sub-diagonal and
—2 on almost all diagonal elements, except the first and last row and col-
umn. We call such a matrix shape tridiagonal. In the two- and three-dim.
cases, the system matrices A, and A3 contain matrix blocks on the diag-
onal and sub-diagonal and these matrix blocks have a similar tridiagonal
shape as in the one-dim. case. These matrices do not match the previ-
ously described triangular or diagonal form, which have the eigenvalues
as diagonal entries. In general, these matrices are too large to calculate
the eigenvalues manually and so they are usually computed numerically.
Standard eigenvalue solvers provide useful results, but they prone to small
numerical errors and the computational costs increase by the matrix size.
In this section, we provide an approach to compute the eigenvalues and
eigenvectors exactly for one-, two- and three-dim. geometries. To reach
this goal, we firstly estimate the range of eigenvalues with the Gershgorin
Circle Theorem and secondly, we compute the eigenvalue and eigenvec-
tors exactly with cosine expressions. We prove the correctness of the found
eigenvalues and eigenvectors and we show that the eigenvalues are in fact
inside the Gershgorin circles.

Gershgorin Circle Theorem

We approximate the eigenvalues of an arbitrary matrix A € RV*N with the

Gershgorin circle theorem?

, see also [71, p. 277]. For the further explana-
tions, we have an eigenvalue u and the related eigenvector v = (i/1,...,wn) |,

which is normed as

[¥lloo = max(ly1l,...,lynD =1

such that its largest element is one at index i with i € {1,2,..., N}. From Eq.
(4.2), we derive for each row

N N
pyi= aiwi=| Y apyj|+aniy;
j=1 J=1Nj#£L

and we subtract the i-th component on the right side as

N
(H—ai)yi= Y, aiy;. 4.3)
J=1Aj#i

Next, we consider the absolute value on both sides and see that

|w—a;illyil =pu—a;;l
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2These ideas are based on the work
of Semyon Aronovich Gershgorin (¥*1901,
11933) [70].



because |y¥;| = 1. We apply the triangle inequality on Eq. (4.3) and we note

N N N
lw—aiil<| Y aywil< Y, laijllyjls > laijl
j=lnji j=lnj#i j=1nj#i

because |y ;| <1 for j # i. We define the radius of the i-th diagonal ele-

ment a; ; of matrix A as
N
ric= ), laijl
J=1nj#£Q
and the related Gershgorin discs as

d(z,r):={eC:|{-z|<r}

which implies |y — a; ;| = d(a; i, ;). Therefore, we find all eigenvalue
inside or on the boundary of the union of all Gershgorin discs as

N
un€Ud(ai;,ri) fornefl,..., N}
;

This result is called Gershgorin circle theorem. We illustrate this concept
with the small example matrix>

-1 1 0
A=l1 -2 1],
0 1 -1

which has the Gershgorin discs d;(—1,1) for the first and last row and
d»(—2,2) for the second row. We find the true eigenvalues of A as the roots
of the characteristic polynomial

p(u) =det(u—A) = (u+2) (u+1) u

as p € {—3,—-1,0}. All eigenvalues are inside the union of the closed Ger-

shgorin discs as p € d; (—2,2) Ud»(-2,2), and the Gershgorin discs and the
eigenvalues are visualized in Fig. 4.1.
If matrix A € RV*V is decomposable as A =Y ,,_; p, M, with coefficient

pn € Rand M,, € RNV then we find the Gershgorin discs

d(a;j,ri) = d(z pnmn,i,iyri)

n=1

with radius

=) Pn Y, Imajl

n=1  j=1aj#i

in which my ; ; denotes the (i, j)-th entry of matrix My. In this way, we
apply the Gershgorin circle theorem on each (partial) diffusion matrix Dy,
D, and D5 asin Eq. (3.31, 3.32, 3.33) separately and we find for each ma-
trix the diagonal entries —1 and —2 and the radius r = 1 and r = 2. Thus,
we note the same Gershgorin discs d(—1,1) and d(—2,2) for each (partial)
diffusion matrix, see also Fig. 4.1 above. In case of a full system matrix
Ap, as in Eq. (3.35), we find four scenarios for the diagonal entries and
the corresponding radii, which depend on the index i € % of the temper-
ature cell. If the cell is completely inside the objectas i € &, then we note
the diagonal entries and its radius as

Na o I Na o /

angii==-2) —>5 and ri=2) —.
1=1 Axl 1 Axl
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% Example matrix A equals to matrix Dy, ,
in identity (3.31) for Nj =3.

Figure 4.1: Gershgorin discs d(-1,1),
d(-2,2) and the true eigenvalues p €
{—3,—1,0} of the example matrix A.



with diffusivity a; = C’l_;)

the index of the corresponding direction as

. If a cell is close to a boundary side, then we note

1 ifieywuyg,
[:=52 ifie S5UF,
3 ifieAgyuSs.

If a cell is close to one boundary side, then we find diagonal entries and its
radius

aj asy
ri=2L Tataa )
121 2% X

a; aj
angii=|=2) — +(=1) N

I#-Axl A j

If a cell is close to two boundary sides, then we continue with

a aj
ZAxlz " Z Axlz
I I#57]

aNg,i i = i =

aj sz‘
-2——+(-1) E —
2 2

Axl izl xi

and if a cell is close to three boundary sides, then we note

Na g Na -

_ 1 L l
aNgii == g and mi= ) s

I=1 =7 =177

We exemplify these findings with a simple three-dim. heat conduction
example. We assume the material properties 1, =1 and ¢ = p =1, and
the spatial discretization Ax, = 1 for n € {1,2,3}. So, we note the diffusion
matrix

AN, =D1+Dy+D3

for an arbitrary size of DNe*Ne with N, = 9. In accordance with the previ-
ous ideas, we derive the Gershgorin discs

d4(_6y 6) » d3(_5r5) ) dZ(_4)4) ) dl (_3)3)
and we see that the smallest possible eigenvalue is at i, = —12 and the
largest possible eigenvalue is at (45 = 0.

Eigenvalues and Eigenvectors in the One-Dimensional Case

We continue with the exact computation of eigenvalues and eigenvectors
for the one-dim. linear heat equation. We return to our standard notation
of the spatially approximated linear one-dim. heat equation

0, -1 1 0,
0, 1 -2 1 0,
d . e .
rri LT : (4.4)
On;-1 I -2 10BN
OnN; 1 -1 On;

] )

-

with insulated boundary sides, coefficient p; := ﬁ and initial conditions
©(0) = Oy, see also Def. 3.2. Here, we have diffusion matrix D; = D; and
we notice that D looks almost like a Toeplitz matrix*
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*Described by and named after Otto
Toeplitz (*1881 , 11940) [72].



ap a-1 a-2 ... 4-(N;-1)
ay aop a1 a,(Nj,z)
’
a) aop a1
aNj_l cee a ay ap

which has only non-zero entries ay on the diagonal, and a_; on the up-
per and a; on the lower sub-diagonal. We remark that D, is only almost
a Toeplitz matrix because ag in the first and last row differ to the other
diagonal elements. The eigenvalue computation of Toeplitz matrices in
general® and tridiagonal Toeplitz matrices in particular is well studied in
the literature, see [73-75]. The eigenvalues of a tridiagonal Toeplitz matrix

A= (4.5)

are noted as®

nm
i=b—2v
Uj accos(Nj+1)

for j € {1,...,N;}. We choose (a,b,c) = (1,-2,1) to note a matrix which
looks almost like the diffusion matrix D; in Eq. (3.31) and we find the
eigenvalues

=2 Zcos( in ) (4.6)
Hi= Nj+1 )

for j € {1,..., N;}. The position of the eigenvalues in Eq. (4.6) for N = 10 are
portrayed in Fig. 4.2. However, the eigenvalues in Eq. (4.6) are not exactly
the eigenvalues of diffusion matrix D, in Eq. (4.4) because matrix D; is not
exactly a tridiagonal Toeplitz matrix as the first and the last diagonal entry
of D, are not —2 but —1 due to the Neumann boundary condition.

We take these differences of the diagonal elements into account and we
note the tridiagonal matrix

b-a ¢

a b c

b-p

According to article [78], we find the eigenvalues of the tridiagonal matrix
inEq. (4.7) witha = f=—ac#0" as

i—1
Hj= b+2\/accos(u)
Nj

for j€{1,..., N;}. The corresponding eigenvectors

’(//] = (U/j,ly---ij,nj;---y'Wj,Nj)T
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5 More details about Toeplitz matrices are
noted in [76].

5 There exist different ways how to derive
these eigenvalues, see also this blog post
on StackExchange [77].

® Eigenvalues y

Figure 4.2: Continuous version of the
eigenvalue distribution as in Eq. (4.6) for
N =10. The discrete eigenvalues p; for
j€f{l,...,10} are noted as red dots.

7 Coefficient «a is not the diffusivity here.



have the elements

Vin, = Q"j‘l cos —(] Déanjj R (4.8)
with o = v/a/c, see [78]. We remark that these eigenvectors v j are notnor-
malized. This eigenvalue and eigenvector computation is also discussed
and extended in article [79]. Now, we choose again (a, b, ¢) = (1,-2,1) and
a = f = —1 such that we formulate diffusion matrix D; as in Eq. (4.4). In
this way, we yield the eigenvalues of the one-dimensional linear system as

(j—l)n)
J

K =—2+2cos( (4.9)
for j € {1,...,N;}. An example of the eigenvalue distribution for N = 10
is visualized in Fig. 4.3. We highlight that all eigenvalues are inside the
interval [—4, 0] as computed previously with the Gershgorin discs. We note
the eigenvectors elements with Eq. (4.8) as

(j—-D@2nj— 1)71)

4.10
W, (4.10)

for j € {1,...,N;} because p = \/g =v1=1. We highlight the case of
j =1, where we have eigenvalue y; = 0 and eigenvector y; = (1,...,1) . In
Fig. 4.4, we the visualize the eigenvector elements v ; ,; of Eq. (4.10) for
Nj =10and Nj € {2,5,7,10}.

In the original one-dim. linear heat conduction problem in Eq. (4.4),
the diffusion matrix is multiplied with coefficient p; = -2, Hence, we

Ax?
need to include p; in equation (4.9) as

a

~— (4.11)

pj==2

l—cos(w)].

N;j

So, we find all eigenvalues to be inside the interval [_4ALxZ’ 0]. This fact
implies that the linear differential equation (4.4) is analytically stable in
the sense of Lyapunov for all choices of @ > 0 and Ax > 0. The single
zero eigenvalue u; does not disturb the stability property practically. We
summarize our findings on the computation of eigenvalues and eigenvec-
tors in the subsequent lemma and we prove that they solve the eigenvalue

problem (4.2).

Lemma 4.1
The values p; in Eq. (4.11) and the vectors y; = (wj,l,...,u/j,Nj)T with
¥ j,n; in Eq. (4.10) solve the eigenvalue problem

Alu’j =UjY; (4.12)

with matrix A; from Eq. (3.36) for j € {1,..., N;}.
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Figure 4.3: Continuous version of the
eigenvalue distribution as in Eq. (4.9) for
N = 10. The discrete eigenvalues of dif-
fusion matrix D are pj, for je{l,...,10},
which noted as red dots.
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1 1 Figure 4.4: Eigenvector elements v jn;
0.5 0.5 (green dots) and underlying cosine oscil-

1\2 3 4/5 § 7 {3 9/107j  Jation as in Eq.(4.10) with N; = 10 for

0 T T T 0 T T T , j€{2)5'7, 10}.
03 \‘\ > \./ \./
-1 1

e Eigenvector elements y/2,,,; e Eigenvector elements y/5,p;

(@) j=2:co0s(0.1wrn;—0.05m) (b) j=5:co0s(0.4nn;—0.27)

e Eigenvector elements ¢7,, i e Eigenvector elements /19, nj

(c) j=7:co0s(0.6wn;—0.37) (d) j=10:cos(0.97n; —0.457)

Proof. We consider a matrix

-1 1 0 0
1 -2 1
Ai=pifo . . L0
: 1 -2 1
o ... 0o 1 -1

with p; = :’—):%. In this proof, we check that the right-hand side of Eq. (4.12)

coincides with its left-hand side. For this evaluation, we transform expres-

sion p ;v ; via angle sum identities to the left-hand side expression Ay ;.

In the beginning of this proof, we collect several identities, which help us

to evaluate the term u ;v ;. We use these identities in the next proof again.
We introduce function

f(z,n):=cos([2n-1]z), (4.13)
which is used to express the eigenvector elements
Vin; = f(,n)) = cos([2n; —1]v)
and the eigenvalues
pj=-2p1ll1-fQ2v,1)]=-2p1[1-cos2v)]

with v=(j— I)ZLNj and j € {1,..., N;}. We note the cosine angle sum iden-
tities

2cos(v)cos(w) = cos(v+ w) +cos(v—w), (4.14)

2sin(v) sin(w) = —cos(v + w) + cos(v— w) (4.15)



and cos(—v) = cos(v) for v, w € R. We apply Eq. (4.14) on f(z,n) and we
find the identity
2 f(2z,1) f(z,n) = 2cos(2z) cos([2n—1]z)

= cos([2n+1]z) +cos([2n—3]z)

=flz,n+1)+ f(z,n—1). (4.16)
We evaluate the term f(z,n—1) forn=1as

f(z,0) = cos(—z) =cos(z) = f(z,1). (4.17)

We continue with n = N;: we identify z in f(z,n) by v = (j - 1) ﬁ and we

calculate

-f(,Nj)+ f(v,Nj+1) = —cos([2N; —1]v) + cos([2N; + 1]v)

Eq. (4.15
& )Zsin(Zva)sin(v)

=2sin([j - 1]7) sin(v) =0
forall j € {1,...,N;}. Hence, we have the terminal condition
f(z,Nj+1) = f(z,Nj) (4.18)

Now we have all necessary identities at hand and we check the eigenvalue
equations.
In the first row of the eigenvalue equation (4.12), we calculate
w1 =-2p1ll-f2v,D]If(v,1)
=pil-fw, - flv,H+2fQ2v,1) f(v,1)]
=pil=-fw, - flw,D+fv,2) + w ]

Eq. (:4‘17)f(v,1)
=pil-fw, )+ f(v,2)]
=pil=vj1+ vl

which equals the left-hand side of the first row. In the second row, we
calculate

Hjyi2=—2pill-fQ2v,D]f(v,2)
=p1l-2f(,2)+2f2v,1) f(v,2)]
=ml-2fw, D+ f(v,3)+ f(v,1)]
=pilyji—2¢ 2+ sl
and in the n-th row with n € {2,..., N; — 1}, we note analog as above
HjWjn=—2p1[1- fQRv,DIf(v,n)
=pi-2f(v,n)+2f2v,1) f(v,n)]
=pil-2f(wv,m+ flv,n+ 1)+ f(v,n—-1)]
=p1lWjn-1—2¥jnt+¥jnl
Finally, we note in the last row, we find
pjvjN; = —2p1ll - fQv,DIf(v,N))
=pi1l-f(v,Nj) - f(v,Nj) +2f2v,1) f (v, N))]
=pil=-f(w,Nj)- f(v, N)+ f(v,N;j+1) + f(v,N; - 1)]
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and we apply here Eq. (4.18) to obtain

/J]W]JV] = Pl [—f(U,N]) +f(VrNj - 1)]
=pilyjN-1-vjnN ]

In consequence to these findings, all rows of the right-hand side of Eq.
(4.12) coincide with its left-hand side. O

Two-dimensional Heat Conduction

In the one-dim. case we found the eigenvalues and eigenvectors of the
tridiagonal system matrix A;. In the next step, we transfer these ideas to
the two- and three-dim. heat conduction scenarios where A, and Asz are
block triangular matrices as described in Section 3.4. These system matri-
ces describe a diffusion for each spatial direction and so we take this su-
perposition into account for our subsequent discussions. In accordance
with Definition 3.2, we note the approximated two-dim. heat equation as
D, -1 I

D, I =21 1

d
T D= |m . +p2 . ) . (1

-

=:As
with one-dim. diffusion matrix D; as in Eq. (3.31) and the coefficients

p1:= 15 and pp := 5. System matrix 4; € RNiNm*NjNm js noted in Defi-
1 2

nition 3.2 as block tridiagonal matrix
Az Ay
Az Azl Az
Ay = ,
Ayy Asy Az
Azp Az

which has almost a tridiagonal block Toeplitz shape as

To Tp
Tg Ta Tp
T= (4.20)
Tg Ta Tg
Tp Ta
with matrix blocks
ap @ by b
a a a by by b
Ta= and Tp=
a ay a by by b
a  a b1 b

System matrix A, differs to T in the first and last block because Az,o #
Ay = Ty, and Ay is not a Toeplitz matrix like T4 because D; is not a
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Toeplitz matrix, see Eq. (3.31). In article [80], the eigenvalues of a tridiag-
onal block Toeplitz matrix T as in Eq. (4.20) are derived as

jn
J

Nj,m=ao+2a1cos( 1)+2bocos(

=
Np+1

mmn
) (4.21)

jr
+4b; cos cos
Nj+1 Ny +1
with je{l,...,N;} and m € {1,..., Np,}. Similar to the one-dim. case we are
now able to find an estimate of the eigenvalues of system matrix A,. We
set ag = —2p1 —2p2, a1 = p1, bg = p2 with p; = ﬁ, p2 = 2, and we note
X Axs

the eigenvalue approximation of D, as

im=—2 [1 cos( im )] 2 1 cos( mr )] (4.22)
Bim=—2p1 Nj+1)] P Npt1)| ’
We compare the eigenvalues of the previous tridiagonal Toeplitz matrix® % The
asin Eq. (4.6) with the eigenvalue estimation as in Eq. (4.22) and so we find Eq.
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tridiagonal Toeplitz matrix in
(4.5) approximates almost the

one-dimensional diffusion matrix Dy.

an identical structure. Hence, we may interpret Eq. (4.22) as the two-dim.
version of Eq. (4.6).

We already know that the eigenvalues of the approximated linear one-
dim. heat equation (4.4) is found as in Eq. (4.11) and thus we transfer our
similarity findings from Eq. (4.6) and (4.22) to the approximated two-dim.
heat equation (4.19). Thus, we claim that the eigenvalues of Eq. (4.19) are
noted as

Kjm= —2p1 [l—cos([j—l]%)] —2p2 [1—cos([m—1]l)] (4.23)

J

with p; = :—xlz and p, = 1% and for j € {1,...,N;} and m € {1,..., Ny}.
The eigenvalues are sorted with the global index i(j, m) = j + (m—1)Nj as
Kj,m = Mi, see also Eq. (3.8). In accordance with the eigenvector computa-
tion of the one-dim. case, see Eq. (4.10), we formulate the i-th eigenvector
as
o T
Vi:=Win..VinN,)

with N; = N; - Ny, and the vector elements

g - n.) = COS
Vij,m),(nj,nm) 2N;

2N
for nj € {1,...,N;} and n,, € {1,..., Npy}. We find the superposition of the
diffusion as an addition in Eq. (4.23) and as a multiplication in Eq. (4.24).

As in the one-dim. case, we state our ideas in a lemma and we prove the
correctness of the eigenvalue problem (4.2) with the claimed eigenvalues

and eigenvectors. These findings are presented without a proof in article

[37] to derive a time-discrete heat conduction model.

Lemma 4.2

The values p; in Eq. (4.23), the vectors v; = (wi,l,...,w,-,Nij)T with the
elements ¥ j,m),(nj,n,) = ¥i,n IN EQ. (4.24) and index i(j, m) = j+(m—-1)N;
as in Eq. (3.8) solve the eigenvalue problem

AW = Wiy (4.25)

(j—l)(an—l)JT) ((m—l)(an—l)ﬂ
cos

(4.24)



with system matrix A in Eq. (3.37) for (j,m) € {1,..., N;} x {1,..., Np,} and
(nj,ny) €{1,...,Nj} x{1,..., Ny}

Proof. We carry out this proof analog to the one of Lemma 4.1. We prove
that the right-hand side of Eq. (4.25) is identical with its left-hand side ex-
pression. However, we need to take the block structure into account here.
Similar to the previous proof, we firstly describe the supportive identities
and evaluate secondly the eigenvalue expressions. We introduce the same
function as in the previous proof

f(z,n):=cos([2n-1]z),
which fulfills the identity
2 f2z,1) f(z,n)=f(z,n+ D+ f(z,n—-1)
as shown in Eq. (4.16). We express the eigenvector elements as

W(j,m),(nj,nm) = f(U, nj) f(w, Nm)

= cos([2nj —1]v) cos([2n,, —1]w)

with (nj, n,) €11,..., N} x {1,..., Np} and the eigenvalues as

uj==-2p1l1-fR2v,D]-2p2[1- fRw,1)]
= -2p1[1-cos2v)] -2p2[1 —cos2w)]
with v = (j—l)ZLNj, w=(m- l)ﬁ and je{l,...,N;}, me{l,...,Ny}. We
shorten the notation of the eigenvector elements as ¥/ (j,mj,(;,n) = ¥in
with the global indices
i(jm=j+(m-1)N;,
n(nj,nmy) = nj+ Ny —1DN;j.
Multiplying the i-th eigenvalue with the n-th element of the correspond-
ing eigenvector, we yield
pivin= (-2p11- fQv, D] -2p2[1 - fQw,]) f(v,n)) f(w,np)

=2[p1+p2lf(v,n)) f(w,ny) +2p1 f2v,1) f(v,nj) f(w,npy)
+2p2f(v,n;j) fRwW,1) f(w, ny). (4.26)

We further specify the products in Eq. (4.26) as

2f v, 1) f(v,n)) f(w,nm) =[f(v,n; -1+ f(v,n; + )] f(w,ngy)
=f,n; =1 fw,np)+ f(v,n;+1) f(w,ny)

and

2f(w,n;) fCw,1) f(w,np) = f(v,nj)[f (W, Ny —1) + f(w, ny +1)]
=f,n)fw,n, -0+ fw,n;)f(w,ng,+1).

For (nj,nm) €{2,...,Nj -1} x{2,..., Ny, — 1}, we note

f(V) n] - 1) f(wr nm) = Wi,[}’lj—l+(nm—1)Nj]r (4273)
f,nj+1) f(W,nm) = Wi nj+1+n,-1)N;) (4.27b)
f,ng) fw,nm—1) = ¥in+mn-2N;1 (4.27¢)

f(U, n]) f(wr nm + 1) = 1//l',[nj+l’Lm]Vj]' (427d)
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We find the remaining expressions for the initial values n; = 1, ny = 1
with identity (4.17) as

(4.28)
(4.29)

f,0) flw,np) = f(v,1) f(w,nm) = Yin+mu-DN;)
f(U, n]) f(wyo) = f(l/,nj) f(w)]-) = Wi,[nj]

and we note with Eq. (4.18) the terminal values for nj = Nj, ny = Ny, as

f,N;+1) fw,nm) = f(v,Nj) f(w,nm) = ¥in, N
f,n)) flw,Nm+1) = f(v,nj) f(W,Nm) = Winj+Np-1)N;]-

(4.30)
(4.31)

System matrix A, is a block tridiagonal matrix, see Eq. (3.37), and so
we compute of the eigenvalue problem with two nested iterations: we it-
erate over each row block n,, € {1,..., N;;} and each row inside the block
nj€{l,...,N;}. We remind that each index (j, m) and (n}, n,) corresponds
to a cell in the finite volume grid, see Fig. 3.5 and Fig. 3.7.

1. Block Row: In the first block row, n,, = 1, we multiply i-th or (j, m)-
th eigenvector with the blocks A, o and A, » as

Vil
Yin Vi,Nj+1 Vi
= | vin |5 . . .
[A2)0, Az2] T =Az0 + Ao : =i
Vi,N;j+1
. Vi,N; Wi2N; Vi,N;
Vi2N;

with the tridiagonal matrix A, o = p; D — p» I and the diagonal matrix A, » =
p21. The position of the finite volume cells corresponding to the indices of
the eigenvalues and eigenvectors is portrayed in Fig. 4.5. In the first line,

nj =1, the first eigenvector element has the local indices (nj,nm) =1,1)

and so we note eigenvalue equation

=[pr+pAvin + p1viz + pavinN+1 = HiWi- (4.32)

We evaluate y;v; 1 asin Eq. (4.26) with the identities (4.27d, 4.28,4.29) and

we yield

pivin = =2[pr+p2lyin+ prlyin + il + p2lyin + ¥i N +1]

—lpr+p2Ayii+ piviz+ paying+1. v

We mark the evaluation of u;y;; with v' to express the correctness of the
eigenvalue equation. In the next rows, nj€f2,...,Nj—1} and ny, =1, we
formulate the eigenvalue equation

P1Win;-1 = 2P1+ p2l¥Win; + PAWin;+1 + P2ViN;+n; = KiVin;-  (4.33)

We see that Eq. (4.33) is fulfilled because we calculate its right-hand side
with Eq. (4.26) and identities (4.27a, 4.27b, 4.27d,4.29) as

/JiWi,nj = _z[pl + pZ]U/i,nj + pl [Wi,nj*l +1//i,nj+l] + pZ [Wi,}’lj +1//i,Nj+nj]
= P\Win-1— 2p1+ p2lWin; + PrWinj+1+ P2WiN;+n;- Vv

j=1 j=Nj
g mnemnnas
: ° ° ° ° ° .--'--m:Nm
le o o o o o :
! 1
! 1
: 9 o o o o o
XZ/[:.Q ° ° ° ° .--:--m:l
X1
> (jym=(1,1)
o) Neighbors
(a) First line: nj=1
j=1 j:.N]
[ -é-l
e o o o o ---'--m:Nm

o (Jm=(21)
¢) Neighbors

(b) Central lines: nj =2

Fe———————
L]
L]
L]
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L]
°
L R e

o (jym=021
¢) Neighbors

(c) Lastline: nj = N;

Figure 4.5: The position of the finite vol-
ume cells corresponds to the eigenvalue
equations:

Fig. (a) and Eq.(4.32),

Fig. (b) and Eq. (4.33) for nj= 2,

Fig. (c) and (4.34).

The central point (j, m) correspond to the
index of the right-hand side expression

HiWi,(nj,nm)~



The eigenvalue problem in the last row of the first block, n; = N; and
nm, =1, 1is given as
P1¥iN;-1— (p1+ P2)WiN; + P2Wi2N; = HiViN;- (4.34)

We state the right-hand side of the eigenvalue equation as

HiYiN; = =2[p1 +p2lf(v,Nj) fw, 1) +2p1 f2v,1) f(v,N;) f(w,1)
+2p2f(v,Nj) fQw,1) f(w,1)
= =2[pr+plf(v,Nj) f(w,1)
+p [f(o,N;-1) f(w, 1)+ f(v,N; +1) f(w,1)]
+p2 [fw,N) f(w,1) + f(v,N)) f(w,2)]
pif(w,Nj-1 f(w,1) = [p1+ p21f(v,N;) f(w, 1)+ f(v,Nj) f(w,2)
+pil=f(v,Nj)+ f(v,N; + 1] f(w,1)

and we apply the identity (4.30) to yield
pivin; = p1f(v,Nj—1) f(w,1) = [p1+ p2l f (v, Nj) f(w, 1) + f(v,N)) f(w,2)
=pPvinN;-1 = (P1+ PV N, + paWion,. v

2. Block Row: In the second block row, n,, = 2, we multiply the i-th or
(j, m)-th eigenvector with the blocks Ay and A, as

Yia

Vi,N;
Vi,N;+1 Vil Wi,Nj+1
[Az, Az, Az2] : = Agp| 1 |+A42 : + Az,
Vi2N; ViN; Vi2N;
Wi2N;+1

Vi3nN;
where we have the tridiagonal matrix Ag,l =pm D;-2 p2I and the diagonal
matrix Ay, = p21. This procedure is analog to the previous one but here
we apply Eq. (4.28) only in the first row of the block. In the first row of the
second block row, nj = 1 and n,, = 2, the eigenvalue equation is stated as

p2vin —p1 +2p2lWi N 41+ P1YiN;+2 + PoWioN;+1 = HiViN;j+1.  (4.35)
We evaluate p;;n;+1 analog to the previous eigenvalue computations
with Eq. (4.26) and the identities (4.27b, 4.27c, 4.27d) and the initial value
identity (4.28). Thus, we yield
HiViN+1 = =2[pr+ p2lyin; 1+ PrlYi N 1 Wi N2l + P2[Yin + YN, +1]

= pavin — [p1+2p2l¥i N +1+ P1YiN+2 + P2¥ion+1. v
In the next rows, n;j € {2,...,N; — 1} and n,, = 2, the central point is

completely inside the grid and all neighboring points and indices exist,
see Fig. 4.6. So, we have the eigenvalue formula with all neighbors as

P2VWin; + P1Win-14N; = 2[P1 + P2lWin;+ Ny P1Vin;+14N;

+P2Vin;+2N; = KiVin;+N;-
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We evaluate expression p;y; ,; with Eq. (4.26) and consider all identities
(4.27) to find

HiVing+n; = = 2[p1+ pal¥in+nN; + P1in—14N; + Wi +140]
+P2[Win; +Vinj+2n;]
= P2VWin; + P1Winj-14N; = 2[p1 + P2l¥in;+N;

+P1Win 414N, + P2Winj42N;. v

In the last row of the second block row, n; = N; and n,, = 2, we note the
eigenvalue equation

P2Vi,N; + P1ViaN;-1 = [P1+2p2lV¥ian; + P2VWiaN; = HiVi2N;-

We calculate the term p;;,n; similar to Eq. (4.34): we apply the identities
(4.27a, 4.27c, 4.27d) to find

HiYiN; = =2[p1+p2AV¥ian; + PrlVienN, -1+ Wi2n;+1]
+p2(vinN; +V¥isn]
and we replace y; » Nj+1 by i, N; with the terminal value expression
fw,Nj+1)= f(v,N))
in Eq. (4.30) to obtain the desired eigenvalue equation
HiV¥iN; = P2Vi,N; + P1WiaN;-1 — [P1+2p2]Wian; + P2¥isn;. v

The solution of the eigenvalue problem for all further inner block rows
N, € {3,..., Ny — 1} is analog to the described way. So, we continue with
the last block row.

N,,-th Block Row: In the last block row, n;,;, = N,,, we have a similar
situation as in the first block row as

Vi, (Np-2)Nj+1

Vi, (Nu—2)Nj+1 Vi, (Nm—1)Nj+1

i A Vi, (Nm-1N; ~ . 7

[Az2, Az 0] m = A : + Az

Vi, (Nyp-1)N;+1
. Vi, (Np-1N; Wi,N;iNp

Wi'Nj Nm
In contrast to the previous block rows, we have to apply the identity of the
terminal value (4.31) in each line the last block.

The first eigenvalue equation of the last block, n; = 1 and 1y = Ny, is
noted as

PzWi,(Nm—z)N,-H—[Pl+P2]Wi,(Nm—1)Nj+1+P1Wi,(Nm—1)Nj+2 = HiVi,(Njp—1)Nj+1-

We calculate the eigenvalue expression (¥, (n,,-1)N;+1 as

(—2p1[1 -f@v,D]-2p2(1- fRw, l)])f(v, 1) f(w, Ny)
=2[p1+plf(v,1) f(w,Ny)+2p1 f2v,1) f(v,1) f(w, Ny)
+2p2f(v,1) fQw,1)f(w, Np) (4.36)

HiVi,(Nu—-1DN;+1

=I"Li

Vi, (Nu—2)Nj+1

Vi, (Nm-1N;
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and we yield
fw,D) fCw, 1) f(w,Np) = f(v,1) [f(w, Ny, — 1) + f(w, Ny, + 1)1

Here, we apply the identity (4.31) and so we find

HiWin=p2f(, 1) f(w, Npm—=1 —I[p1+p2lf(v,1) f(w, Np)
= P2V (Np-2)N;+1 — [P1+ P2lWi (NN 41 + IV (N - 1N 420 Y

We note the eigenvalue equation of the intermediate lines in the last
block, nj€{2,...,Nj —1} and n;;, = Ny, as

P2V i,(Ny-2)Nj+n; + PAVi(Np-1)N;j+n;-1 = [2P1 + P2lWi (N, - DN+
+ P1Vi,(Np-1)Nj+nj+1 = HiVi,(Nyy—1)Nj+n; -
and we evaluate u; v (n,,—1) Nj+n; analog to the previous eigenvalue com-

putations with Eq. (4.26) and the identities (4.27a, 4.27b, 4.27c) and (4.31).
Thus, we yield

Ki¥i,(Nyy-DN;j+n; = = 2[P1 + P2lV¥i (N~ 1N+
+ PV, (Ny=D)Nj+1j-1 + Wi, (Nyy=1D)Nj+n;+1]
+ P2V (N-2)Nj+n; + Vi, (Npy-DN;j+n;]

= PV N2 +n; + DLW (N =D 411

= [2p1+ p2lWi, (N - 0N +n; T PIV (N - DN 4041V

In the very lastrow, nj = N; and n,, = Ny, we formulate the eigenvalue
equation

P2V, (Np-DN; + P1Vi,N;Nyy=1 = [P1 + P2lVi, NNy = HiWi,Nj N,y

The finite volume cell at index (N i» Nm) is adjacent to two boundary sides,
see Fig. 4.7. Hence, we have to apply the identities of the terminal value
expressions (4.30,4.31) and (4.27a, 4.27¢) to evaluate ;¥;,n;n,, as

KiVi, NN, = —2[p1+ P2l¥in; N,
+ PN Ny -1+ Wi N Ny 1]
+ P2V (N2 N; + Wi, (N DN ]

= P2Vi, (N~ ON; + PIVi,N;Nu-1 ~ [PL+ P2lVi NN, Y

Three-dimensional Heat Conduction

The linear heat equation in three dimensions is noted as
d 6(1r) = A30(1)
dr -

with the system matrix Az as in Eq. (3.38). Due to the fact that As is a block
tridiagonal matrix like A,, we can apply the same ideas and techniques
from the previous proof. We suggest to compute the eigenvalues of A3 as
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. T
Hjmk= —2p1 [l—cos([]—l]—)]

Nj
b1
—2p> [1 —cos([m— I]N—m”
b/
—2ps3 [l—cos([k—l]m)] (4.37)

: ; - o 7 — a3
with coefficients p; = A’ p2 A’ p3 A and for

(Jym, k) ell,...,Nj} x{1,...,Np} x {1,..., Nih

The eigenvalues are sorted with the global index i(j, m, k), see Eq. (3.7), as
Kj,m,k = 4i. We define the function

f(z,n):=cos([2n—-1]z)

and formulate the corresponding i-th eigenvectoras w; := (W 1,...,¥in.) |,
N¢ = Nj Ny, Ny, with its elements as

o (i-1 m-1 k-1
W(j,m,k),(nj,nm,nk) _f(Z_]an, I’lj) f(mﬂ, I’lm) f(mﬂ, N

for (nj, nm,ng) € {1,...,N;} x {1,..., N} x {1,..., Ni}. The correctness of
eigenvalues y; and eigenvectors ¥; can be checked via the evaluation of
the eigenvalue problem

A3VWi = [iVi

in an analog way to the previous proof of lemma 4.2.

Summarizing the findings of this section, we are now able to compute
the eigenvalues and eigenvectors of Ay,. This fact helps us in the next
sections to gain a deeper understanding of the numerical behavior and
to construct a closed-form solution of the approximated heat equation in
Section 4.3.

4.2 Matrix Properties and Stiffness

In this section, we discuss basic properties of system matrix Ay, and its
related linear heat conduction problem in multiple spatial directions as
formulated in Definition 3.2. First of all, we derive a matrix transforma-
tion of Ay, to the diagonal matrix Ay ,- For this purpose, we check the
symmetry Ay, = ALd and the orthogonality of the eigenvectors of Ap,.
Afterward, we discuss and exemplify the numerical accuracy and stiffness
of the approximated linear heat conduction problem.

(4.38)
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Matrix Symmetry and Transformation

In the one-dim. case, we find the symmetry of matrix A; as

—di2 4z
ayp a4l a4
T . . . _
Al = .. .. .. = A
ayz a4 ai,2

aie —dap

because the upper and lower sub-diagonals coincide. The system matrix
of the two-dim. case is a block matrix and so we need to apply the trans-
pose on each matrix block as
T 4T
Ay Ay
T AT AT
Ay Ayy Ay
AT AT AT
Ay ‘i‘z,l “}2,2
Ay Az
with the matrix blocks
~ T ~
Agg= (A1=p2I) =(A] = p2I") = A1 = p2l = Ay,
~ T ~
Ay = (A1=2paI) = (A] —2p2IT) = A —2py] = Ay,
A;—,Z = szT = Ag,g.

Accordingly, we yield A; = A,. We find the symmetry of A3 analog to the
two-dim. case as

AT AT
AS,O A3,2
AT AT AT
A3,2 A3,l A3,2
A;— = t. . c. . t. . = A3
AT AT AT
A3,2 AS,I A3,2
AT AT
A3 2 AS,O

because all block matrices are symmetric as

Agy= (AZ—P3I)T =(Ag —psI") = Ay — psI = As,
ABT,I = (4 —2P3I)T =(Ay —2p3I") = Ay —2p3I = Ag,

A:;I"Z = szT = Ag,g.

Now, we have the matrix symmetry at hand and so we show the orthog-
onality of the eigenvectors in the subsequent paragraphs. We define the fi-
nite dimensional scalar product for real-valued vectors (,-) : RN xRN - R

as
N

(wwy:=Y viwi=v'w
i=1
for v, w € RY. If the vectors v and w are not zero vectors and their scalar
product is zero as (v, w) = 0 then v and w are orthogonal.

A matrix M € RV*N is called self-adjoint if for all v, w € RV the identity

(Mv,w) = (v, Mw)
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holds. We know that a real-valued symmetric matrix M € RVN*V is self-
adjoint because we find

(Mv,w)= (v, Mw)y=Mv) w=v M w=v"'Mw = (v, Mw)

and this concept holds in particular for Ay, as (An, v, w) = (v, AN, w) for
any v, w € RNe with the number of cells N,. In the next step, we assume
two different eigenvalues u;, # u;, and eigenvectors y;, # v, for indices
i1 #i2€{1,..., N}, which fulfill the eigenvalue equations

ANy Wiy = piy Wiy and A, Wi, = i Wi, -

In consequence, we find with the identities

<ANdI//i1 ’ Wl'g) = (ujil ’ ANdqué)

and

(AN Wi, Win) = g Vi, Win) = Biy (Wi, Wiy )s
Wi ANgWin) = Wi, By Win) = Rip\Wi, Wiy)

that the scalar product {(y;,,¥;,) = 0 because y;, # p;,. This fact means
that all eigenvectors y; are orthogonal and they are a complete basis of
RNe. If the eigenvectors are orthogonal and their vector norm || v := /{v, V)
is one, then we call them orthonormal. They are computed as

- ._ Y

Y Tyl
forie(l,..., N;}. Moreover, the orthonormal eigenvectors form an orthog-
onal matrix® V := [/,,...,J ] because

VV=1oV =V

We apply the identity (y;,, AN, ¥i,) = i, (Eil ,¥i,) for each possible i1, i» €
{1,..., N.} toyield the transformation

T — -
V' An,V = Ay,

V V=Ay,, (4.39)

which is equivalent to the identity
(4.40)

with matrix Ay, consisting of the eigenvalues as

H1

- H2
ANd =

KN,

We remark that the symmetry of Ay, and the resulting orthogonality of

V are key factors to compute the transformation (4.40) because otherwise
. —-1 . . .

we had to use the inverse V' = and its computation might be costly.
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One of the main goals of transformation (4.39) is the evaluation of exp(Ap,, 1)
as part of the solution of the linear heat equation

O(1) = exp(An, 1)6(0).

We calculate this matrix exponential as

© ] Y 0 1 —_\n
exp(Ath): Z’O;(Ath) = ZO;(VAthV )
n= n=

S -1 n —-1
=) V—(AN,0)" V
—0 N

n
— =1 = =T
V exp(An,H) V' = V exp(An, 0 V

=V diag(exp(u1£),...,exp(un, 1) VT. (4.41)

In Section 4.1, we computed the eigenvalues of Ay, and we find the first
eigenvalue for each geometry to be zero: y; =0, see Eq. (4.11,4.23,4.37).
This affects the finding of the inverse of Ay,, the numerical accuracy and
the stiffness property as we discuss next. We calculate the determinant of
An, as

det(Ay,) =det(VAy, V') = det(V)det(An,) det (V') = det (4y,)

because V is unitary with det(V' V) = det(I) = 1. Thus, we find the deter-
minant as the product of eigenvalues
~ NC
det(An,) = H/Ji =0

i=1

because p; = 0 for all considered geometries.'? This issue implies that
we cannot compute the inverse of Ay, and AN , because the inverse of a
square matrix M € RV*V is found with the adjugate adj() as

~1 _ adj(M)
" det(M)”

The fact that we are not able to compute the inverse of Ay, leads to further
implications. We consider a linear heat conduction problem with constant
non-zero Neumann boundary conditions as

d
-0 = Ay,0(0) +¢

with a constant heat flux vector ¢ € RVe. If we wish to find a steady-state
temperature distribution O, with

d
%Q(t) =0=AN,O5+¢
for t — oo, then we are not able compute O, via
O5r = —Ay, b

because the inverse matrix AI‘VZ does not exist. Instead, we have to solve
an optimization problem

0 = arginllANdG)st + ol
st

to yield an approximation of the steady-state temperature ©7,.
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Numerical Accuracy and Stiffness

The right-hand side of the linear heat equation (3.34) is computed several
times during a simulation run and each execution causes small numerical
errors. Thus, we are interested how precisely our approach works. A well
established statement is that a computation is called well-posed if small
variations of the input data lead to small variations of the resulting data,
see [81, page 37]. In the context of matrix vector multiplications as

Aw=b

with A e RN*N, w, b e RN and N € N, we call the matrix A well-conditioned
if its related matrix vector multiplication is well-posed. Otherwise, we call
A ill-conditioned. We begin with a general overview and apply the findings
of this analysis afterwards on the linear heat equation.

We consider a mapping f : RY — RY, N e N, the true input data w € RV
and the disturbed input data i := w + Aw with small variations Aw € RV,
The relative error of the function evaluation f has to be smaller than the
error of the input data as

_ 1@ - fw)l - lw—wl
If )l lwll

with coefficient k > 0. In case of a linear mapping f(w) := A w with A€
RNXN

rel

we yield
_1A@-wl _ 1AAwl _ l1Aw]

Crel = = <K . 4.42
rel lAw]l lAw]| lwll (4.42)

If we consider a disturbance 6 > 0 only at the i-th position as Aw = de;
with a standard unit vector e; = (0,...,0,1,0,...,0)T, i € {1,..., N}, then we
find

ay,i
AAw = Ae;i6 =0
an,i

and we note Eq. (4.42) as

N 2
_ 14wl _ 18114l _ 01y Zna1 % 18]

Crel = = = =K ——-.
lAwl lAwl lAwl lwl

We see in Eq. (4.43) that the error depends on the position i € {1,..., N}

(4.43)

and if we consider all possible positions then the computation of the er-
ror would be computationally costly. Therefore, we may approximate it
via the right-hand side of Eq. (4.43). The coefficient « is called condition
number and in case of a symmetric matrix A with full rank, we obtain it as

max | Awl||
= A
ko= fapgaty = 2 Hmax(A)] (4.44)
||IEJ||1£11”A“’" |min(A)

in which |tmax (A = \/ ttmax(AT A) and |tmin(A)| = \/ min(AT A) denote

the absolute maximum and minimum eigenvalue of A.

When we apply these concepts on the right-hand side of the linear heat
equation Ay,0(¢) for any time ¢ € [0, Ttinal), then we see the main issue
that the inverse A&Z and consequently x do not exist because

t1 =0=Itmin(AN,)I.
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This means that we cannot estimate the relative error because the upper
bound, the right-hand side of Eqgs. (4.42, 4.43) may grow up to infinity.
Hence, we call matrix Ay, ill-conditioned.

We find this issue in another property: the stiffness of the differential
equation. A system of differential equations is called stiff if the fastest
component of its solution is significantly faster than the slowest compo-
nent. In case of linear systems“, e.g. d%z(t) = Az(t) with A € RN*N the
differential equation is called stiff, if

[max(A) > |wmin (Al

and the stiffness ratio is noted as % as in Eq. (4.44). We see that
the linear heat equation is stiff because |umax (A = [N, | > |min(A)] = 0.
This stiffness property affects the application of the numerical integration
methods, because common (non-stiff) numerical solvers, like the explicit
Euler method and the explicit Runge-Kutta method may work poorly and
we need stiffness-aware, implicit, numerical solvers to handle this issue.

We discuss this situation in Chapter 5.

Example: Numerical Error of One-dimensional Heat Conduction

We exemplify the relative error e,,; as in Eq. (4.43) for the one-dim. heat

equation

d
E@(l‘) =A; O(1)

with A) = py D; and p1 =1, see Eq. (3.31). We demonstrate the error
for an increasing number of cells N, € {3,4,...,100} and we assume the
normalized temperature vector

_ 1 1+
Oy, = ——0p, with Oy, =

1O :
N2
Ne—1
2

1+

We only calculate the relative errors, which relate to the first and second

column
Ay el Ay exl

— and epe2 = 10| —
A1 Ol A1 Ol

with standard unit vectors

€rell = | |

0

1
1

0
e1=|. and e, =0
0 :
0

and have the norms

1A erll = = V(=12 +12=V?2,
IA; e2]l = = V12 +(-2)2+12 = 6.
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N. 3 5 10 20 50 100

erer1 54 138 43.6 130.0 529.6 15128
erelz 93 249 756 2252 917.4 26202

All remaining relative errors are equal to the previous ones because the er-
ror of the last column is analog to the first one and the error of the second
column is the same for all central columns as

lArenll ifi=Nc,
lAiexll ifief3,...,N.—1}.

Are;ll =

As || A1 el = V3 A1 e1ll, we see that Crel2 = V3 ere11- We set the distur-
bance 6 = 1 and evaluate the relative error for N, = {3,...,100}. The com-
puted relative errors are noted in Table 4.1 and depicted Fig. 4.8. We find a
nonlinear rise of the relative error, which means that finer approximations
are stronger affected by the ill-conditioned matrix Ay, than coarse ones.
As we are interested in a precise approximation to simulate the thermal
dynamics exactly, we face the challenge to compute exact temperatures
with a fine spatial sampling while avoiding such numerical inaccuracies.

4.3 Analytical Solution of the Linear Problem

In this section, we derive the analytical solution of the linear heat equation
with non-zero boundary conditions (3.30). We know that an inhomoge-
neous differential equation

i (t)=Az(t)+ f(2) (4.45)
ar P Toe )

with system matrix A € RV*V, states z : [0, Tinq) — RY and additional
force f: 0, Tfinar) — RY is solved via “variation of constants” as

t
z(t) = exp(Al) z(0)+f exp(Alt—1]) f(r)dr. (4.46)
0

We transfer this concept to our linear heat conduction problem with tem-
peratures z(f) = ©(f), system matrix A = Ay, see Eq. (3.35) and heat flux
Na ()
1
r) = Ej——.
=Y E A%,

=1

In consequence, we evaluate Eq. (4.41) and we obtain the solution

t
0(1) = Vexp(Ay, t)VT®(0)+Vf exp(An, [t—-T)V
0

with diagonal matrix exp(ANd t) = diag(exp(u11),...,exp(un,t)). Hence,
the computation of the eigenvalues and eigenvectors in Section 4.1 en-
ables us here to find an analytical solution (4.47) of the spatially approx-
imated heat equation (3.30). If we start at any time #, € [0, Tf) and we
integrate until 7, € (0, T¢], f < f», then we solve the linear heat equation
iteratively as

T
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Table 4.1: Relative numerical error of the
linear heat equation.

2000 Rel. error 2

Relative Error

3 20 40 60 80 100
Number of Cells

Figure 4.8: The relative error e,;; and

erel 2 in the simulation of the linear heat

conduction is increasing by the number of

cells N¢ € {3,4,...,100}.

Na (1)
;EIA_XI drt (447)
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— _ — g _ —_T
@(tg):Vexp(ANd[tz—tl])VTG)(tl)+Vf exp(An, [z -tV ZEl(pl(T) (4.48)

5]

for arbitrary time steps in [0, T¢]. If these time steps are sampled equidis-
tantly with sampling time AT = f, — f; and we assume a constant heat
flux between the samplings then we yield at time ¢ = nAT with iteration
ne{o,l,..., L%J — 1} the solution

(/’l(nAT)

— 1 — — AT 1 _
O([n+1]AT) = VetNarT VT@)(nAT)+Vf e AT=T gy
0 X[

ZEI

In some scenarios, it is useful to consider the transformed tempera-
tures
~ —-1 =T
O@:=V 6=V o),

which lead to the differential equation

d - —T1d
el -V =
aoW=Vv 560

ZEZ (,bl(t)

=V Ay, VOW+V '
=1 Axp

ZEI (Pl(t)

= Ay O +V'
d 1=1 Axl

(4.49)

We find the solution of differential equation (4.49) via “variation of con-
stants” like above as

O(1) = exp(An, 1)O(0) + fexp(ANd[t TV ZE,(MT) (4.50)
0

=1 X1

We discuss the relation between the solution of the original and trans-
formed states in Eq. (4.47) and (4.50) in an example in the end of this
section.

Constant Heat Flux

The total heat flux of supplied power and thermal emissions usually varies
in time. Though, this variation impedes the task to analyze the impact of
boundary conditions on the thermal dynamics inside the object. Hence,
we may assume a constant heat flux, e.g. ¢;(f) = ¢; = const. In this case,
we are able to calculate the integral in Eq. (4.47) and (4.50) in a closed form

as
(T )
A V E
foexp( NylE=T]) Z lel
=feXp(AN [t—TDdr V' ZEI ¢
0 ! Ax;
i
=MW V'Y E 451
( ) Z lel ( )
with diagonal matrix
1
M(1) = diag 1, = [1-e],..., —— [1-eM] .
Hal lun,



We find the elements of M(t) via simple integration for y; =0 as

t t
f el gr =f dr=t
0 0

t

f eilt=nl gp = Lpamt = L

0 Hi il

fori€{2,...,N;} because all u; < 0. Therefore, we note the solution of Eq.
(4.47) and

and
[1-et]

0 = Vexp(An,HV ' ©0)+VM®V ZE,A‘/’; (4.52)
1

and we find the solution of Eq. (4.50) with the transformed temperatures
Oas
b1

@(t)—exp(Ath)G)(O)+M(t) V ZEIA (4.53)
I=1 X1

Heat Transfer along Boundary Sides

If we assume the thermal emissions ¢, as in Definition 2.3, in the inte-
gral of Eq. (4.47) and (4.50), then we obtain a (nonlinear) state feedback
because the temperature values along the boundary sides determine the
emitted heat flux ¢.,,. In case of pure linear heat transfer

$1i(0)=—hy; [0;(1) = Oump,,i]

in each boundary cell i € &\ S, see Eq. (3.8) we summarize all ¢; ; for
each [ € {1,..., N;} and we note the state feedback via thermal emissions
as

¢1(0) = —Hj E] ©(0) + H; Oy (4.54)

Here, the expression ElT O(?) filters for boundary cells and the heat transfer
coefficients are stored as H; = diag(hy 1, ..., hl,NijNk) with

2Ny N x2Npy, N| 2N, Nj
HlEIR miVk miVk , G)amb,IE[R m k’
H2 € RZNijXZNij , Gamh,Z € RZNij’
H3 € RZN]'NmXZNij , Qamh,g € [RZNij'

We identify ¢; in right-hand side of Eq. (4.49) with the thermal emission
in Eq. (4.54) and so we obtain the differential equation

Z El (,bl (T)

9 &) = Ain B0+ V"
B =1 Ax

dt

Ng

~ —T Ng 1 T A —T
An,-V Y —E HE |60)+V
=1 AXx;

=1

=:ATE

in which the new matrix'? Arg = Ay, —VTZZ ¥ 5 E/HE] is in general
not a diagonal (or triangular) matrix. Hence, we lose the approach to for-
mulate the eigenvalues and eigenvectors of Arg in a closed form and so
we may lose the numerical precision of the solution. However, the eigen-
values and eigenvectors of Arr might be computed numerically. These
ideas are limited to the linear heat transfer because in case of nonlinear
heat radiation, we have a nonlinear differential equation.
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Gauss-Legendre Quadrature

The integrals in the Eq. (4.47) and (4.50) are in general difficult to solve
manually for an arbitrary (smooth and integrable) heat flux ¢;(¢). Thus,
we need to compute the integral numerically. One of the most prominent
approaches is the Gauss-Legendre quadrature, which is stated as

1 n
flf(s)ds =) wif(s)+Ry (4.55)

i=1

for an integrable function f : R — R with weights w; > 0, quadrature nodes
si € [-1,1], remainder R, = 0, and the order of quadrature n € N, see also
the literature [82, p. 40] and [83, p. 887]. The task is to find suitable weights
and quadrature nodes such that the remainder R,, = 0 and

1 n
f f©)ds= Y wif(si).
- i=1
The quadrature node s; is the i-th root of the Legendre polynomial P, (x),
which is calculated either with the recursion formula
(n+1)Ppy1(8) = 2n+1)s Py(s) — nPy_1(s)

or with Rodrigues’ formula '3

Pa(s) = —— 4~ (s>-1)"
T 2npl dsn '
We calculate the weights as

2

2
(1= 52 [ Pa(5) 5=,

wi; =

and we find the remainder as

22Vl+1 [n|]4

R, = 2n
" (2n+1)[(2n)!]3f ®

for s € (—1,1). We are interested in the interval [;, L] with0< 1 < £p < Ty
instead of [-1,1] and so we need to change the interval in Eq. (4.55) with

E— tz%“s+ t‘;tz and% = tzgtl as
L2 1 h— N h+t\b—n
d =/ ( s+ ) ds
J@as= | r(5 |2
th—1 & h—r H+
:%Zwif(zzlsi+ 122 (4.56)
i=1

The numerical integration in the subsequent example is implemented
with JULIA library FastGaussQuadrature.jl. This library provides methods
to compute the weights w; and quadrature nodes s; in case of a high order
n = 60 according to the approach in article [85].
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Example: Simulation of One-dimensional Heat Conduction

We exemplify our findings with a simplified one-dim. heat conduction
example with N, = 3, Ax = 1, and the coefficients A = p = ¢ = 1. We only
have two boundary sides By and Bg which influence only one cell per side
$11(1)
$1,2(0)

of the transformed problem (4.50) for two scenarios. Firstly, we assume

and so we have the heat flux ¢; (#) = ( ) We compute the solution

a constant heat flux and solve the integral manually; and secondly, the
heat flux varies in time and we solve the integral numerically with Gauss-
Legendre quadrature. We note the differential equation of the spatially
approximated heat conduction as

%9(1?)=A1@(1«‘)+El¢1(t)
1 1 0 1 0
=11 -2 1lem+|o o (¢>1,1(t))‘ 4.57)
0o 1 -1 o 1) \Pr2®

We find the eigenvalues p € {0,—1,—3} and the original and normalized
eigenvectors as

V3 1 1 L 1

L% 2 _ | v %
V=11 0 -1 and V= 7 0 ~%
1 -¥3 1 1 1 1

z 2 V3 V2 Ve

and we transform the original differential equation (4.57) with the eigen-
vectors and the new states © into

d - 1.0 T
—- 0 =000+ V' Eiy

1 1
= " -1 o(r) + E —Ti P11 (4.58)
_3 v2o V2 o) ‘
NG

Scenario 1: Constant Heat Flux
In the first scenario, we consider a constant heat flux ¢, (¢) = ¢;. We yield
the integral as in Eq. (4.51) with diagonal matrix

1
M(t) =diag|t,1-¢e7F, 3 [1- e‘“]) .

and we solve differential equation (4.58) with Eq. (4.53) as

. . 1

010 =010+t — [p1+ 2], (4.592)
1 1 7 (1 + 2] a

O2(N=e""0200)+[1-€77] % [p1— 2], (4.59b)

s - 1

O3(1) = e303(0) + VG [1-e73] [¢1 + 2] (4.590)

We consider the initial temperature values

2

T v3

Q=] 2 = 0=V 0| v2
-1 _4

/6

and we visualize the solution in Fig. 4.9 for two cases:
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(a) Insulation (b) Heating and Cooling

1. insulated boundary sides, ¢; = (0, 0)7,in Fig. 4.9 (a) and
2. heating on By and cooling on Bg, ¢1 = (2,—1) ", in Fig. 4.9 (b).

In Fig. 4.9 (a) we find that the states O, and ©3 converge towards zeros
and O, is constant because they are only affected by the unforced term
e!it®;. The states in Fig. 4.9 (b) increase because of the positive heat flux
sum ¢;,1 +¢12 = 1. In particular, the first state rises linearly because of
linear time in Eq. (4.59a) and the states ©, and ©3 look like a charging
curve of a capacitor in a RC circuit because of the terms

[1-e7'] and [1-e7%]

in Eq. (4.59b, 4.59¢).

Scenario 2: Time-varying Heat Flux
Now, we wish to solve the original and transformed differential equations
(4.57, 4.58) with the time-varying heat flux

ol
¢11() =1.2exp|— 0.7(1,‘—?)

2
) , ¢12(8)=0. (4.60)

This heat flux means that we supply a power density on By, while Bg is
insulated. We consider this heat flux ¢; ; (¢) here because we discuss input
signals with such a shape in Chapter 7 for the open-loop control design.
We subdivide the time interval (0, T¢) into parts (¢, fn+1) such that

0=t0<[1<l'2<...<tNT=Tf.

and we solve the differential equation of the transformed states iteratively
in accordance with Eq. (4.48) as

@(tnﬂ) = eXp(ANd [tne1— tn]) é(tn)

$1(7)

In+1 - —T
+f exp(An, [th+1 —TDV Eq dt
th Axy

for n € {0,..., Nt — 1}. In particular, we compute the integral numerically
with Gauss-Legendre quadrature as in Eq. (4.56). For the simulation, we
assume a final time Ty = 10 seconds, equidistant time steps #, = 0.1n and
initial values ©(0) = ©(0) = (0,0,0) . Finally, we compute the original tem-
peratures as O(t,) = VO(t,).
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Figure 4.9: Simulation of transformed so-
lution (4.59) with insulated boundaries in
(@) ¢1 = (0,0)—r and constant heat flux in

b ¢1=2-17.

1.0
0.5

\

Time t in [s]

1 2 3 45 6 7 8

Figure 4.10: Time-varying heat flux on

boundary By as in Eq. (4.60).
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(a) Transformed States (b) Original States

In Fig. 4.11 (a), the state ©; purely integrates heat flux ¢b; ; while ©; and
O3 approach a similar shape like ¢; 1. In contrast to that, the original states
in Fig. 4.11 (b) only show an integrating behavior and all states reach the
same final temperature. This is an important fact to steer a temperature
distribution from an initial value to a desired final value, see Chapter 7.

In this chapter, we derived the eigenvalues and eigenvectors of the lin-
ear heat conduction and we constructed the analytical solution with them.
In Section 4.2 and 4.3, we highlight the influence of the first eigenvalue
p1 = 0, which causes the ill-conditioning of Ay, and the integrating be-
havior of the heat flux in the solution (4.47). The analytical solution of
the linear heat conduction provides a powerful tool to examine the linear
thermal dynamics. However, as we face nonlinear problems in our gen-
eral framework, we describe and utilize numerical solution methods in the
next chapter.

7

Figure 4.11: Simulation of the one-dim.
heat conduction with time-varying heat
flux on By and insulation on Bg. Temper-
ature evolution is visualized of the trans-
formed states © in (a) and of the original
states © in (b).



5

Numerical Time Integration

In the previous chapters, we approximated the heat conduction problem
in space and we discussed the special case of linear thermal dynamics,
where we can compute eigenvalues and eigenvectors of the linear system
and this enables us to find an analytical solution. However, we had to con-
sider thermally insulated boundaries to yield such a closed-form solution.
As we are able to note such analytical solutions only for certain scenar-
ios, in particular for constant material properties and no heat radiation, it
is necessary to present a numerical solution in time of the approximated
nonlinear heat conduction, see Definition 3.1. For this purpose, we intro-
duce the Euler integration! in Section 5.1 and the Runge-Kutta methods?
in Section 5.2. We apply these methods on the approximated linear heat
equation and we discuss the influence of eigenvalues on the quality of the
numerical results. In Section 5.3, we evaluate and compare the backward
Euler, trapezoidal rule and an implicit Runge-Kutta method for a simple
linear heat equation.

5.1 Euler Integration Methods

First of all, we introduce the Euler methods, which provide the simplest
numerical integration approaches. We do not consider the spatially ap-
proximated quasilinear heat equation (3.27) explicitly because the pre-
sented method may be applied to any linear or nonlinear system and we
can transfer the concept directly to the heat equation. We wish to solve
numerically the differential equation

d

Ez(t)=f(z(l‘),t) (6.1
with states z : [0, Tf) — RY, right-hand side f : RN x [0, Ty) and initial value
z(0) = zg. We approximate the differential operator by a first order finite
difference approach

d 1
EZ(Z') = E [z(t+AT)—z(1)]
with sampling time AT > 0 and we set the right-hand side as
flz,t)i=wfz,)+(1-w) f(z(t+AT), t+AT)
with decision variable w € [0, 1]. We obtain the time-discrete equation

z(t+AT) = 2()+AT [wf(z, )+ 1 -w) f(z(t+AT), t + AT)]

! According to Leonhard Euler
(*1707,+1783) [86].

2 According to Carl David Tolmé Runge
(*1856, t1927) [87] and Martin Wilhelm
Kutta (*1867,11944) [88].



and we note the one-step iteration scheme

2(tps1) = 2(tn) + AT [0 f (zn, tn) + (1 = 0) f(Zn41, tns1)] (5.2)

with time steps ¢t = t, = nAT for n€{0,1,..., N7} and states z, = z(t;). We
visualize the sampling of the right-hand side of Eq. (5.1) in Fig. 5.1. Here,
we see that we lose probably necessary information of the continuous dif-
ferential equation with a coarse sampling. We call iteration (5.2) either
forward Euler (w = 1), backward Euler (w = 0) or trapezoidal rule (w = %)
and we note them as

w=1 z(tys1) = z(ty) + AT f(zn» tn), (5.3a)

w=0: z(ty+1) = 2(ty) + AT f(zy, the1), (5.3b)
1 AT

W=t 2ltnsn) = 2(tn) + —- [fzn, ta) + f(2n, tas1)] (5.3¢)

The forward Euler method (w = 1) may be applied directly on any differ-
ential equation of the form (5.1). Nevertheless for w < 1 we need to solve
the nonlinear equations

AT AT
z2(th+1) — (1 - w) Tf(z, n+1l)=z(t,) +w Tf(zrﬁlr tn+1)

which might be computationally expensive for a large number of states.
The trapezoidal rule is also known in the context of partial differential
equations, in particular the heat equation, as Crank-Nicolson method.3
The one-step methods in Eq. (5.3) provide two parameters: sampling
time AT > 0 and decision variable w € [0, 1]. The quality of the numerical
results depends strongly on their choice and so we need to check these
algorithms. For this purpose, we consider the differential equation

flz, ) =a z(t)

with a < 0 and initial value z(0) # 0 as test problem. The analytical solu-
tion of this system is known as

z(t) = exp(at) z(0) (5.4)

and the numerical algorithm is derived from the iteration scheme (5.2) as

(1) l1+w aAT (t)
V4 =2
T T —w) aAT T

l1+waAT "

=|—— | z(0). 5.5
1-(1-w) aAT © (5.5)
The transition from an initial state z(0) to a future state z(¢;1) is described
1+w aAT
1-(1-w) aAT"
(:= —aAT as the Euler iterator of the test problem

by the term We reformulate this term with the new variable

o 1-w(
g, w):= —1+(1—w)( (5.6)
and we note the iteration
z(th+1) = 8, 0) 2(t,) = g, w)" z(0). (5.7

The Euler iterator (5.6) is depicted in Fig. 5.2 for w € {0, 3, 1}. We know that

the analytical solution (5.4) converges towards zero because a < 0. Thus,
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AN

fln+1)

flen)
AT
<——> N
4

In In+1

Figure 5.1: Sampling of nonlinear differ-
ential equation (5.1) at time steps t; and
th+1 =t +AT.

3The method was developed by John
Crank (*1916,72006) [89], and Phyllis
Nicolson (*1917,11968) [90].

Figure 5.2: Euler iterator g({, w) for
forward Euler: w =1 (green),
backward Euler: w =0 (blue) and
trapezoidal rule: w = % (purple).



the numerical solution has to approach zero in the same way. In fact, the
iteration algorithm (5.7) converges towards zero if we choose ({,w) such
that g({,w) € (-1,1) because g({,w)"” — 0 for n — co. Otherwise, we yield
an pure oscillating result for g({,w) = —1 because g({,w)" = (-1)" or a
diverging result for g({,w) < —1 because g({,w)" — +oo. When we search
for the limit of g as

—w( w

1
li )=l =-
Jm gw) = lim o~ 1w

then we find that g({,w) = -1 forw < % This finding means that the back-
ward Euler and trapezoidal rule provide numerical converging algorithms,
which do not depend on the choice of sampling time AT. In contrast,
the forward Euler method only converges towards zero if { = —aAT < 2
or equally AT < —%. Additionally, we see in Eq. (5.6) that g({,w) = 0 for
(= % and w > 0. So, we can reach the final state z(IN7) = 0 in one step in
Eq. (6.7) as

1
z(t)) = g(a,w) z(0)=0 and z(f1)=2z()=...=z(Nn;)=0

if we choose either the forward Euler or trapezoidal rule.

We compare the numerical results of the one-step iteration algorithms
in Eq. (5.5) with the analytical solution (5.4). We fix parameter @ = —1
and initial value z(0) = 1 and we choose sampling time AT = 0.5, which
guarantees a converging numerical solution. In Fig. 5.3, we visualize the
analytical solution and the resulting numerical iterations

z(t)=exp(-1)
1 n
z(tp+1) = (—)

(analytical solution),

(forward Euler),

2
3 n

z(tps1) = (E) (backward Euler),
2 n

z(th+1) = (g) (trapezoidal rule).

We see that the trapezoidal rule approximates the analytical solution bet-
ter than the forward and backward Euler method in this example. This
finding is only a specific result for the mentioned example and can not be
stated in general.

Linear Heat Equation with Insulated Boundaries

We transfer the general concepts of the integration methods to the linear
heat equation with transformed states as in Eq. (4.49) to demonstrate the
applicability. In particular, we consider a system with insulated boundary
conditions as d
—0O(n =ApN,06(1 5.8
i (1) = An,0(1) (5.8)

in which Ny € {1,2, 3} denotes the number of dimensions and

An, =diag(y1,..., inN,)
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® o = 1: forward Euler

O w =0: backward Euler

% (3 Xw= %: trapezoidal rule
)
(0]
1 x
3 o
®* “x. o

e %_O
° ¥%-9
05 1 15 2 25 3 35 4
Time ¢t in [s]

Figure 5.3: Comparison of the iteration al-
gorithms in Eq. (5.5) with the analytical so-
lution (5.4) (orange line).



with N; = Nj - Ny, - Ny as the number of temperature cells. We emphasize
that Eq. (5.8) deals as a test system to analyze the numerical integration
methods and the findings of this analysis shall be finally applied on the
original quasilinear heat equation (3.29) with boundary conditions.

We apply the one-step iteration scheme (5.2) on the transformed heat
equation (5.8) and we obtain

O(tn+1) = M 6(t,) = M" 6(0)
with diagonal matrix

M:=(I-(1-wATAy) " (I+wATAy,)
= diag(my,...,my,) and
M" = diag(my,..., myn)
in which the elements are noted as*

1+wATu,;
mi=—————
1-(1-w)ATu;

forie{l,...,N:}. We note m; = g(—ATu;,w) and we compare this finding
with the ideas from the previous paragraph, see Fig. 5.2. So, we formulate

>0 ifw=0,
mi{e(-1,11 ifwe(0,3],

€(-00,1] ifwe(3,1].
Increasing the iteration n — oo, we distinguish the four scenarios

-0 ifm;e(-1,00U(1),
=0 if m; =0,

m? ’ (5.9)
==1 if m; =-1,

—+oo0 ifm; <-1.
If 1+ wATpy;) <0, then we yield numerical oscillations® as

<0 ifnisodd,

>0 if niseven.

Hence, we desire all diagonal elements as m; € (-1,1], i € {1,..., N;} such
that all temperature values converge towards zero as O(t,) — 0. We denote
the iteration algorithm as numerically stable if the states show this conver-
gence. Moreover, if we have (1 + wATy;) > 0, then m; € (0,1] and we avoid
numerical oscillations.

All eigenvalues y; are sorted in matrix Ay, as

O=p > >u3z>...> Un, = —4[p1 + p2 + p3l
with p; = f—;z, po = ;—;2 and p3 = ;—;2 in the three-dim. case, see Eq. (4.37).
This sorting also applies to m; and we find m; =1 as the largest entry and

1+wATpunp,
my,=———>7—
1-(1-w)ATun,

as the smallest entry. If my, € (~1,1) then all other m; are inside this in-
terval, too. We summarize these concepts in the following definition.
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*We find these matrix elements because
of the diagonal structure of Ay ,» see also
Section 4.2.

5 This does not occur for the backward Eu-
ler method, w = 0.



Definition 5.1 (Numerical Stability of the One-Step Iteration)
The one-step iteration of the transformed linear heat equation (5.8) con-
verges towards zero, ®;(t,) —0forie{2,..., Ny}, if
1+wATp;
mi=—— € (-1,1) (5.10)
1-(1-w)ATu;

as in Eq. (5.9), and we denote the iteration as numerically stable.
Otherwise, if m; < —1 then the iteration tends to +oo and we call it numer-
ically unstable. O

We conclude from the previous ideas and Definition 5.1 the following
statements.

¢ Ifcondition (5.10) holds for i = N, thenitholds also fori € {2,..., N.—1}
because my >...> my,.

¢ If we choose w € [0, %], e.g. backward Euler or trapezoidal rule, then
condition (5.10) holds for all AT > 0.

* Ifwesetwe (1,1], e.g. forward Euler, then we need to choose the sam-
pling time as

AT e (0,_—2) (5.11)
fin, 20 —1]

to guarantee a numerically stable one-step iteration.

In the literature, we find that a numerical integration method is called
A-stableif the iteration converges for any sampling time AT > 0, this is the
case for the backward Euler method and the trapezoidal rule (or Crank-
Nicolson method). The forward Euler method is not A-stable because the
sampling time has to be AT € (0, ﬁ) to yield a converging iteration. If a
numerical integration is A-stable and the iterator term

m; =gATu;,w)>0

for any sampling time AT > 0 and eigenvalue p; < 0, then the method is
called L-stable. The backward Euler method is L-stable, but not the trape-
zoidal rule. In the literature, we find A-stability in [91] and [92, p. 42], and
L-stability in [92, p. 45] and [93, p. 7].

The forward Euler method is a standard approach to solve differential
equations numerically, because it is very simple to implement. Though,
its performance and the quality of results depend strongly on the choice
of the sampling time AT. As heat conduction problems usually operate
slowly, we wish to choose alarge AT, but this may lead to numerical insta-
bilities. On the other hand the backward Euler method and the trapezoidal
rule provide numerically stable approaches to solve our heat conduction
problems. A drawback of these methods is the task to solve an implicit
equation, e.g. via the computation of a matrix inverse, which could be
computationally costly. We finish this section with a numerical evaluation
of the forward Euler method applied on a small heat conduction problem.
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Figure 5.4: Application of the forward Eu-

ler method on linear heat equation (5.12).
The second state converges smoothly to
zero for all sampling times. The third state

operates smoothly only for AT € (0, %) and
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Example: Forward Euler Method for One-dimensional Problem

We apply the forward Euler method on a small-scale one-dim. linear equa-

tion £ 0(1) = A;0(1) with
-1 1

to demonstrate the numerical stability, see also the example in Section 4.3.

We transform the linear differential equation with O =Vve[) to
(ch

6100 0
-1 0,
O3

— 6200 | =
03(1)
in which V = [w,,¥,,¥5] denotes the orthonormal eigenvectors, see Sec-
tion 4.2, and we derive with Eq. (5.2) and w = 1 the forward Euler iteration
(5.12a)
(5.12b)

formula
O1(n+1)=my 6:(n) =6;(n),
(5.12¢)

O2(n+1) = my O2(n) = [1-AT] O2(n),

O3(n+1) = m3 ©3(n) = [1-3AT] O3(n).

In accordance with Definition 5.1, we seek for the maximum sampling
time AT such that m; € (-1,1) for i € {1,2,3}. The smallest eigenvalue
s = =3 corresponds to mz = 1—-3AT in Eq. (5.12c). So, we find that for-

ward Euler method is numerically stable, if the sampling time is inside the
interval AT € (0, %). In Table 5.1, we note m, and mg for five sampling
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Table 5.1: Analysis of the sampling time

1 1 1 2
AT 5 3 2 3 1 for the example system (5.12) of the Euler
method.
my=1-AT % %2 5 1 o0
my=1-3AT 3 o0 -1 -1 -2

times and we see for these cases that m, = 0. Hence, only the last state O3
does not converge to zero while ©; and O, do so. We portray the states ©,
and @3 in Fig. 5.4 for the sampling times AT € {0.2, %, 0.5, 2} to emphasize

the numerical stability for AT < %

5.2 Runge-Kutta Integration Methods

We return to the initial ideas of the one-step methods where we assume
the function z: [0, Tf] — Ras the solution of a differential equation % z(t) =
f(z,1). We find the solution at time ¢+ AT with time step AT >0 as

z(t+AT)=z(t)+AT%z(t)+@(AT2). (5.13)

The term @(AT?) summarizes all remaining higher-order terms of the ap-

proximation. Reshaping Eq. (5.13) and considering @(AA;Z) =0(AT)—0

for AT — 0 leads us to the first-order finite difference approximation

i (l‘)NL[(t ) — z(ty)]
a0 A Fne) T &

with ¢ = t, := nAT and we note Eq. (5.13) as the forward Euler method
z2(tp+1) = 2(tn) + AT f (2(tn), tn)

as in Eq. (5.2). If we take higher-order derivatives into account as
2 32

(t+AT) = (t)+ATi (t)+A—d— (t)+@(AT3) (5.14)
“ T dt’ 2 dr”® ' '

2
then we need to approximate the second-order derivative % z(t) = % f(z, 0
to find the one-step iteration. We approach this second-order derivative
as

2
(1) = if(z, ) = ﬁ [f(z+ Az, t+AT) - f(z,1)]

T T
1
~ 17 [+ ATf(z 0,t+AT) = f(2,0)]
with Az = z(t+AT) — z(£) = AT f (z, ) and we reformulate Eq. (5.14) as

Z(t+AT) =~ z() + AT f(z, 1)

+ % [f(z+ATf(z,0),t+AT) - f(z,1)]
= Z(t)+% [f(z, N+ f(z+ATf(z, t),t+AT)]

to obtain the one-step algorithm

AT
Zne1 = 2nt —- [f Gn t) + f(2n + AT f (2, 1), th+AT)]. (5.15)



0
C2 az,1
C3 asn as,2
CN; ANy, 1 ANy, ,2 oo s, s—1
b1 by bs_1 by

with the states z,, = z(f,,). In fact, this one-step iteration (5.15) is a Runge-
Kutta method with two stages. Runge-Kutta methods consist of nested
terms of the right-hand side function f and the number of these terms
is called stages. We may note the iteration (5.15) as the general 2-stage
Runge-Kutta approach

z2(tys1) = z(ty) + AT [b1ky + bo ko]
with the coefficients

bi==, ki=f(zyt;) and

1
2
1

by = 5 k2=f(Zn+AT ki, th +AT).

We note the one-step Runge-Kutta iteration as

Niy
Z(tns1) = 2(t) + AT ) by ks (5.16)

s=1
with the number of stages Ny, > 0 and the stages

s—1
Z as,mkm

m=1

ks = f(zn+AT

y I+ CSAT) . (5.17)

The Runge-Kutta coefficients as, ,,, bs, cs € R are usually noted in a Butcher
tableau®, see Table 5.2. The Runge-Kutta iteration (5.16) with stages (5.17)
form the explicit Runge-Kutta algorithm. In the literature, we find many
Runge-Kutta approaches with various coefficients, which need to fulfill
certain conditions, for example

Cs = Z as,m»
m=1

Niy

st: b1+...+szt =1.

s=1
The choice of coefficients depend on the desired Runge-Kutta order and
these conditions guarantee a proper working algorithm, see more details
in [95, p. 132, 134]. We apply the differential equation %z(t) = az(t) with
a < 0 and z(0) # 0 on the Runge-Kutta algorithm (5.16) to check the nu-
merical stability as in Section 5.1. We evaluate the nested stages (5.17) in
Eq. (5.16) toyield the one-step iteration

Ny
1+ ) BslaAT]®

s=1

z(the1) = z(tp) (5.18)

85

Table 5.2: Butcher tableau of the explicit
Runge-Kutta method, see Eq. (5.16,5.17).

6 Named after John C. Butcher (*1933) [94].
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with coefficients §; € R. We introduce the variable { = —aAT again, define
the iterator

Nst
g :=1+) Bs(-0)° (5.19)
s=1
and formulate Eq. (5.18) as
2(tn11) = ) 2(1,) = ()" 2(0). (5.20)

If the iterator |g({)| < 1 then we see that the iteration (5.18) converges to-
wards zero. Though, the iterator g is a polynomial and we know that for
some (,: € R we find Ig(f)l > 0. Hence, the choice of time step AT > 0 de-
pends on the system parameter a < 0, and so the explicit Runge-Kutta
methods are not A-stable.

We exemplify these ideas with the fourth-order Runge-Kutta approach
by Martin Kutta [96], see also [95, p. 137]. The coefficients are noted in
the Butcher tableaux 5.3 and both tableaux lead to the same iteration with
iterator function 1, 1, 1

8O =1-¢+ -2+ L. (5.21)

The graph of iterator g in Fig. 5.5 does not drop below zero and so the
numerical solution of the test differential equation does not oscillate for
any time step At > 0, but g(f ) > 1 for (: ~ 2.8. The exact value of stabil-
ity limit ¢ might be found by solving the quartic equation g({) = 0 alge-
braically. At the value (i, = 1.6 we find the minimum of g((), and so
we yield the fastest convergence of the Runge-Kutta iteration for a time
step AT = E—Z. We evaluate iteration (5.20) with g as in Eq. (5.21) for
{ € {0.6,1.6,2.6} and we notice in Fig. 5.6 that smaller time steps, e.g.
AT = 0.6, lead to rather accurate numerical results. Summing up the re-
cent findings, we note that the classic fourth-order explicit Runge-Kutta
method has a larger area of stability, and guarantees larger time steps, then
the forward Euler method, but we need for both approaches small time

steps to gain a numerical exact solution.

Implicit Runge-Kutta Methods

Heat conduction phenomena consist of very fast and slow components
because of their wide-ranged eigenvalue distribution, see Chapter 4. Ex-
plicit numerical solvers like the forward Euler or the explicit Runge-Kutta
methods are not practical for this situation because we need to choose a
(very) small time step to guarantee a stable and exact numerical solution.
Hence, we need to apply implicit numerical solvers like the backward Eu-
ler method or implicit Runge-Kutta methods. The latter approach has an
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Table 5.3: Coefficients of the original
Runge-Kutta method.
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Figure 5.5: Runge-Kutta iterator g({) with
stability limit at { = 2.8 and minimum at
(~1.6.
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iteration (5.16) with the stages

Ny
Z as,mkm

m=1

ks = f(zn+AT

,bn + CsA T) . (5.22)

In each stage k; of the fully implicit Runge-Kutta method we sum up all
stages, in contrast to the explicit approach where we sum up only s —1
stages, see Eq. (5.17). So, we yield a large-scale system of implicit (nonlin-
ear) equations. The coefficients of the fully implicit Runge-Kutta method
are stored in the Butcher tableau 5.4. There exist several sub-types of im-
plicit Runge-Kutta methods, see [98,99]. We list three of them below.

1. Diagonally Implicit Runge-Kutta methods (DIRK): the summation in
stage k, terminates at index s as

s
Z as,mkm

m=1

ks = f(zn+AT

y bn + CsA T) . (5.23)

So, we have in the Butcher tableau a triangular A coefficient matrix

ai

az az,

as,1 asp  a4ss . (5.24)
ANg,1  ANg,2 EE ANy, Ny

2. Singly Diagonally Implicit Runge-Kutta methods (SDIRK):
all diagonal elements of the triangular A matrix are equal as

ay1 =az2=...=aNy Ny =Y

3. Explicit Singly Diagonally Implicit Runge-Kuttamethods (ESDIRK): the
first coefficient a;,; = 0 and all other diagonal elements are equal as

a11=0,ap=a33=...=any,, N, =7-
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Figure 5.6: Runge-Kutta iteration (5.20) for
(=06,{=1.6and{=2.6.

Table 5.4: Butcher tableau of fully implicit
Runge-Kutta methods.



We implement the numerical simulation with the JULIA programming

language [100] using the software library DifferentialEquations.jl[101]. Here,

we call the ESDIRK numerical solver KenCarp5, see [102], because it per-
forms well for medium- and large-sized heat conduction problems. In
the subsequent section, we briefly compare the numerical solvers back-
ward Euler, trapezoidal rule and ESDIRK/KenCarp5 to motivate the fur-
ther choice of the latter algorithm.

5.3 Numerical Error of Time Integration Methods

We evaluate the numerical integration methods, backward Euler, trape-
zoidal rule and ESDIRK/KenCarp5 with an one-dim. example. The ana-
lytical solution is derived in Appendix A.1 and provides the true temper-
ature, which is compared with numerical results. We consider the linear
heat equation (A.1) with insulated boundary conditions (A.3) and the sym-
metric initial temperatures (A.2). We have a length L = 0.2 meter, material
properties A =50, p = 8000, ¢ = 400 and so we calculate a diffusivity

A -6
a=->-=15.625-10"°.
cp

We obtain the true data’ 9;,,, via an evaluation of Eq. (A.14) with maxi-
mum iteration number k = 100 and we compute the numerical solution 0
with sampling time AT = 10 seconds. We evaluate the error for 10 cases
with respect to the number of temperature nodes N; € {10,20,...,100},
which imply the spatial sampling

L
Ax; = — €{0.02,0.01,...,0.002}.
Nj
We obtain the error as the quadratic difference of temperatures along the
rod in

L A
e(r) = f() [ﬁtrue(t; x)—0(t, x)]z dx
N] . 2
~ Y [Otruelt, xi) =02, x)] " Ax (5.25)
i=1
and we sum up the error over the time as

Tf Nt
es =f e(dr= ) e(ty)AT (5.26)
0

n=0

with Ny = L%J +1.

We solve the spatially approximated heat equation with the backward
Euler method, trapezoidal rule and ESDIRK/KenCarp5 for Ty = 600 sec-
onds and we visualize the results in Fig. 5.8. The analytical solution is
symmetric, see Fig. A.2, and so we depict the true temperature evolution
only at three positions, x € {0.001,0.051,0.101} meter in Fig. 5.8 (a). We
compare the numerical solutions for N; = 100 at the first node in Fig. 5.8
(b) and we find that the backward Euler method and KenCarp5 are very
close to the true data, but the trapezoidal rule drives into numerical oscil-
lations. We portray the numerical error (5.25) of the integration methods
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" The true data is still an approximation be-
cause we need to terminate the series in
Eq. (A.14).
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in Fig. 5.8 (c) to (e) for N; € {10,50,100} in logarithmic scale log;(e(?)).
Here, we notice that all solvers unveil an almost constant and equal error
for Nj = 10. The backward Euler method in Fig. 5.8 (c) has a similar nu-
merical error for all N; € {10,50,100}, while the error of KenCarp5 in Fig.
5.8 (e) decreases significantly for finer approximations. The trapezoidal
rule shows an oscillatory numerical error in Fig. 5.8 (d) for N; = {50, 100}.

We yield a deeper insight of this numerical error in Fig. 5.8 (f), where
the summed up numerical error (5.26) of the trapezoidal rule has a min-
imum at N; = 20 and increases for a higher number of nodes. This poor
performance is caused by the fact that matrix entry my, approaches the
stability limit for a high number of nodes, e.g. my, = -1 for N; = 100, see
also Definition 5.1. In Fig. 5.7, we portray the value of my, and we find
that increasing numerical error in Fig. 5.8 (f) corresponds to value of my,
close to the stability limit.
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Figure 5.8: Evaluation of the numerical er-
ror of the backward Euler method, trape-
zoidal rule and ESDIRK/KenCarp5. The
analytical solution in (a) approaches the
steady-state temperature for ¢ > 300 sec-
onds. The backward Euler method and
KenCarp5 coincide with the true tempera-
ture at x = 0 in (b), but the trapezoidal rule
tends to numerical oscillations. The back-
ward Euler method shows in (c) almost the
same numerical error for all cases, where
the error is larger in the beginning until
the temperatures are settled at 500 Kelvin,
for t € [0,300]. The numerical error of the
trapezoidal rule in (d) exhibits even oscil-
lations for N; = 50 and remarkable ones
for N j = 100. KenCarp5 has a small nu-
merical error in (e) for N i € {50,100}, but
we notice a peak at t = 300, where the
thermal behavior transits from diffusion to
steady-state. We note in (f) that the total
error ey of the trapezoidal rule increases
for an increasing number of nodes, e.g.
Nj > 20, while it drops in case of KenCarp5
for N i >30.
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Figure 5.7: The trapezoidal rule is ap-
proaching the stability limit because the
smallest matrix entry my, ~ —1 for an in-
creasing number of nodes N;.
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Control System Framework

The thermal dynamics is affected on the boundaries of the considered ge-
ometry as explained in Section 2.4. We recapitulate that cooling is a purely
natural process, which is caused by thermal emissions ¢, (¢, x) as linear
heat transfer and nonlinear heat radiation, see Section 2.5. Thus, it is not
manipulated by a technical operator. In contrast to that, the heating is
driven by heat supply ¢;,(t, x) via actuators and their input signals are
computed with control units. The control system has two tasks: it has to
increase the measured temperatures from an initial towards a final oper-
ating point with

Pin(1) =fl; (Pin(tyx)dx> f69¢em(t;x)dx: Pem (1) 6.1)

and it has to avoid a temperature drop after reaching the desired operating
temperature with

Pin(t)zf (Pin(trx)dx:f Pem(t,X)dx = Py (1). (6.2)
Bin 0Q

If the initial temperature is close to the ambient temperature, then the
emissions are quite small and we simply find a proper heat supply to guar-
antee condition (6.1). When the temperature difference between object
and surrounding increases, the computation of a suitable large heat sup-
ply is more difficult. We face two main issues: firstly, the area of actuation
is in many scenarios smaller than the area of thermal emissions; and sec-
ondly, we usually do not measure the temperature on all boundary sides
to determine the complete emitted heat flux.! As a consequence, the exact
amount of emitted power P, in Ineq. (6.1) and Eq. (6.2) is unknown and
we need to find a good estimate of this quantity to yield a proper working
control system. We exemplify a scenario with one actuator and and one
sensor on the opposite sides in Fig. 6.1, where only a part of the full ther-
mal emissions can be recorded. Moreover, a slow temperature propaga-
tion from the actuators towards the sensors impedes an exact stabilization
of the closed-loop control system at the reached operating temperature.
Therefore, we need an intelligent control architecture, which includes the
extensive heat conduction model and computes proper input signals to
steer and stabilize the heating process.

In this chapter, we state an overview about the control of the thermal
dynamics. In Section 6.1, we specify the actuator and sensor models, and

measurable

Pe
unknown T

unknown

G- Object J-oo)

em Pem

| bin

Figure 6.1: Heat conduction example with

heat supply ¢;; on one boundary side and

thermal emissions ¢y, on the other sides.

The emissions on the left and right side

are unknown, it can be “measured” only on
the top.

m

! We also need the rrue coefficients of the
heat transfer and heat radiation to com-
pute the emitted heat flux with the mea-
sured temperatures.



we formulate the spatially approximated nonlinear thermal dynamics with
supplied heat and temperature measurements. Afterwards, in Section 6.2,
we introduce the principle of two-degrees-of-freedom control and we dis-
cuss the concepts of open-loop and closed-loop design in the context of
our heat conduction framework.

6.1 Actuation and Temperature Measurement

In our control framework, we assume multiple, spatially distributed, ac-
tuators and sensors, which operate on the boundary sides. In Section
2.4, we defined the actuator boundary B;, < 09}, see Definition 2.2, and
in an analogous way we define the sensor setup By, € 0Q. In the next
paragraphs, we describe the location and the model of actuators and sen-
sors, and we explain how these models are embedded in the heat conduc-
tion framework. These modeling approaches are presented in our arti-
cles [34,35,37,40].

Actuator Setup

We explained in Section 2.4 that the heat is supplied on boundary B;, <
0Q, see Definition 2.2. This heat supply is realized by multiple, spatially
distributed, actuators operating on boundary B;, and we need to specify
the location of them. We assume in total N;, > 0 actuators on B;;, and we

Ny
say that each actuator has its own segment, 8, < B;, with B;, = L_Jl Bn.
n=

Ny
Segments do not overlap, (N B, = {}, and the size of all segments is equal
n=1

1Bl =1P2l=...=1Bn,l-
A segment is only part of one boundary side, e.g. By. If more than one
boundary side is actuated, then each boundary side has its own partition,
for example the boundary sides By and Bg, are partitioned as

Nu,l Nu,z
BU = U ,Bn and BE = U ﬂn
n=1 n=Ny1+1

An example partition for a cuboid is portrayed in Fig. 6.1. An actuator
has a spatial characteristics b, : B — [0, 1] and it determines how much
power can be supplied in each position x € §,,. We model this spatial char-
acteristics via the exponential function
my, exp (— I Mp(x — x,, )|I2V")  for x € B,,,
by (x) = n p( n cn ) ,Bn 6.3)
0 for x € B, \ By
with scaling m € [0,1], (diagonal) curvature matrix M € RN«*Na, power
v € N5, central point x., € 8, of the n-th segment, and number of di-
mensions Ny € {1,2,3}. In Eq. (6.3) we consider the Euclidean vector norm

N
lvllz:=4| ) va
n=1

with vector v € RY and so we have b,, as a Gaussian-shaped function. In
Fig. 6.3, we visualize three shapes of b, depending on curvature matrix
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M. We remark that one may also choose a different vector norm, e.g. the
maximum norm

V]l := max(vy,..., Un)

to model a sharp peak or box-shaped characteristics as depicted in Fig.
6.4. However, we only discuss the spatial characteristics with the Euclidean
vector norm || v||, in the following examples of this thesis.

If we assume one- and two-dimensional geometries, then we can sim-
plify the formulation of the spatial characteristics in Eq. (6.3). In the one-
dim. case we only need to set a scale m > 0 and in case of a two-dim.
geometry we obtain the simplified exponential function

b (x) = my exp (= My (x — x¢ ) ")

with scalar M > 0 for x € ;.

In practice, the design of spatial characteristics b, is not trivial and re-
quires a good knowledge of the actuator’s physical behavior. The modeling
and system identification of thermal actuators is an active field of research
and we find examples in the literature regarding resistive heating [104], in-
ductive heating in [105] and micro-hotplates [106]. In Chapter 1, we stated
two examples of controlled thermal processes: laser beam welding and
post-exposure bake as part of lithography. Here, we find one important
difference of both processes where we have small point-shaped sources
in laser beam welding and wide uniform source like electrical heating el-
ements in the post-exposure bake, see also the commercial product [107].
Hence, we need to care about suitable values of matrix M, norm p and
power v to specify the heat source properly.
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Figure 6.3: Example shapes of spatial char-
acteristics by, as in Eq. (6.3). We have a
standard radial Gaussian with a diagonal
matrix M in (a) and (b). If M has elements
on its sub-diagonal, then we yield a rotated
elliptic shape in (c). If M has only one non-
zero element, then we have striped shape
in (d). We consider v = 1 and the curvature
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Once we have the actuator model, we need to compute an input signal
Un 20, Trinar) — Rxo

for n € {1,..., Ny} to influence the thermal dynamics properly. We sum
up the spatial characteristics and the input signal and we formulate the
supplied heat flux as

Ny
Gin(t,x) 1= Y bp(x) un(0). (6.4)
n=1

Sensor Setup

We construct an analog concept for the temperature measurement with

Ny, > 0 sensors and boundary By, S 0Q. Bou, has a partition with seg-
Ny
ments y, S Byy: such that By, = U Yn and ﬂ Yn = {}. The sensor seg-

ments vy, belong to only one boundary side hke the actuator segments 3.
We note the spatial characteristics of the sensors as

Ty €xp (— | My (X = Xc,) IIZZ) for xey,,

gn(x):= (6.5)
forxe Byyr \vn
fornefl,..., Ny}, cf. Eq. (6.3), and define the n-th measurement as
=i
Yu(t) := [ gn(x)dx gn(x) 9(t, x)dx. (6.6)
Yn Yn

So, the temperature measurement at the n-th sensor is a weighted mean
with spatial characteristics g, as the weight.

Spatial Approximation of the Actuator and Sensor Setup

We need to approximate the actuator and sensor boundaries to evaluate
the heat supply ¢;,, and temperature measurement y at the discrete nodes
x' = x/™k_ Thus, we store the indices of cells, which have boundaries
being part of an actuator or sensor segment as

Spn:=1i=1i(j,m k) fn<0Qjmi}

forne{l,...,N,} and

Sy,n =1 =1(j,m, K)yn < 0L, m i}

for ne{1,...,Ny}. We find the issue that the finite volume approximation
leads to nodes x! inside the geometry and one grid node may have two or
three adjacent boundary sides, e.g. at corners or along edges, see Section
3.3. So, we distinguish the supplied heat flux for each direction [ € {1,2, 3}
as
. . Ny .
G1(t,x") = Pini(t,x") = Y by p(x) un(2).

n=1
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Furthermore, we remark that the curvature matrix M has an entry M;; =0
in function by ;, (x') and the same idea applies for M of the sensor charac-
teristics in Eq. (6.5).

In the following steps, we reformulate the spatially approximated quasi-
linear heat equation (3.29) with the actuator and sensor setup to obtain a
state space formulation of the complete control system. We note the non-
linear diffusion terms as

f2©) =[f2.0),..., fon,©)]" (6.7)

with
3

[2,i©) =) 2/(0;,0,_4,0i,)/5(0;) (6.7b)
=1

and we unify the specific heat capacity and the density as
5(0;) 1= p(O;) c(©;).

In accordance with Eq. (3.28), we note the approximated supplied heat
flux as ¢;,,,;/ Ax; and so we find the approximated actuation as

ni-—

~ {b,,,,(xi)mx, ifi e Sy

else

where
1 lfﬂn c By UBg,

=42 iff,<BsuByand
3 if ﬁn c By UB7T.
The influence of the n-th actuator is noted as

=~ = T
bn,l bn,NE

s(©1)" 7 s(On,)

b, (@) = (6.8a)

and we aggregate all actuators in the temperature-dependent matrix
B(©) = [b1(©),..., by, (©)]. (6.8b)

Additionally, we need to formulate the spatially approximated thermal
emissions, see also Eq. (3.26). We introduce the set

S =1{1€11,2,3}|pos(l, ) # 0}

to define the correspondence between direction / € {1, 2,3} and global in-
dex i =1i(j, m, k). In a similar way, we denote the thermal emission of the
i-th cell as

7 L Pem1(t,x)/Ax; ifieS\.%,
w;i(t,0;) = le;
0 else.

We aggregate the thermal emissions for all cells as

w(,0) = [ (t,0)),..., Wy, (t,0n,)] " (6.9)

and we formulate the spatially approximated system dynamics as
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%@(I) = fp(0©) + B(O) u(t) + w(t, 0).

The spatial characteristics of the temperature measurement is approx-
imated by

Cn,i =

~ gl,n(xi) ifiEy%n,
0 else

where
1 ifYnCBWuBE,
=42 ify,cBsuUByand
3 ify,cByUBr.

We collect all entries ¢, ; as vectors
Cn = [En,lwwfn,Nc] (6.10a)

of the n-th sensor with n € {1,..., Ny} and we note the output matrix as

-
C=la...on,| - (6.10b)
Consequently, we yield the output signal as
y(t) = C O(1).

Definition 6.1 (Nonlinear and Linear State Space Formulation)
The approximated heat conduction phenomena with actuation and tem-
perature measurement is described by the nonlinear state-space system

%@(r) = f@(®) + B(®) u(t) + w(t,0), (6.11a)

y(t) = CO(). (6.11b)

The nonlinear system dynamics fz : RMe — R™e is formulated in Eq. (6.7)
with the diffusion term @ as in Eq. (3.27). Mapping B : RNVe — RNe*Nu jg
specified in Eq. (6.8). It connects the n-th input signal u,, : [0, T) — R for
n € {1,..., Ny} with the spatial characteristics b, of the n-th partition ;.
The input signals are restricted as u,(#) = 0. The thermal emissions are
stored in function w : [0, T) x RNe — RN¢, see Eq. (6.9). The temperature
data of all nodes is mapped to the output signals with matrix C € RNy*Ne ag
noted in Eq. (6.10).

If we consider constant material properties and no thermal emissions, as
w(t,0) =0, then we yield the linear system dynamics

%@(t) = AO()+ B u(r) (6.12)

with matrices A € RNe*Ne and B € RNe*Nu, see Definition 3.2. O
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Example: Actuation of a Rectangular Object

We exemplify the design of the spatial characteristics for a two-dim. model
with length L = 0.1 meter, width W = 0.05 meter and material properties
A =50, ¢ =400, p = 8000. We assume one actuator on boundary Bg and
thermal insulation on all remaining other sides, ¢, = 0. Regarding the
spatial characteristics, we fix the scaling, power and central pointas m =1,
v=2and x. = (0.05,0) " and we distinguish a curvature with M = 100 for a
narrow and M = 30 for a wide shape, see also Fig. 6.5.

We apply a constant input signal u(t) = 2-10° and simulate the heat
conduction for Tf;,,; = 120 seconds. The temperature distribution at the
final time ¢ = Tp;pq is visualized in Fig. 6.6. We find that the narrow ac-
tuator shape leads to low temperatures in Fig. 6.6 (a) and we only have a
small hot region close to the actuator. In contrast, the wide shape results in
higher temperatures in Fig. 6.6 (b), where a large region has temperatures
above 400 Kelvin.

6.2 Two-Degrees-of-Freedom Control Design

One of the main goals of this contribution is to find suitable input sig-
nals to heat up the object from an initial to a target temperature and keep
it on this level. In the design of control systems, we deal with the feed-
forward control to steer a system from one operating point to the next
one, and we stabilize the system dynamics at the reached operating point
with a feedback control. Therefore, we construct a feed-forward controller
urr for the heating-up procedure in the time ¢ € [0, Trf) and a feedback
controller umpcz to prevent a cooling-down during t € [Tyf, Tfinq) with
0 < Tfr < Tfinai- We distinguish the controller type by the operation time

as

uff(t) for t € [0, Tff),

u(t) = (6.13)

Umpc(®) Tor t €[ Trr, Trinap)-

The feed-forward control uy ¢ is computed offline, meaning before the op-
eration; and the feedback control u,; . is computed online, during the op-
eration. Hence, we may spend more computational time on finding uy ¢
than up,p. because we wish to achieve an accurate heating-up. In contrast
to that the feedback signals need to be computed quickly® to guarantee a
stable closed-loop behavior. We portray the two-degrees-of-freedom con-
trol approach in Fig. 6.7.
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Figure 6.6: Temperature distribution of an
actuation with a narrow and a wide spa-
tial characteristics. The temperatures in
(a) reach a maximum of ca. 370 Kelvin in
a region close to the actuator. The max-
imum values in (b) reach up to ca. 450
Kelvin and a large region has temperatures
above 400 Kelvin.
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Figure 6.5: Spatial characteristics for actu-
ation of a rectangular geometry. We distin-
guish a wide (M = 30) and narrow shape
(M =100).

2 The naming indices of usf and ump, re-
fer to “feed-forward” and “model predic-
tive control”.

3 As the heat conducts slowly from the
actuators to the sensors we may allow a
“long” time to compute the feedback con-
trol. We discuss this in Chapter 8.
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The output signals have to follow a predefined transition during the heating-
up phase. This transition is part of a reference function

7210, Trinall = R,

which need to be tracked by the output signals as y(t) = r(#) during the
complete operation time. We allow only positive, non-decreasing, refer-
ence signals because we only discuss heating-up procedures. In the be-
ginning of the transition, the reference and the output signals have to co-
incide approximately as

r(0) = y(0) = CO(0).

The reference function has to approach a desired temperature ©, € RM
with @4 ; > y;(0) for all i € %) in the end of the transition as
lim r(t) =0Qy.
t— Tf f

During the stabilization time ¢ € [Ty r, Tinai), we claim that r(£) = ©4. The
transition from the initial output measurements towards the desired tem-
perature is visualized in Fig. 6.8. We wish to find an input signal uy (),
which drives the thermal dynamics properly in order to minimize error

err()=r(®) -y (6.14)

during the heating-up time 7 € [0, Tf ). If we assume any continuous and
bounded input signal u(¢), then we find for each initial value ©(0) a future
temperature 0(¢) via integration of differential eq. (6.11a) and we yield the
output measurements y(f) with Eq. (6.11b). In the opposite way, we spec-
ify the output values with reference signal y(¢) = r(#) and we search for an
initial temperatures distribution ©(0) and input signals u(¢), which lead
to these output values. Though, in general we are not able find temper-
atures O(t) from output measurements y(#) in an analytical way because
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Figure 6.7: Scheme of a two degrees-of-
control approach. The trajectory genera-
tor computes a reference signal, which is
has to be followed by temperature mea-
surements. The input signal of the feed-
forward control is computed offline, be-
fore the operation of the heating-up proce-
dure. The input signal from the model pre-
dictive control is computed online, during
the thermal treatment of the object.
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the mapping in Eq. (6.11b) is not unique. The number of output signals
is less than the number of temperature states and the averaging process
in Eq. (6.6) can not be reversed. Even if we know the temperatures ©(?),
then we might still not be able to find (8(0), u(#)) analytically because the
diffusion operation is ill-posed, as discussed for the linear case in Section
4.2. We see that solving the forward problem (known input, find output) is
significantly easier than solving the inverse problem (known output, find
input). Solving this inverse problem is not impossible: we firstly introduce
an analytical approach and discuss secondly a numerical technique.

For some specific scenarios we can approximate an analytical input sig-
nal if the system is differentially flat. A finite dimensional nonlinear sys-
tem

z2(t) = f(z(0),u(r)) , y) =gz(1)

with states z(#), input u(¢) and output y(¢) is called differentially flat if the
number of input and output signals coincide N, = N) and we have a flat
output signal* y(#) such that we find the mappings ¥, and ¥, to obtain
the states and input signals via the derivatives of y(f) as

z(n) =Y, (y(t),J'/(t),---,y("_”(t)), (6.15a)
u® =Y, (y0,5),...,y™®). (6.15b)

The differentiation order n in Eq. (6.15) corresponds to the system di-
mension, z: [0, Ty¢] — R". This control approach was initially proposed in
[108] and later extended for the heat equation and other partial differential
equations in [46]. In case of PDE, we need (theoretically) an infinite num-
ber of derivatives " (z) to yield the states and input signals. As it is diffi-
cult to apply the flatness-based control directly on nonlinear PDE, a com-
mon solution is to approximate the nonlinear PDE and apply the flatness-
based control on the large-scale system of nonlinear ordinary differential
equations. This approach is discussed in the articles [109,110,116] and an
detailed analysis is described in the doctoral thesis [111].

A comprehensive study of flatness-based control techniques is presented
in the works [112,113] and for detailed discussions on PDE flatness-based
control, we refer to the books [12], [114, p. 164] and [115, Ch. 6 - 8].

The flatness-based control design is not the only way to find open-
loop input signals. If an analytical approach might not be applicable, e.g.
we have more an unequal number of input and output signals, then the
control input can also be computed numerically with optimization-based
techniques. In the optimal control design, we seek for a proper input sig-
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Figure 6.8: Transition from an initial op-
erating temperature towards the desired
temperature. A feed-forward control is ap-
plied to reach the reference tracking and
a feedback control stabilizes the reached
temperatures afterwards.

* The flat output signal does not have to be
areal measurement.



nal u*, which minimizes an objective function J as
u*(r) = argmin J (e, u).
u

The main idea of the optimal control approach is to solve the forward and
inverse problem iteratively. In the forward pass we apply the input signals
and we evaluate the objective function to check if the input signals lead to
useful output measurements. In the inverse pass we vary the input signals
depending on the result of the objective function. We need to distinguish
again between the finite (ODE) and infinite dimensional (PDE)® situation.
In the finite dimensional case, we sample the system dynamics in time
to yield a set of difference equations and we search iteratively for optimal
input signals with common numerical algorithms. In the infinite dimen-
sional case, we can either initially discretize the PDE to yield a large scale
finite dimensional system, or we optimize in a first step and discretize the
optimal system afterwards. The optimal control of finite dimensional sys-
tems is rather fundamental and may also be carried out by non-experts,
but the PDE-constraint optimization requires strong knowledge in func-
tional analysis, PDE theory and related fields. Furthermore, the formu-
lation of the optimal control problem for PDE is tailored for the specific
problem setup (geometry, boundary conditions, configuration of actua-
tors and sensors, etc.) and changing the problem requires a reformulation
of the optimal control problem. Beside these issues, the standard optimal
control design for ODE and PDE computationally expensive because we
need to discretize the geometry and sample the time domain to gain for
each time step the optimal input value u(t,). In this manner, the number
of parameters depends on the number of actuators N, multiplied by the
number of time steps. We refer to the book [117, p. 95] for an introduction
to optimal control of the heat equation. An analysis and numerical evalua-
tion of the optimal control design for quasilinear PDE, like the quasilinear
heat equation in Definition 2.1, is described in the doctoral thesis [56]. We
emphasize that this technique has also been implemented successfully in
many research applications, e.g. laser welding with a quasilinear heat con-
duction model in [8].

In Chapter 7, we unify the ideas of flatness-based and optimal control
to derive an optimization-based control approach. Firstly, we design in-
put signals with the flatness-based approach for simplified (linear) mod-
els. Secondly, we approximate the flatness-based input signal by a param-
eterized function u ¢ (f; p) and we optimize the parameters for the original
(complex) model. In other words, we create prototype input signals for the
linear heat conduction model with the flatness-based control and adjust
them for real, nonlinear scenarios with optimization techniques. The in-
put signal uy¢(£; p) has only three parameters, and so we have noticeable
reduced computational costs in comparison to a fully sampled input sig-
nal. We improve this optimization-based control additionally by including
thermal energy estimates. Our proposed procedure is illustrated in Fig.
6.9, and these concepts were originally introduced in the articles [39, 40].
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PDE-constrained optimization.
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After the heating-up phase ¢ > Trr, we activate the feedback control to
keep the measurements y(t) close to the desired temperatures 0,. We
need to design a closed-loop controller to minimize the error

efp(t) =04 —y(1)

for £ € [Trf, Tfinar)- The most established controller type in the industrial
automation is the PID control. It computes the input signal as

t
Upia(t) = Kpe(r) + K,-fo e(t)dt + Kd%e(t)
with controller coefficients (K, K;, Kg) € R3, which amplify the propor-
tional, integral and differential error. As we only have these three param-
eters, PID control might be simple to design and implement. Though, it
may not perform well for thermal dynamics because the heat needs some
time to propagate from the actuator to the sensor and the PID controller
can not predict this behavior. Beside this issue the standard PID control
requires the same number of input and output signals as Ny, = Ny.

An alternative approach is the model predictive control (MPC) design,
which uses an internal model of the system to predict the future system
behavior. The MPC algorithm solves in each time step an optimal con-
trol problem to minimize the error between the prediction and the refer-
ence. For a general introduction to model predictive control we refer to
the books [119, 120]. In the doctoral thesis [121], the author proposes a
model predictive control design for PDE, like the heat equation and the
wave equation. One remarkable issue of MPC for PDE are the high com-
putational costs. Recent research focuses on the reduction of these costs
with model order reduction, see [122]. In Section 8.2, we design a model
predictive control approach, which is tuned with the knowledge of ther-
mal emissions. Due to a proper choice of control parameters, we are able
to stabilize the measurement values close to the desired temperatures.

(_
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Figure 6.9: Scheme of derivation of the
feed-forward control signal. In step 1 we
compute the flatness-based control ugj,
for the linear system. We approximate
Ufpe in the 2. step to construct the pro-
totype it ¢ . We optimize the parameters p
in step 3 and include additional informa-
tion about the estimate of the thermal en-
ergy. Finally, we apply the computed feed-
forward control signal u r f(t; p).



7

Open-loop Control Design

The main task of the control system is to heat up the object to reach a
desired temperature. In particular, we wish to steer the thermal dynamics
from an initial towards the final uniform temperature distribution along a
specified reference trajectory. We approach this goal in two major steps:
prototyping the input signal with flatness-based control for a simplified
model and transferring the prototype signal to a parametrized function,
which is optimized to fit the specific needs of the full nonlinear system.

First of all, we introduce in Sections 7.1 and 7.2 and the flatness-based
control design, which offers a well established set of mathematical meth-
ods to design open-loop control algorithms for ordinary and partial differ-
ential equations. Here, we assume only constant material properties and
neglect thermal emissions to yield a linear system. We restrict the discus-
sion in Section 7.1 to the one-dim. heat equation because the flatness-
based control design for higher-dimensional geometrical domains leads
to complex formulations, and is out of scope of this thesis, see the book
[115, p. 127, 143] and article [118]. We transfer these ideas to the spatially
approximated heat conduction problems in Section 7.2 and we find simi-
lar results for the one-dim. case as in Section 7.1. Furthermore, we evalu-
ate the flatness-based control for a two-dim. geometry with multiple actu-
ators and sensors, but we face the issue that this control scenario has only
limited relevance for our proposes. In Section 7.1, we explain the choice
and parametrization of the reference function and how it influences the
input signal and the resulting thermal dynamics. The introduced refer-
ence signal is very smooth and fulfills certain criteria, which are necessary
for an analytically correct reference tracking of PDE in general. The disad-
vantage of this reference function is its complexity and finding the deriva-
tives is computationally costly. Hence, we propose in Section 7.3 further
approaches to find simple, suitable and computationally cheap reference
functions.

In the second part of this chapter, in Section 7.4, we introduce a param-
eterized bell-shaped function to approximate the flatness-based signal.
The parameters of this input signal are optimized in subsequent steps to
control the original nonlinear problem properly. Accordingly, we describe
the influence of our input signal parameters and we explain stepwise their
optimization. We extend the optimization-based design with energy con-
siderations in Section 7.5 because the temperatures are only determined



by the ratio of supplied and emitted thermal energy. This concept of en-
ergy balance simplifies the parameter optimization significantly as we ne-
glect the temporal evolution of the heat dynamics and tune the integral
of our input signal. Finally, in Section 7.6, we wrap up all the presented
ideas of feed-forward control and we exemplify them on a two-dim. heat
conduction model with anisotropic and temperature-dependent thermal
conductivity and nonlinear boundary conditions.

7.1 Flatness-based Control of the Linear Heat Equation

The flatness-based control design for partial differential equations, in par-
ticular the heat equation, was initially described in the article [46] and
gradually extended for further PDE, see [12], and complex scenarios as
in [115, p. 133, 143]. Here, we only assume the simplest applicable version
of the heat conduction phenomena: the linear one-dim. heat equation
without thermal emissions. In accordance with [38,46], we derive an input
signal as a power series with analytical tools. Furthermore, we design the
reference signal and discuss how its derivatives are used to compute the
input signal. For this purpose, we apply the ideas of article [36] to com-
pute the reference derivatives. In the end of this section, we simulate the
one-dim. heat equation with found input signal and we discuss how the
final transition time T affects the input signal and in consequence the
heat dynamics. This issue is evaluated for various scenarios in [38].
We return to the continuous formulation of the linear heat equation

d 8°
T3 = am— 0,0 (7.1)

with diffusivity! a = ?—; and (¢,x) € (0, Trf) x (0,L) as mentioned in Eq.
(2.21). We specify an actuation on the left side (Byy) and a thermal insula-
tion on the right side (Bg) as

u(t) = —A%ﬁ(t,x) for x € By, (7.2a)

0
0=1—39(t,x) forxeBg (7.2b)
0x
and we measure the temperature on boundary Bg as
y(@®) =9(¢,L). (7.3)

This heat conduction model is strongly simplified, but it is the prototype
system for the flatness-based control of PDE, see [46]. According to the
literature [3, p. 232] and [123, p. 111], the solution of ordinary and partial
differential equations may be formulated in terms of a power series.? In
case of the linear heat equation, we define the power series

L i
Bt,0:=3 (t)( Ly (7.4)
i=0
We find the derivatives of 9 with respect to position x as
0 - L—x)’
(1) = Z (0 x) and (7.5)
0x =0
0 - (L- x)’
S5 0(6,x) = S it (7.6)

0x i=0
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! As we only consider the one-dim. case,
we drop the index, @ = aj.

2This solution technique is also known
as Frobenius method, see [124]. Fer-
dinand Georg Frobenius (1849, 11917)
[125] extended previous ideas by Lazarus
Immanuel Fuchs (x1833, 11902) [126] and
Karl Weierstral3(*1815, 11897) [127].



and we note the derivative in time as

0. X (L- x)’
5,00 = ZEﬁ )

i=0

(7.7
In the heat equation (7.1), we set 9(t, x) = (¢, x) and so we yield with Eq.
(7.6,7.7) the identity

(L-x)! S (L- x)’

© 4 .
—; (1) = (1)
> g0 @ ) b

i! —

We compare the left and right-hand side in the previous equation and we
take out the identity

a A
Eﬁi(t) =a Diw2(1). (7.8)

In the subsequent steps, we formulate 9; in terms of the output signal ()
and its derivatives to find the mappings ¥, and ¥,, see Eq. (6.15). We
note the output signal in Eq. (7.3) as

(e o] n Oi R
y(@) =9(1,L) = Zﬂi(t)ﬁ =o(1)
i=0 .

and we deduce from Eq. (7.8) the identity

d d? o
ﬁy(t) —ﬁo(t) a'9,; (1) fori>o0.

The boundary condition on Bg, Eq. (7.2b), leads us to expression

0 A
A= 0(t, 1) = —AZﬁ,Hm———wl(t):
0x =

and we continue this fact with Eq. (7.8) to yield

di . N
—0i1(0) =a’ 92441 =0.

datt
We summarize the previous findings and we split the identity (7.8) into
both sequences
D= a 'y and Drn ()= 0. (7.9)

We reformulate Eq. (7.4) as

(5)&) [L—x]* X!
=YY< o T
=0 { o if i is odd

if i is even,

N\~

and we set i — 2i to derive the output to states mapping in Eq. (6.15a) as

(i) DL 2i
at, )_Zy (0] 2;'“] . (7.10)

We formulate the actuation on boundary By, Eq (7.2a), in terms of
95, (1) with Eq. (7.5) as

0 x L
H=-A=—90=1) ;11—
u(r) ox (£,0) ;’) i+1(2) i
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and we yield in an analog way to Eq. (7.10) with i — 2i + 1 the output to
input mapping in Eq. (6.15b) as

B 00 y(i+l)(t) L2i+1

The mappings in Eq. (7.10) and (7.11) enable us to compute the tem-
perature at any position x € Q and the input signal if we consider suffi-
ciently enough derivatives of y(f). Hence, we can find the inverse system
of the heat equation, but we need to estimate the number of necessary
series sequences and this situation is discussed in article [38].

Reference function of Gevrey class

We wish to steer the output of heat equation (7.3) along a predefined ref-
erence trajectory
r(t)=ro+Ary(t,p)

with rg = y(0), Ar = ©4 — 19 > 0 and transition y. Hence, we identify the
output y and all of its derivatives ;—;i y(t) in Eq. (7.11) by reference func-
tion r(¢) and ;—;i r(#). The transition function® has to be zero at # = 0 and
one at t = Trr and need to be infinite-times continuously differentiable in

the time because we have theoretically an infinite number of derivatives
A’
drt
Zero, e.g.

r(t). Additionally, all derivatives of the transition need to be close to

i

lim d (t,)=0
totydg L

for i € N5g. In the initial article on PDE flatness-based control [46], the
authors propose the transitions function

0 ifr<0,
1 ift= Tff,
. t
w(t, p):= fw(T;f»P)dT (7.12)
L 7 ifre(0, T¢p),

rr () .,
[ ol
which contains the integral of the bump function

L r¢10,1], 13

wibpr= exp(—[t—217P) te(0,1). 7

The steepness of the transition is specified with parameter p, which need

to be set such that condition 1 + % <2 orequally p > 1 holds. The smooth

transition and bump function goes over to a sharp behavior if we increase

parameter p as visualized in Fig. 7.1. Transition ¥ and bump function w

are functions of the Gevrey class,* we refer for a detailed analysis to article

[46]. We need to differentiate the reference signal r(#) and likewise also

transition w(t, p) to compute the input u(#). We find the derivatives of
w(t, p) with the scaled bump function as

. dat

w(t,p) d' 20, p)
d —vw(t,p)=—-—

w(p) an dt’w( P) w(p)

4 (t,p) =
a VP
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3In the subsequent sections, we consider
weaker conditions, e.g. (0, p) = 0 instead
of w(0,p) =0.

Transition Bump w
N

AN
L A
@p=11
AN AN
/ \ JL 3
r
(b)y p=2.0
A A
J \ A \
Time t ’ Time ¢ ’
(©)p=3.0

Figure 7.1: Transition ¥ and bump func-
tion w for parameter p € {1.1,2,3}. An in-
creasing p leads to a steep transition and
sharp bump function.

*The Gevrey class is introduced by Mau-
rice Gevrey in [128], and further informa-
tion is provided online [129].
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with integral ®(p) = [ w (ﬁ, p) dt. So, the i-th derivative of transition
0

w(t, p) corresponds to the (i —1)-th derivative of w(¢, p). Bump function w
in Eq. (7.13) is a function composition as

w(t,p) = exp(f(g(n),p)) with (7.14a)
flz,p)=-2"" and (7.14b)
gt)y=t-r% (7.14c)

We evaluate the derivatives of Eq. (7.14a) via the chain rule and we obtain

an expression
Nnum
i Y bpt"
_ n=0
ﬁw(t, p) = N exp(f(z,p))
> apt”
n=0
with coefficients a,, b, € R and the order of the numerator polynomial is
smaller than the denominator, Ny, < Nge,. The order of both polyno-

mials increase by the order of differentiation. We evaluate the derivative
di
dar
nal function term. In Fig. 7.2, we portray the first derivatives of the bump

w(t, p) for t € (0,1) and so we yield large values because of the ratio-

function for p = 2 and we see that the maximum value increases signifi-
cantly by the order of differentiation. This fact is a problem for the com-
putation of the input signal because the sequence elements shall not in-
crease to infinity and we need to terminate the power series in Eq. (7.11)
to yield a suitable approximation

Niter r(i+1)(t) L2i+1

(1) :=A —_—— 7.15
UNjer (1) ;0 T @ie D] (7.15)

with up;,,, (1) — u(?)|l < € for a small € > 0. We see in Eq. (7.15) that
the series elements contain the diffusivity a and the choice of the control
parameters, time T and steepness factor p. In article [38], the authors
discuss the impact of the material parameters and control parameters on
the resulting input signal.
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Figure 7.2: Bump function w(¢, p) and its
first derivatives for p = 2. The maximum
value of the derivatives increase dramati-
cally by the order of differentiation.
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Computation of the Derivatives

We need to compute several, possibly a large number of derivatives of
bump function w(t, p) to find an exact approximation of input u(t) as in
Eq. (7.15). However, the computation of derivatives of w(¢, p) is not trivial
because it is very smooth and it is a function composition, see Eq. (7.14).
A numerical evaluation is not applicable because high-order derivatives
tend to strongly oscillating behavior, see also Fig. 7.2, and a manual calcu-
lation is too error prone. Hence, a symbolic computation, e.g. as in [130]
with MATLAB, or an algorithmic approach with recursion formulas as
in [131] may solve this task. However, these approaches are tailored for the
bump function w(t, p) as noted in Eq. (7.13). As an alternative, the authors
present in article [36] a method to compute derivatives for generic func-
tion compositions as fog(t) with g: R — Rand f : R — R. For this purpose,
the function composition is evaluated with Faa di Bruno’s formula and Bell
polynomials. In this thesis, we compute the derivatives with Faa di Bruno’s
formula, which is implemented in the JuL1A library BellBruno.jl, see [45].

Example: PDE Flatness-based Control

We demonstrate the flatness-based control for the linear heat equation
without thermal emissions. We consider a one-dim. model of a rod with
length L = 0.1 and material properties A = 50, p = 8000 and ¢ = 400. The
measured temperature y(t) = 9(¢, L) shall follow the reference signal

r() =300 +100 (¢, p) (7.16)
N P
with steepness parameter p = 2, see Fig. 7.1 (b). The input signal in Eq. s 009%00e,,
. . . . 125+ ° °
(7.15) contains coefficients related to the geometrical object and the refer- _ ! 4
ence derivatives as 5 104 e
Niger i+1 b% Py
o —_ =}
uNiter(t) - I;O ni dti+l r(1) T757te
with sequence elements 54
2i+1 t t t g
L AL” 0 5 10 15 20
ni:= 22! 2it D! Index i
. . . . Figure 7.3: Logarithmic scaling of se-
Here, we compute the input signal for N;;., = 20 iterations, we evaluate quence elements 7;, which amplify the
the sequence n; numerically and so we yield very high values, e.g. reference derivatives in the PDE flatness-
based control.

max  7;~1.95-10"2.
i€{0,1,...,Njer}

The data of sequence n; in Fig. 7.3 is displayed in semi-logarithmic scale
and we see that n; reaches its maximum for index i = 12 and stays on a
high level afterwards. Thus, we need to choose suitable control parame-
ters (steepness p and time T ) to yield small higher-order reference deriva-
tives and to avoid (strong) oscillations, as in Fig. 7.2, in the computed in-
put signal. As we already fixed the steepness p = 2, we vary the final time of
the feed-forward control Trr € {400,1200,3000} seconds and we evaluate
whether the input signal and resulting temperature evolution suffice our
constraints. We remark that the input shall not drop below zero because
we only control the heating and not the cooling. Moreover, the tempera-
tures shall not drop below its initial value.
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We visualize the results of our simulations in Fig. 7.4; see also article
[38] for similar results. In the first case, we set Try =400 seconds and we
yield an input signal in Fig. 7.4 (a) with strong oscillations and a very high
magnitude

max u(f) ~1.5-10°.
l’E(O,Tff)

This intensive input signal causes very high and low temperatures, e.g.
more than 1000 Kelvin and almost 200 Kelvin, on the left side of the rod,
x = 0. This situation might be physically realizable but is not practical for
ordinary industrial applications. Hence, we have to exclude this parame-
ter setup for further applications.

In the second scenario, Trr = 1200 seconds, the input signal reaches
small negative values (after ¢ = 600 seconds) in Fig. 7.4 (b), but all tem-
peratures are above the initial temperature. As we only have small neg-
ative input values, we might apply a limitation of the input signal with
ii(t) = max(u(t),0) and still yield a reasonable temperature evolution.

Finally, for Tf ¢ = 3000 seconds, we compute an almost Gaussian-shaped
input function, which produces a suitable temperature evolution because
the overshoot is much smaller compared to the other scenarios. So, the
first derivative %W has the main impact here on the shape of the input
signal, see Fig. 7.2. In Section 7.4, we approximate this flatness-based in-
put signal with a parameterized function.
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Figure 7.4: Computation of the flatness-
based input signal and the resulting tem-
perature evolution. The graphs on the
right side show the temperatures of the rod
on the left side: x =0m,

in the center: x = % =0.05m and

on the right side: x = L = 0.1 m. The
temperature on the right side is the out-
put and it follows the predefined reference
trajectory. Though, the input signal for
Tff € {400,1200} seconds is not admissi-
ble because it drops below zero and pro-
duces temperatures below the initial tem-
perature in (a).



7.2 Flatness-based Control of the Approximated System

The flatness-based control design was initially proposed for finite dimen-
sional nonlinear systems in the article [108]. The main idea to find the
input signal u is the differentiation of the output signal y. We firstly ex-
plain how to find the input signal in general and afterwards we distinguish
between the one- and the multi-dimensional scenario. We consider the
approximated linear heat conduction problem

i@(t) =AO()+B u(r)

dat

y(@)=C0O()

with matrices A € RVe*Ne | B e RNe*Nu and C € RNy*Ne | see Definition 6.1.
We differentiate the output y for N, times to find the mappings in Eq.
(6.15) and so we obtain
i

dt’

fori€{1,...,N.}. If the term CA'~'B vanishes for i € {1,..., N, — 1}, then
we can note the state mapping ¥,. In this case, we summarize y and its

y(t) = CA* x(1) + CA” B u(1) (7.17)

N; — 1 derivatives as
y(®) C
y(8) CA
z(t):= .

e =T, 06(1)

y(Nfl)(t) CANc-1
with transformation matrix T := [C,C 4,...,C ANC‘l]T and we find the

state mapping ¥ as
0) =T, 2(t) =y (y, Jr..., Y1), (7.18)

As matrix Ty needs to be invertible the number of its rows and columns

must coincide. In the second part of this section, we discuss this situation

for systems with multiple input and output signals where we have more

rows than columns and we need to decrease the size of T,. We find the
highest-order derivative of the output as

N¢

at"

with CANe~1B # 0. Accordingly, we yield the input signal as

y(t) = CAN@(t) + CAN"1Bu(r)

n

atn
We identify © in Eq. (7.19) by the right-hand side of Eq. (7.18) and we
obtain the input mapping

u(t) = [CANC_IB]_l( d y(1) —CANce(r)). (7.19)

Ne—1 -1 [ @™ Ne -1
u(t) = [CA™'B] (my(t)—CA °T, z(t))
y(0)
y(0) -
=My . =y, 7" (7.20)

y(Nc) 63)
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with matrix

My :=[CANTIB] T [-caNery My, | (7.21)

In, denotes the identity matrix of size N, x Ny. As we wish to compute
an input signal depending on the reference signal, we need to identify the
output y(t) by the reference signal r () in Eq. (7.20) and we note

(1)

7 (1)
u(t) = My i : (7.22)

r(Ne) (1)

Subsequently, we discuss the peculiarities of flatness-based control for
the one- and two-/three-dimensional case.

One-dimensional Scenario

If we assume the one-dimensional rod as geometric object then we have
one actuator and one sensor on opposite sides. We set the actuation on
boundary By and temperature measurement on Bg. These positions cor-
respond to the first x; (actuation) and last grid node xy, = XN; (measure-
ment). Thus, we note the input and output vectors as

T

0,...,0 and C=]0,...,0,¢]

Axy cp’
with b € [0,1] and ¢ € [0,1]. We differentiate output y and we build iter-
atively a relation between the output and all of its states, as depicted in
Fig. 7.5. We have system matrix A = ;—;%Dl with diffusivity a; = C’l—;) and
diffusion matrix D, see Eq. (3.36). We calculate M, in Eq. (7.21) with the
N,-th power of A, but this matrix contains floating point values because

A= %Dl. Hence, we face numerical inaccuracies in the finding of Al
1

and this issue may have a crucial impact on the computation of T, 1 see
Eq. (7.18). We solve this problem as we split floating point and integer

values as ) )
14 14
. a . . a .
Al=|—| DI and CA'=|—| CDL
Axy X]
Accordingly, we split the transformation matrix as
C
Ne—1
T, = diag|1, — a |*] € Ty, T,
=diag|l,—,.... | — . =:Ty1 Ty,-
Y 8 Ax? Ax? pLiy2

N,-1
cp!

111

X1 XN
=L
(a) 1st Diff.

¥\
=111
(b) 2nd Diff.

RN

(c) (N¢-1)-th Diff.

Figure 7.5: Differentiation of the output y
for the one-dim. rod. The i-th derivative
of y(¢) relates to the temperature node of
index Ng —i.



We see that T),; is a diagonal matrix and hence we simply calculate the
inverse of T}, as

— -1 — —
Ty1 = [Ty,l Ty.Z] = Tyé T, %

W
c -1
C Dy . Ax? Ax? (Ne=11
= . diag|l, —,..., | — (7.23)
: ay ay
N-1
CD;

In case of the computation of CANe~1B, we know that vectors C and B
relate to the last and first grid node, respectively. Diffusion matrix D; has
almost a Toeplitz form and so find the i-th power of D; with a vector of
ones on the (i + 1)-th subdiagonal, for example

o1 EE S * 1
* * * 1 * % * *
*  ox % 1
D? = and DWNerlU=f: -
1 *x *x x 1 '
* * P
1 * * %
1 o % 1 =x * %
Hence, we calculate
0
©,...,0,n) DNV =1
0
We continue this idea to obtain CDiVC*lB =3 f} EC 5 and we compute in a
next step
[Ne-1]
a _
cANTIg= | — cpY"'B
Axy
a el bé
= |— : (7.24)
Ax] Axy cp

Finally, we wish to note row vector M, as in Eq. (7.21) explicitly including
the previous considerations. For the first N, — 1 entries, we consider the
identity

Ne
a
cAVe=|— | cD
x
1
to derive the expression
[Ne—1] Ne¢
_ Ax? Axicp | a
[cAN1B] T caMe = [ =L LB | 2] cple
a bé Ax?
__M c pNe
Axbe 1!
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For the last entry of M,,, we have [CANe~1 B]~! by inverting the right-hand
side of Eq. (7.24). We summarize all the previous findings and we note

M, = [_ [CANE—lB]—l C ANe T;ll [CANc—lB]—l]

[N:—1]
© T Axycp

bc

A

Ax?
Axbc

Ne =1 -1
C D, TJ,,ZTJ/’1

(7.25)

Additionally, we remark that the first entry of M, has to be equally zero
as M, (1,0,...,0)7 = 0 because the input signal shall consist of the refer-
ence derivatives (j—;ir(t) only and not of the reference r(t). We find the
same situation in PDE flatness-based control in Eq. (7.11,7.15). This fact is
based on the integrating behavior of the heat equation with non-insulated
boundary conditions. We discussed this scenario in the example of Sec-

tion 4.3, see also Eq. (4.60).

Example: Flatness-based Control in one Dimension

We consider the same heat conduction example from Section 7.1. We de-
sign an input signal for the same reference signal, see Eq. (7.16), with
steepness p = 2 and final feed-forward time T'rf = 3000 seconds. We spa-
tially approximate the rod with N, = 20 grid nodes and we compute the
input signal as in Eq. (7.22) with M, as in Eq.(7.25). As we know that the
first entry of M, is zero as M, = [0, 1, My, ..., My,], we compute the input
signal as

Ne i

u(t) =) mi—r(.
(1) ; i)

The values of 771; describe the scaling of each reference derivative and they

reach very large numbers, e.g. max 7; = 2.5-10'3. We portray these

i€fl,...N¢}
values 771; in Fig. 7.6 in semi-logarithmic scale. We compare ; with the

sequence elements 7; from the example in Section 7.1, see Fig. 7.3, and
we find similar values for the first indices, which correspond to the low or-
der derivatives. We apply the input on our approximated heat conduction
model and we visualize the input signal and the resulting temperatures in
Fig. 7.7. Here, we notice that the similar values of m; and n; correspond
to similar input signals and thermal dynamics, see Fig. 7.4 (c).
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Figure 7.7: Computation of the flatness-
based input signal and the resulting tem-
perature evolution for the approximated
one-dimensional heat equation. The data
coincides with the results of the PDE
flatness-based control in Fig. 7.4.

A
0000y
125 1 °® ®
[ [}
e~ ® ®
& [}
\610 T » PY
% °
2 °
751+ @
54°
1 1 1 1\
T T T LI 4
5 10 15 20
Index i

Figure 7.6: Logarithmic scaling of vector
elements ;, which amplify the reference
derivatives for the flatness-based control
of the one-dim. approximated heat equa-
tion.



Multiple Actuators and Sensors for Two and Three Dimensions

In the multi-dimensional scenario we consider multiple actuators and sen-
sors, Ny, > 1 and Nj, > 1. The matrices B and C need to fulfill certain crite-
ria to find the state and input mapping, v, and v, with Eq. (7.17).

We know that the transformation matrix has to have full rank T, € RNe*Ne
to be invertible. However, we have N, sensors and output matrix C €

RNy*Ne and so we find the matrix

C

CA
e RNy NexNe

CANe1

with more rows than columns. Thus, we need to reduce the number rows
either by removing linear dependent ones or we consider only the first N

matrix blocks as
C

CA
T,=| (7.26)

caN-!
with N = % In the latter case, we need to prove whether T), still has full
rank. This is the fact, if we have a bijective mapping between a subset
of the temperature nodes and the output signals y. In an example, we

assume
(D) =C o)
with matrix
C =[Oy, diag 1, o, )| (7.27)

and we obtain the bijective mapping

y1=2C ON.-Ny+1,

Y2 =C2 ON.-Ny+2,

YN, = Cn, On,.

Due to the block matrix structure of A in the two- and three-dimensional
case, we compute a suitable transformation matrix T), with C in Eq. (7.27).
The second term of the right-hand side in Eq. (7.17) has the dimension

|[caB] erNyNe

and we know that it needs to be invertible for i = N. Thus, the number of
input and output signals must be equal: N;, = Ny. Furthermore, to guaran-
tee CA"1B = On,xn, foriefl,..., N—1}, we require that the temperature
cells, which are affected by the actuation and temperature measurement
must be completely separated. This means, they have to be on opposite
boundary sides. In other words, the intersection of the index sets of the
actuation and sensing must be empty as

( J }Sﬁ'n)n( U }Sy'n):{}'

nefl,...,Ny nefl,...,,Ny

114



115

If we consider output matrix C as in Eq. (7.27), then we have to choose the

B diag(by, ..., bn,) ' (7.28)
ONC—NuXNu

input matrix as

The design constraints for matrices B and C does not match well with our
concepts of input and output partitions, as introduced in Section 6.1, be-
cause one partition usually consists of several cells. In case of the actu-
ation, we may solve this issue as we define one cell per partition and we
specify several input signals with the same reference function. However,
we are not able to transfer this idea to the output partitions because we
have here multiple cells to find an average temperature, see Eq. (6.6). We
may solve this issue by introducing a control design with two stages:

1. Low resolution approximation of object Q where the number of input
and output segments coincide with the number of input and output
signals. We consider this approximation to compute the flatness-based
input signal.

2. High resolution approximation of object Q with smaller segments and
accurate spatial characteristics. We apply the found flatness-based in-
put signals on this precise model to check the open-loop dynamics.

Example: Simulation with three Actuators and Sensors

We exemplify the previous ideas on a rectangle example with length L = 0.1 ) 4 + +

m, width W = 0.05 m, and number of grid cells N; = 3 along direction x, % g I I m=Nm

and N, =5 along x,. We consider the actuation on Bg = (0, L) x {0} and E I I

the measurement on By = (0, L) x {W} with N, = N}, = 3 input and output % | |

signals f g | |
T | | m=1
2 F F *

u(®) = (uy (0, ua(8), uz()) T and  y(0) = (y1(0), y2(8), y3(0) " . e

Figure 7.8: Example of flatness-based con-
trol for a rectangle with three actuators on

. . o . L
The input signals affect the cells with index i € {1,2,3} and the output sig boundary Bs and three sensors on By,

nals measure temperatures of the cells with index i € {N, -2, N, — 1, N.}.
This setup is visualized in Fig. 7.8. We consider two setups for input ma-

trix B as in Eq. (7.28) with b; = ﬁ and output matrix C as in Eq. (7.27). Table 7.1: Simulation Scenarios.
In the first case, the actuator coefficients b; are different while ¢; are equal Setup (b1, bo,b3)  (€1,62,33)

and in the second case it is vice versa, see Table 7.1.
(@ (1,09,0.8)  (1,1,1)

We assume an initial value of ©(0) = Oy, (not in Kelvin) and so we have
b QLD (1,0.9,0.8)

the initial output signal as y(0) = CO(0) = (0,0,0) ". All three output signals

shall be along the same reference function r(#) = 100 ¥ (¢, p) with a transi-
tion as in Eq. (7.12) and steepness parameter p = 2. We compute the input
as u(t) = M, 7(t) with matrix

~ _1 ~
My = [ca¥1B| [—caV Ty Iy, |,
transformation matrix 7T), as in Eq. (7.26) and

_ N, N; N,
N=c__J m_¢
N, N
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We emphasize again that the computation of A’ and its further usage might
be numerically sensitive for a “large” value of power i because of the float-
ing point values in A = ﬁDl + %Dg. The computed input signal and
our resulting temperature evolution of ©;(#) for i € {N; -2, N; — 1, N.} is
portrayed in Fig. 7.9. In case of setup (a), the input signals u,(¢) and u3(¢)
are amplified to compensate the scaling of input matrix elements b, and
bs3. The temperature on boundary By behaves as desired and follows the
reference trajectory. In case of setup (b), the computed input signals show
an almost Gaussian-like shape but their values do not approach zero after
reaching its peak value. We find that us stays at ca. 4-10* while u; and
u drop to negative values. These input values lead to the nonuniform fi-
nal temperature distribution on boundary By where Op,-2(Trf) = 100,
On,-1(Trf) = 110 and Op,(Tfr) = 125. This situation is caused by the
choice of (¢, ¢», ¢3) and so we yield for the output values

n(Trp) =1 On,—2(Tff) = 100,
V2(Tfg) = €2 On,1(Tyf) = 100,
y3(Tff) =C3 @NC(Tff) ~ 100.

In this example, we see the influence of matrices B and C on the compu-
tation of the input signals and the resulting thermal dynamics. The input
signals in Fig. 7.9 (a) are symmetric and Gaussian-shaped like in the one-
dim. examples in Fig. 7.4 (c) and Fig. 7.7. In particular, if all reference
signals and the coefficients b; and ¢; are equal, then we yield identical in-
put signals and we can consider a one-dim. scenario for the computation
of the flatness-based input signal instead of the multi-dim. geometry.

We take up the ideas of setup (a) in our optimization-based feed-forward
control to design the symmetric and Gaussian-shaped input signals, see
Section 7.4. In contrast to that, we do not further discuss a scenario as in
setup (b) with flatness-based control because it shows an undesired input
signal.
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Figure 7.9: Flatness-based control of the
2-dimensional heat conduction with three
input and output signals. The input signal
and the resulting temperature evolution is
computed for two scenarios with B and C
as in Table 7.1. The temperature values of
the grid nodes with index

i € {N;—2,N¢; -1, N}, which are related
to boundary By, are scaled in Scenario (b)
because of the choice of matrix C.
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7.3 Reference Generation

The flatness-based control approach in Section 7.1 and 7.2 depends strongly
on the design of reference signal r(¢) and its derivatives. In Section 7.1, we
constructed the reference with a very smooth transition function of the
Gevrey class, which is required for the control design of infinite-dim. sys-
tems. Here, we face the problem that computing the transition and its
derivatives is not trivial and could be costly, see [36]. In practice, we need
to approximate the input signal and the infinite-dim. system to imple-
ment it in simulations and control algorithms for industrial controllers.
Hence, we know the number of necessary reference derivatives from the
number of grid nodes in the spatial approximation. If we fix the number
of reference derivatives accordingly, then we can propose a transition with
a finite number of smooth derivatives. Subsequently, we discuss three de-
sign approaches of transition ¢ for the flatness-based control of finite-
dim. systems and we explain how to compute its derivatives. These ap-
proaches have in common that the computation of transition derivatives
is less challenging than in case of Gevrey functions.

In case, we do not require derivatives of the reference function, e.g. ina
pure numerical control design as in article [40], then we may even assume
very simple transitions like

G el
v =3 cosanf .

Standard Polynomial Approach

First of all, we present a polynomial approach

2N+1 t 1"
Yy(t,N)= ) cn|— (7.29)
=1 Upr

with coefficients ¢, € R and N > 0 to model the transition. Here, the num-
ber N > 0 represents the order of the highest reference derivative. We drop
the dependency of order N in ¥ (¢, N) below to improve the readability. We
require that the transition starts at zero and reaches one as

yOZ0 , y(Tp)=1 (7.30a)

and the derivatives at the initial and final time must vanish as

n

dt"

n

|
= =0 7.30b
o drm ( )

l‘:Tff

y(1) y(1)

for n € {1,...,N}. We find the coefficients c, of transition ¥ (f) with an
evaluation of the constraints in Eq. (7.30). In particular, we evaluate Eq.

(7.30a) at £t = Tff as
2N+1

Y(Trp)= ) cp=1 (7.31)
n=1

We continue with i-th derivative at the initial time ¢ = 0 as in Eq. (7.30b),
where the i-th coefficient ¢c; must be zero for i € {1, ..., N} because of
i

a4 | =T:lile=0 (7.32)
dtiw o rpitei=0. .



We calculate the derivative at the final time ¢ = Tf as

C2N+1

d
Ew(t) t= Tff f Z

n!

(n- 1)'

As we know from Eq. (7.32) that ¢; =0 for i € {1,..., N} , we start the sum-
mation at index i = N and we yield

2N+1 n!

— ¢, =0. (7.33)
n=nN+1 (n—1)!

We collect the previous findings from Eq. (7.31, 7.33) and we solve the
linear equations

1 1 1
(N+1)! (N+2)! (2N+1)!
N-D! Nl T @N) CN+1 1
(N+D)!  (N+2)! en+)! || enaz 0
N-2! ~-D! - @N-D! ) =1 (7.34)
CoN+1 0
(N+1)! (N+1)! (2N+1)!
1! 2! (N+1)!

for the coefficients c;. Transition (¢, N) and its first derivative %1//(1.‘, N)
are portrayed in Fig. 7.10 for N € {2,5,10} and we note that a higher or-
der N leads to a steeper transition. In summary, the polynomial approach
(7.29) has in total N series elements c;, which we find by solving Eq. (7.34),
and the highest order term has the exponent 2V + 1.

Integration of Bump Functions

In Section 7.1 we described how to compute the transition by integrating
the bump function w(¢, p) in Eq. (7.12). Now, we transfer these concepts to
transition functions with finite order. So, we consider the bump function

N
o6, = [t-2]"= Y (N) (=" (N
n

n=0

and we integrate it as

fotw(%,N) dr
Tyr

Jo w(Tff )dT

to yield a transition ¥ as in Eq. (7.29). We solve the integral in the numer-
ator of Eq. (7.35) as

w(t,N) =

(7.35)

t T N N ) t N+n+1
— Nl|dt=T -D" [N = 7.36
/ow(T ) ’ ffngo(n)( R [Tff (739

If

with the binomial coefficient

N} N
il W=D

We find the denominator in Eq. (7.35) by evaluating the right-hand side of
Eq. (7.36) at t = Tyy as

fof ( N)d T Z -D" [N+n]™!
L Nldr=
X s r
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Figure 7.10: Transition y and derivative
Ly for order N € {2,5,10} as in Eq. (7.29).
An increasing order N leads to a steep
transition.



and we yield the polynomial transition in Eq. (7.29) as

N (N n 21 LNHH—I
néo(n)( L N+ n] [Tff
w(t,N) = N (N
Z( )(—1)" [N+n]™!
n=0

Beside a polynomial, we can also consider other bump functions. If we
assume a sine function as w(t, N) = [sin( £)]%", then we find the transition

Jlsin(7)
Ysin(t,N) = Tff— (7.37)

[ [sinf52)]™

0

In Eq. (7.37), we may apply trigonometric identities like

sin(z)? = %(1 —c0s(22))

to compute the integrals in closed form.

Hyperbolic Tangent

Additionally to the transition functions, which are based on a polynomial
in Eq. (7.29) or on a sine in Eq. (7.37), we propose the simple, but inexact,

transition .

u/(tv p) = 5

t 1
1+tanh(p [———
Trr 2

[—

In case of this transition, we do not need to compute several coefficients
or solve integrals as above, and we can simply specify the steepness with
parameter p > 1. Though, the constraints at the initial and final time do
not match exactly as

wO0,p)#0 and yw(Trr,p)#1

for any parameter choice p > 1. We evaluate identity

tanh(z) =1—- —
exp(2z+1)

in Eq. (7.38) and find at the initial and final time

exp(p)

v(O0,p)=1- W’ (7.39a)
1

If parameter p increases, then the transition approaches the desired val-
ues as

l}iirgo (w(©,p),y(Trs,p)) = (0,1).
If we fix a certain initial value, e.g. (0, p) = ¥, then we compute the

necessary value of the steepness with Eq. (7.39a) as

i?=ln(wL - 1). (7.40)
0
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Table 7.2: Steepness and initial value as in
Eq. (7.40).

wo | 1071 1072 1073 107¢
p |22 46 6.9 9.2




In Table 7.2, we list four example relations of Eq. (7.40). The reference
tracking shall also perform well and robustly, if the initial reference value
and the corresponding output signal do not match exactly, r(0) — y(0) > 0.
For our simulations, we require p = 7 or ¥ < 1073 because we yield the
initial reference as
r0)=ro+Ary(0,p)=ro
—
<1
with e.g. Ar =100 Kelvin. We visualize the transition and its first derivative
in Fig. 7.11 and we remark the offset for p € {3,5} at the initial and final
time, t=0and ¢t = T¢s. In case of p =7, we notice almost no offset in the
transition and its derivative.
We differentiate the transition in Eq. (7.38) and obtain

a |z p _B)Z
dtw(t,p) = p[l tanh(t T, 2
__b _ 2
=31, [w(t, p)—w(t,p)?], (7.41)

which is in form of the Riccati differential equation

d
f@=a+af@+ e f (2)*
<

. . _ . p _ p . .
with coefficients ¢y =0, ¢} = 3T, ©2 =TT According to article [135], we
find the n-th order derivative of ¢ as

n

p
1,p)= |
dt"w( P) 2Tff

nonl n i+1 n—i
> ) wep =)y p)
i=0

with the Eulerian number
n : (n+1
<,>=Z(—1)J( , )(i+1—j)”. (7.42)
! j=0 J

For further information on Eulerian numbers we to the book [136, p. 242].
As for the transition, the constraints for the derivatives at the initial and
final time do not match as

n

A )
am?'hP

dfl
0;é() and Ww(t,p) #0.
=

t:Tff

We solve this issue with a proper choice of the steepness, e.g. p > 7, see
Fig. 7.11.

In conclusion, we are able to compute reference transitions for differ-
ential equations with a high number of states either exactly, e.g. with a
polynomial approach as in Eq. (7.29) and (7.35), or approximately with
the hyperbolic tangent in Eq. (7.38). The steepness of the polynomial ap-
proach can only be specified for a discrete order of the polynomial, while
the steepness of the tanh approach can be set continuously. In Section 7.6,
we exemplify the reference design with the tanh approach.
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7.4 Optimization-based Feed-forward Control

In the previous sections, we discussed the design of a reference function
and the computation of an input signal with flatness-based control. In
case of the one-dim. heat conduction, the input signal tends to a bell-
shaped function if the final time Ty is long enough, see Fig. 7.4. We re-
mind that this shape corresponds to the first derivative of reference r(¢)
and the influence of higher order derivatives need to be minimized by
choosing a suitable Ty and steepness to guarantee only positive input
values. As flatness-based control is rather limited to linear heat conduc-
tion problems® for our scenarios, we extend the feed-forward control de-
sign with numerical optimization approaches to handle our original non-
linear scenario. Therefore, we treat flatness-based control as a prototyping
stage for the optimization-based control design, which is capable to han-
dle the full heat conduction setup with thermal emissions, temperature-
dependent material coefficients and spatial characteristics for actuators
and sensors. This concept is described in our article [39]. We approximate
bell-shaped flatness-based input signal by the Gaussian function

t 112
) (7.43)

2
t’ = — _—
Uoc (L, p) exP(Pl b3 [ Trr 12

with signal gain p; = 0, time shift p, > 0 relative to final time T¢¢ and
width or kurtosis of the bell shape p3 = 0. An increasing value of p, shifts
the center of u,. closer to the origin, and an increasing value of ps de-
creases the shape width. The optimization-based input signal (7.43) is vi-
sualized with its parameters in Fig. 7.12. We find the first derivative in time

as
p; [t

d 1
—Uoc(t;p) =-2 — [ -—

—— Uoc(t; p)
dt Tff Tff D2 octh P

and this derivative vanishes, % Uoc(t; p) = 0, at the peak value of u,.(¢, p),

T .. . .
% Uoc(t;p) =0at t = %. At this time, we yield the maximum value as

max Uy(t,p) = uoc(&yp) =exp(p1). (7.44)
te[0, Tl p2

In our subsequent examples, we have this peak value close to % or equally
p2 = 2. The input signal is positive for all £ € [0, Tryl and does not start at

2
o

for any parameter choice p = (p1, p2, p3).- Thus, we specify a very small

Zero as

Uoc(0; p) = eXp(m - [&
p2

initial value u,.(0; p) = up > 0 and we determine the parameters such that

2
p3 )_

ex] =1 |=u

P(Pl [Pz] 0

holds. In the function approximation of the flatness-based input signal we

equation

easily derive the parameters p; and p, via the maximum value, but finding
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°The flatness-based control design for a
specific type of quasilinear parabolic PDE
is described in the doctoral thesis [111].

Input upc

&—p2—p Time't
increasing decreasing
Figure 7.12: The optimization-based in-
put signal is designed as a Gaussian func-
tion with parameters pj as gain, p» as time
shift and p3 as width of the bell shape.
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asuitable p3 needs more effort. Hence, we may determine ps via the initial
value as p3

ps = p2y/ p1—In(ug). (7.45)

If we choose a small u, then yield a large kurtosis p3 and a narrow bell / .

-1 -2 -3 -4 -5 -6 -7 -8"
logy ¢ (o)
(a) Determining p3

shape. In Fig. 7.13 (a), we find for uy = 1078 the kurtosis p3 ~ 7.4 and we
yield the green input signal in Fig. 7.13 (b).
The parameter optimization of u,, with gradient-based techniques in

the next paragraphs and so we calculate the parameter gradient as )
--= ug=10"

. ~-u=10"

N, —up=10"°

Input uec
DOl—

1
Vpugc(t;p)Z -2 [%]z[ﬁ_é] Uoc(L; p).
-2 p3 T_t_i]z
ff P2

Approximation of Flatness-based Input Signal

In the next steps, we approximate the flatness-based input signal with u,
and optimize the parameters of u,. such that it fits to a heat conduction
model with nonlinear terms. To exemplify these steps, we assume a one-
dim. heat conduction model with boundary conditions

-1 i19([’,.?6) =u(t) + pem(t,0), (7.46a)
dx x1=0
d
A —A9(t, x) = (t,L) (7.46b)
dx el bem

and thermal emissions as in Eq. (2.33). We assume the same material
properties as in the example of Section 7.1, see also Table 7.3.

We sample the heat conduction in space and we design a flatness-based
control for the simplified model as described in Section 7.2, where we drop
the thermal emissions as ¢, = 0. We set the final time Try = 3000 sec-
onds and we specify reference signal r(z) with the Gevrey-type transition
as explained in Section 7.1. We yield the input signal usp, as in Fig. 7.7
and we restrict it to positive values only as

lfpe(t) :=max (uspc(1),0).

The main idea of this first step is to find suitable parameters p = (p1, p2, p3)
to minimize the error between the flatness-based and optimization-based
input signal as

minespc(t,p) with  efpc(t, p) := Urpc(t) — Uoc (£, p). (7.47)

We derive gain p; and time shift p, directly from the data of @), but we
need to approach the width p3 via a numerical optimizer. This procedure
is visualized in Fig. 7.14. The found parameters of this step are treated as
initial values for the optimization routines of the subsequent steps. The
flatness-based input signal i 7, reaches its peak value at ¢ = f;,4x and we
obtain with Eq. (7.44) the identity

max Urpc(t) = Urpe(t
(eO.T) fbc ) fbc max)

Uoc(bmax, P) = Max uyc(t,
oc(tmax, P) 0. Typ) oc(t, p)

= exp(p1)-

Tf f 12 Tf f
Time t
(b) Width of bell shape

Figure 7.13: Determining parameter p3 for
a given initial value as in Eq. (7.45) with
p1 =0and p2 =2in (a). The shape width is
shrinking for a decreasing initial value 1
in (b).

Table 7.3: Example coefficients.
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Thus, we derive the parameters

_n(h _ Tyr
p1= ln(ufhc(tmax)) and p2= .
Imax

We find #,q4x = 1401 seconds and @ p¢(fmax) = 74.8 - 103 and so we yield
the parameters of u,.(t, p) as

p1~=11.22 and p;=2.14.

In a similar way, we can pick an arbitrary time point 7 € (0, T ) \ {fyax} to
find parameter p3 by solving the equation i sj.(f) = toc (7, p) as

-1
p1—In(aspc().

Though, we may find for each time 7 a different parameter p3 because the
flatness-based and optimization-based input signal do not fit perfectly.
We wish to avoid such a sensitivity and design an unconstrained optimiza-
tion problem, which fits the parameter robustly as

p; =arg min J(p3). (7.48)
p3€(0,00)
We consider the quadratic objective function

I afbc(t) = Upc(t, P)||2
TP = = O

(7.49)

where we distinguish three norms as

Try
||f(t)||L1:=f0 s,

Try
1@l = \/fo fods,
Dl = max 1O,

t€(0,Tff)
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Figure 7.15: Objective function and its
gradient for the norms Lj, Ly and Leo.
The minimum costs (purple crosses) reach
circa 12.3 for L1 and Ly, and 12.4 for Lo,
see also Table 7.4. The objective function
for Lo is not continuous at its minimum
and so its gradient shows a jump.
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Figure 7.14: Scheme to approximate the
flatness-based input signal. Parameters p;
and p; are derived directly from & s, and
p3 is found numerically via the minimiza-
tion of the error between flatness-based
and optimization-based input function.
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We solve the optimization problem (7.48) numerically with a Conjugate
Gradient optimizer for these three norms and we yield three different op-
timal values p;. In Fig. 7.15 we depict function (7.49) and its gradient for
each norm. The optimal values of p; are marked as purple crosses and its
approximate values are listed in Table 7.4. The objective functions start at
high values for L; and L, they approach zero and continue on low values
for p3 > 10. The objective function of Ly, has a discontinuity at its mini-
mum value, which leads to a jump in the gradient.

We visualize u,.(¢, p) for the three ps3 values in Fig. 7.16 (a) with data
samples as markers and the original s, as a line, and we notice that
the optimization-based input signal u,.(t, p) fits the flatness-based in-
put ffpe quite precisely. Error efp., as in Eq. (7.47), shows in Fig. 7.16
(b) two significant peaks during the start-up and shutdown phase, e.g.
t € (1000,1300) and ¢ € (1600,2000).

In the subsequent optimization routines, we assume the L, norm to
evaluate the error.

Parameter Fitting for Reference Tracking

Here, we design the optimization-based input signal for the full, original,
heat conduction scenario and we visualize this approach in Fig. 7.17. In-
put signal u,.(t, p) shall steer the temperature measurements y(¢) of the
nonlinear thermal dynamics, see Definition 6.1, along a predefined refer-
ence trajectory r(t). The numerical optimizer shall find suitable parame-
ters for u,. (¢, p) to minimize the error between the reference and the tem-
perature measurement as

eroc(t,p):=r(t) = y(t, p).
The temperature measurement depends on parameter set p because each
variation of p changes the thermal dynamics and consequently the mea-
surement y as

t
y(t,p)=CO(,p) =C j(; f2(©)+ B(®) u(r, p) + w(r,0)dr

This means, we do not approximate the input signal u,. via a candidate
function as in the previous step. Instead, we need to integrate the thermal
dynamics in an intermediate step and compare the resulting output tem-
perature with the reference signal. Here, we adapt only gain p; and time
shift p, while we fix kurtosis p3 with the value of the previous step. We find
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Figure 7.16: Match between the flatness-
based and optimization-based input sig-
nal with p3 as in Table 7.4. The start and
end time, r € [0,500] and ¢ € [2500,3000],
is cut to improve the readability. Two re-
markable errors occur during the ramp-up
and ramp-down phase of the bell function,
circa at t = 1200 and ¢ = 1800 seconds.

Table 7.4: Found Parameter p3.
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Figure 7.17: Scheme to fit the parameters
for reference tracking. The optimization-
based input uyc steers the heat conduc-
tion. The measured temperature y is com-
pared with the reference r and their dif-
ference shall be minimized by the numer-
ical optimizer to find optimal parameters
p1 and py.
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the parameters via minimizing the quadratic optimization problem
(pi,p>) = arg min 1 ller,oc(t, p) ||2 (7.50)
12 (prpo) T V70 L ’

with subject to the nonlinear thermal dynamics as in Eq. (6.11). Now,
we consider thermal emissions in the boundary conditions again, see Eq.
(7.46). The emissive heat flux ¢,,, disturbs the desired thermal dynam-
ics because it forces a cooling on both sides of the rod. Thus, the original
input signal in Fig. 7.16 (a) must be amplified to compensate the temper-
ature drop caused by the thermal emissions.

We initialize the optimization problem in Eq. (7.50) with p; = 11.22 and
p2 = 2.14 from the previous step and we fix p3 = 12.32, see Table 7.4. The
numerical optimizer finds the minimum value at p] = 11.31, p; = 2.12.
The objective function J(p1, p2) := + || er,0c(t, p)||i2 is convex in a region
around the minimum value as depicted in Fig. 7.18. So, the optimizer finds
the local optimal value and even the global optimum, if J(p;, p2) is con-
vex for all p;, p.. We compute the input signal u,.(¢, p) with p}, p; and
we apply it on the heat conduction problem, see Fig. 7.19. The adjusted
input signal in Fig. 7.19 (a) is slightly larger than the initial one and con-
sequently, we have higher temperatures of the output signal for ¢ > 1750
seconds in Fig. 7.19 (b). The thermal emission are partially compensated,
but the adjusted input signal is not able to prevent the temperature drop.
We face this situation because 1, has a significant impact only during the
time ¢ € [1000,2000] seconds while the thermal emissions operate inten-
sively after reaching the desired temperature, e.g. ¢ > 2000 seconds. We
address this issue in Chapter 8 where we design a feedback controller to
stabilize the measured temperature at the desired value.

Numerical Optimization Methods

We implement the numerical optimization routines with the Julia libraries
Optimization.jl [139], Optim.jl [140] and ForwardDiff.jl [141]. The library
Optim.jl provides a Conjugate Gradient method, which is implemented

with concepts from the articles [142,143], see also the documentation [144].

For an introduction to the Conjugate Gradient method, we refer to the ar-
ticle [145] and to the books [146, p. 121] and [147, p. 70] . This optimization
technique requires the specification of a gradient of the objective function,
which is neither computed analytically nor numerically here. Instead, we
compute the gradients with Algorithmic Differentiation® in forward accu-
mulation mode, which is implemented in the library [141]. Algorithmic

125

Figure 7.19: Adjusted input signal and re-
sulting temperature measurement for ref-
erence tracking. The larger adjusted input
signal in (a) improves the reference track-
ing as it leads to higher measured temper-
atures in the end of the heating-up phase
in (b). The thermal emissions forces a no-
table temperature drop of output signals.
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Figure 7.18: Convex objective function
J(p1,p2) of reference tracking prob-
lem (7.50). The dotted line shows the
path of optimization routine, starting
at (p1,p2) = (11.22,2.14) and reaching
the optimal value (p;‘,p;) =~ (11.31,2.12)
(purple cross).

5 Also known as Automatic Differentiation.



differentiation applies gradients via the chain rule on source code, we re-
fer to the literature [147, p. 27] and [148, 149] for further information.

7.5 Energy-based Feed-forward Control

The main concept to heat up the considered object is to supply thermal
energy via distributed actuators on the boundary sides. In the previous
sections, we derived the input signals from a pure “equation-based” point
of view without an intense consideration of the physical model. Now, we
include the amount of thermal energy to heat up the object and we ex-
tend these ideas in Chapter 8 to stabilize the reached operating temper-
ature. This energy-based control design is also explained in article [40].
The energy-based formulation is described by the first law of thermody-
namics in Eq. (2.8) and we know that the supplied and emitted power P(¢)
changes the internal energy U (¢) as described by

iU(t)—iQ(tHP(t) (7.51)
dt T dt )

with the rate of heat flow % Q(1), see Eq. (2.19). The variation of the inter-
nal energy % U(t) is solemnly driven by the supplied and emitted power
P(1) because the rate of heat flow % Q(¢t) describes the spatial temperature
variation and does not generate energy. This fact leads to

iQ(l‘) :f div[A(I(t,x)) VI(t,x)1dx =0 (7.52)
dt Q

forall t = 0. At the initial time ¢ = 0 we consider a uniform temperature dis-
tribution 9(0, x) = r(0) with reference signal r(¢). So, we have a vanishing
temperature gradient VI(t, x) = 0, and we have an initial internal energy
U(0) = Up and power P(0) = 0. As we supply power P(t) > 0 for ¢ > 0, the
internal energy and the temperature increase and we have a temperature
gradient VI(z, x) # 0. We desire to reach a constant temperature and in-
ternal energy level at ¢ = T ¢, which requires again a uniform temperature
distribution 9(Tf,x) = r(Tff) with VO(t,x) = 0 and P(Trfr) = 0. In Sec-
tion 2.4, we introduced the supplied and emitted power, P;; and P, as
the integral of their corresponding heat fluxes. In accordance with these
ideas, we note the overall sum of both parts as

P(n) = f P, x)dx
0Q

:f Qbin(t;x)+§bem(trx)dx+f Gem(t, x)dx
Biy 00\B;

=f ¢in(t,x)dx+f Gem(t,x)dx
Bin 0Q
—_—

=P;,(t) (heating) =Pem(t) (cooling)

in which the right-hand side is split into the heating up and cooling down
phenomena, see Eq. (2.24, 2.25). We continue these ideas for the energy
and we integrate Eq. (7.51) in time to find the change of internal energy as

AU = fof d U(t)dt—fof d Q(t)dt+f
B 0 dt B 0 dt 0
N———

=0
=Ein+Eem (7.53)

Try
P(dt
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with the supplied thermal energy

Trr Tyr
Ein::f P,-n(t)dt:f f Gin(t,x)dx|dt (7.54)
0 0 Bin
and the emitted thermal energy
Trr Trr
Eem::f Pem(t)dtzf / Gem(t,x)dx| dt. (7.55)
0 0 00

In the beginning of Chapter 6 we already discussed that we are in gen-
eral not able to capture the total emitted heat flux in case of convective and
radiative boundary conditions. So, we cannot find a suitable ¢;, to reach
P(t) = Pip(t) + Popy(t) = 0. In this section, we discuss in three steps how
to design the optimization-based input signal 1, via quantifying the sup-
plied and emitted thermal energy. Firstly, we assume to know the emitted
thermal energy E,,;, and we derive a parameter fitting problem to compute
an appropriate supplied energy E;, (p) such that identity (7.53) is guaran-
teed. Secondly, we estimate the emitted energy E,,, during the heating-
up phase using the reference signal as an assumption of the temperature
prediction. Finally, we discuss further applications of the energy consid-
erations to fine-tune the found parameters.

We calculate the change of internal energy in energy balance (7.53) as

Trr .
AU:f f cpd(t,x)dxdt=c p |Qs3| Ar (7.56)
0 Q3

with Ar = r(Tgp) —r(0) and volume |Q3| = L- W - H for a cuboid.” We 7 For the one-dim. and two-dim. problem
assume a constant density p and specific heat capacity ¢ in Eq. (7.56). wehave || = Land Q| =L-W.
If these material properties are temperature-dependent, then we need to
approximate AU in a similar way as the thermal emissions, see Eq. (7.62).

We formulate the supplied energy E;,, in Eq. (7.54) with the spatial char-

acteristics of boundary actuation b(x) in Eq. (6.4) as

Trr
Einzf f Gin(t, x)dxdt
0 0Q

Ny Ty
= ( bn(x)dx) ( f un(t)dt) . (7.57)
n=1\YBip 0
We define the signal energy of the n-th input signal u,(f) = uec,n(t, p), g Eoc
see Eq. (7.43), as A \
Time t ’

Figure 7.20: Energy of the optimization-

T . . .

fr based input signal Ey as in Eq. (7.58).

Eoc,n(p) 32[ Uge,n(D)dT putsig oc q
0

v Trr
2 p3

= exp(p1)

erf(p3 - ﬁ) - erf(—&)] (7.58)
P2 p2

with error function erf(z) = %foz exp(—rz)dr, see also Fig. 7.20. A brief
discussion of the error function unveils how the parameters influence the



signal energy. The error function behaves similar like a hyperbolic tangent
and approaches
lim erf(z) = +1.
Z—+00

If we consider a time shift as p, = 2, then we find
erf(pg - &) - erf(—&) = 2erf(&)
p2 p2 p2
and depending on the precision we have erf(%) = 1 for z > 4. If the kurtosis

parameter as ps is large enough®, then we can approach the signal energy

as
v Tyy

Eoe,n(p) = exp(p1) (7.59)

Thus, the signal energy can be amplified by increasing gain parameter p;
or reducing kurtosis parameter ps.

We wish to find optimal parameters to compute a suitable supplied en-
ergy E;,(p) such that the energy balance (7.53) holds. In general, we have
N, actuators with 3 parameters per input signal and so we need to vary
3N, values to find a suitable supplied energy. We simplify this situation as
we assume the same parameter set p = (p1, p2, p3) | for all actuators and
we obtain the supplied energy as

Ein(p) = Eoc(p)

Ny
> (f bn(x)dx)
n=1\JBin

Consequently, the distance

AU =Eep—Ejn(p) =AU — Eepy — Eoc(p) (7.60)

Ny
> (f bn(x)dx)
n=1 Bin

shall be minimized. We may minimize the distance (7.60) numerically as
we formulate a quadratic objective function

J(p) = [AU = Eopm — Ein(p)]*

and we search for the minimum with a Conjugate Gradient optimizer. As
an alternative way, we may add further conditions to reduce the number of
free parameters and to formulate a system of nonlinear equations, which
are solved with root-finding algorithms. The latter procedure is described
in the end of this section.

Approximation of Emitted Energy

In the previous paragraph, we assumed to know the emitted energy Ee,,
in the energy balance AU = E;, + E.;;. In some scenarios, we can even
neglect E,, if its amount is much smaller than the supplied energy. How-
ever, it is relevant when we reach the desired temperature r(Tff) = O ges
because the cooling effect leads to a measurable temperature drop, see
also Fig.7.19. We determine the amount of emitted thermal energy as

Trr
Eop = f f Gem(t, x)dxdt
0 0Q

Tyy
=ff Gem(t,x)dtdx
aaJo

T
:f fff_h(x) (902, %) = 0y ()] — 0 £(x) (1, ) ddx  (7.61)
0QJ0
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8In Section 7.4 we found p3 =~ 12.3 > 4, see
Table 7.4.



with the heat transfer and radiation coefficients / and ¢ as described in
Definition 2.3. We compute the feed-forward control before the operation
of the heating-up process and so we do not know the temperatures along
the boundary sides 6Q. If we assume small temperature gradients V9 then
we may have small variations of the temperatures on boundary 6Q2. We
concentrate the temperatures of the entire object as

if 9(t, x)dx
Q] Ja

and we note the approximated emitted energy as

A1) =

Trr
f ﬁ(t)dt—Tff Damp(x) | dx
0

Eompi=—1] h®
0Q

Trr oy
—O'f s(x)dxf () dt.
4Q 0

The measured temperature y has to follow the reference signal r and hence
we identify A =r) to compute the energy

Eem = _f h(x)
0Q

Ty
—a/ e(x)dxf r(n*de. (7.62)
0Q 0

Try
f r(t)dt—Tff D amp(X) | dx
0

We remark that the integrals fOTf "r(tydt and fOTf " r(t)*dt can be found
symbolically for reference signals with transitions, which are described by
polynomials as in Eq. (7.29) or a hyperbolic tangent in Eq. (7.38).

Algebraic Parametrization and Fine-Tuning

We can simplify the parameter search when we include further assump-
tions. In Section 7.4, we state that the input at the initial time u,.(¢, p) #0
and we can assume a small value, e.g. uy < 1, to specify the kurtosis, see
Eq. (7.45). Here, we approximate the signal energy in Eq. (7.59) by assum-
ing ps sufficiently large, e.g. p3 > 4. We sum up both ideas and note the
nonlinear equations

P3 2
exp(pl - [—] ) = Uy, (7.63a)
p2
nT f
exp(p1) Ig =AU - Eem (7.63b)
with integral
Nll

Ig:=), b (x).
n=1YB;

If we fix time shift parameter p, then we can reformulate the implicit Eq.
(7.63) to separate p; and p3 as

VATl |
—exp(2p;) | ———————| —In(ug) =0, (7.64a)
P1 plepr P2 (AU = Eom 0
2
uo Is V7 Ty exp( % )— ps [AU = Eep) = 0. (7.64b)

We do not have a trivial solution of Eq. (7.64) at hand and so we need
to apply root-finding algorithms to find parameters p; and p;. However,
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the algebraic parametrization is sensitive with respect to numerical errors
because the right-hand side of (7.63a) is much smaller than (7.63b) and we
usually do not find exact parameters such that Eq. (7.63) holds. Instead,
we have

2
vl |2 =er

exp(p1)

VAT
, 1 1y~ (AU - Eeml =e

with small errors €1,€e2 # 0 and we reformulate these equations in an im-
plicit form as

VT Ty I
p2 [AU — E¢py —€2]

2
p1—exp(2p1) —In(lup—e€1) =0, (7.65a)

2
(uo—e1] I V7 Ty exp( %] )—ps [AU= Epp—€21=0.  (7.65b)
2

Numerical issues occur in Eq. (7.65) if |e1| = ug or |e1| > ug because the
natural logarithm in Eq. (7.65a) is very sensitive with respect to €; as

‘ -1
|ug — €11

> 1

‘iln(lu —e1l)
de 0—€1

for |e;] < 1. Additionally, error €; occurs in Eq. (7.65b) as a linear offset.
The other error €, has a much smaller impact in Eq. (7.65) because

le2| < U — Egpp.

Hence, solving the algebraic equations Eq. (7.63) or (7.64) might be a sim-
ple and fast procedure to compute parameters p; and ps, but we need to
consider the mentioned numerical issues, in particular for Eq. (7.64).

In the end of a parameter optimization we may fine-tune the values to
adapt them for specific needs, for example reducing the peak value of an
input signal u,.. In this case the signal energy has be constant

VT Try

Eoc,fix = Eoc(p) = exp(p1)

and we adapt the kurtosis parameter p3 as

v Try

3 = exp(p1)
P P Eoc,fix

In this manner we can reduce p; and increase the bell shape width. How-
ever, ps still has to be sufficiently large to guarantee the correctness of ap-
proximation (7.59).

Example: Energy-based Control

We apply the presented concepts on the same one-dim. heat conduction
example as in the previous sections, see Table 7.5. We assume two sce-
narios of the thermal emissions for the input design: firstly, a completely
insulated rod and secondly, heat transfer and radiation on both boundary
sides. The found input signal is finally applied on the original model with

Table 7.5: Example coefficients.

L

A

p

c

0.1

50

8000

400
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thermal emissions on both sides. The coefficients of the thermal emis-
sions are h =10, @4, = 300 Kelvin and € = 0.2.

We wish to change the operating temperature for Ar = 100 Kelvin and
so we evaluate Eq. (7.56) with |Q;| = L to find the change of internal en-
ergy as AU = 32-10° Joule. The parameter fitting problem for u,(t, p) is
simplified by fixing p, = 2 and the initial input value 1, (0, p) = 1o = 107%.
Accordingly, we find the optimal values p; and p3 by solving the implicit
functions (7.64). In the first case, we have E,,, = 0 and we find the param-
eters as listed in the first row of Table 7.6. In the second case, we consider
the thermal emissions on both boundaries By and Bg and we approxi-
mate the emitted energy Eg,, = E.n as described in Eq. (7.62). For this
purpose we consider the reference signal
1

1+tanh(10 L——m

r(t) =300+50
Trr 2

as introduced in Section 7.3, see Eq. (7.38). We find the approximated
emitted energy E,,, = 4.12-10° Joule and we compute the parameters as
noted in the second row of Table 7.6. We notice that the input design with
thermal emissions shows an increasing value of p; while p3 is almost on
the same level. Hence, increasing the gain is more important here than a
wide kurtosis. In Fig. 7.21, we present the value of the left-hand side of
function (7.64), which we call “error” here. This error is on a magnitude of
10® larger for variations of p3 than p; in a small interval close to the best
values. We compute the input signal for both parameter sets of Table 7.6
and apply them on the original model with thermal emissions.

The input signal for E.j,, = 0 in Fig. 7.19 (a) is significantly smaller than
for Epp, = Eepn # 0 and leads to output temperatures in Fig. 7.19 (b), which
do not reach the desired operating temperature 0 4,; = 400 Kelvin in (b).
The input signal for Ee,; = Ee;; # 0 results in almost proper output tem-
peratures reaching the desired temperature.
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Figure 7.21: Evaluation of implicit function
(7.64) with the found parameters (p;, p3)
(purple cross). The error denotes the left
hand side of function (7.64a) in (a) and
(7.64b) in (b).

Figure 7.22: Energy-based input design
with and without thermal emissions in (a)
and resulting output measurement y(t) =
6(t,L) for a one-dim. model rod in (b).
The input signal in (a) for Ee;; = 0 does
not steer the output to the desired tem-
perature © ;,, = 400 Kelvin, but in case of
Eem = Eem # 0 the output almost reaches
Oges-

Table 7.6: Parameter Fitting.

Scenario P1 p2 p3

Insulation  10.896 2 8.968
Emissions 11.020 2 8.996




Temperature

Direction | 300 350 400 450 500

x1: Ay 40 44 50 52 52.5
X2: A2 40 55 60 65 68

7.6 Simulation of the Feed-forward Controlled System

In this section, we demonstrate the full procedure of the control design
from modeling to parameter optimization. First of all, we create a full non-
linear heat conduction model including thermal emissions, and spatial
characteristics of actuators and sensors. In the second step, we design a
prototype input signal with flatness-based control for a simplified version
of the original complex model. This simplified model does not contain
thermal emissions and temperature-dependent material coefficients. We
continue with an approximation of the prototype input using a parameter-
ized Gaussian function u,.(¢, p). Here, we return to the original full model
and improve the input signal with energy-based considerations and a final
parameter optimization.

We consider a flat rectangle Q, with length L = 0.3, width W = 0.05. The
density and specific heat capacity are assumed to be constant as

k
o = 8000 X8 and ¢=400 L,
m3 kgkK

and the thermal conductivity is considered to be anisotropic and temperature-

dependent as A(0) = diag(1;(0),12(0)). We approximate two nonlinear
functions of fifth order with the data in Table 7.7 as

A1(0) ~ 1465 —14.80 +56.3-10736% —93-107%60% +56.7-107%9* and
A2(0) ~ —2332+230 —83-107302 +133.3-10°9% - 80-10%9*

and we visualize them in Fig. 7.23. The rectangle has four boundary sides
where Bg is insulated with respect to thermal emissions and the other
sides - By, Bg and By - are open to emit thermal energy. We specify the
emitted heat flux as

Gem(t,x) =10 [9(t,X) = 9 amp] — 0.1 o 9(t, x)* (7.66)

with Stefan-Boltzmann constant o = 5.67-107% #, see Definition 2.3.
We supply energy via three actuators on boundary Bg, which have the spa-
tial characteristics

bu(0) = exp (- [30(x = x,)]*) (7.67)

as defined in Eq. (6.3) with central points x.,, = £ [n— 3] and n€{1,2,3},
see Fig. 7.24. The temperature is measured on By with three ideal sensors,
gn(x) =1, and we note the n-th output signal as

Yn(t) =% I(t, x)dx

Tn
with y,, = (& [n—11,% n) x {W}. The model setup with actuators, sensors
and emitted heat flux is visualized in Fig. 7.25
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Table 7.7: Anisotropic and temperature-
dependent thermal conductivity.

70 — A1
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50

40 ¥ -\
300 350 400 450 500"
Temperature 6

Figure 7.23: Anisotropic and temperature-
dependent thermal conductivity

A(0) = diag(11(0),12(0)).

The circles mark the data from Table 7.7.
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Figure 7.24: Spatial characteristics of first
actuator bj (x) as in Eq. (7.67).
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Figure 7.25: Rectangle with three actuators
on boundary Bg and three sensors on By.
Thermal emissions occur on boundaries
By, Bg and Byy. Boundary Bg is thermally
insulated.



Flatness-based Reference Tracking

The measured temperatures shall be steered from the initial temperature
9(0,x) =r(0) =300 Kelvin

Kelvin towards the desired final temperature
Oges =1 (Trf) =50 Kelvin.

We design one reference signal

r(t, ps) = 300+ 200 y/(f, ps) = 300 + 100

oo [ 3]

t 1
=400+ 100 tanh(ps [— —-=
Trr 2

) (7.68)

for all actuator / sensor pairs, see Fig. 7.26, and we fix steepness parameter
ps =10 and final time Trp=1200 seconds. For the flatness-based control,
we simplify the original model twice. Firstly, we set the thermal conduc-
tivity to a constant value, and neglect the thermal emissions. Secondly,
we reduce the two-dim. geometry to one dimension along coordinate
X2 (width) because all spatial characteristics of actuators and sensors are
identical, b; (x) = b, (x) = b3(x), and we only have one reference signal for
all actuator / sensor pairs. The resulting one-dim. rod is spatially approxi-
mated with five nodes, N, = 5, and the thermal conductivity is considered
as 1 =60 %( We follow the ideas of flatness-based control design in Sec-
tion 7.2 for the one-dim. scenario and we compute input signal u sy as in
Eq. (7.22) with M, as in Eq. (7.25). For this purpose, we note the reference

derivatives as . .

a r(t, ps) = modt”

f(ty ps)

with f(, ps) :=tanh ( Ds [th - %]) and its required five derivatives as

fa,p=p[1-f,ps)?],

f,p=2p* - ft,p) + f(£,p)*],

O, ps) = 2p° [-1+4f(1,p)* = 3£ (1, ps)"],

O, po) =8p* [-2f(1,p9) - 51 (1, po)° +3f (£, ps)°],

Ot ps) = 8p° [2=17f (1, ps)* +30f (£, ps)* = 15f (¢, ps)°].

We need to restrict the obtained input signal as i ¢ () = max(usp.(1),0)
and we approximate it with the parametrized Gaussian function u,.(¢, p)
as in Eq. (7.43). We find that @, (f) reaches its maximum at ¢ = tjax =
579.6 seconds and we have

Tyy

max

~2.07.

p1=In(lfpc(tmax)) #11.82 and po =

We search for the remaining parameter p3 by minimizing the objective
function (7.49) numerically with the L, norm. We depict the objective
function in Fig. 7.27 and we find its minimum with a Conjugate Gradi-
ent optimizer for parameter p3 = 9.21. We assemble the bell-shaped input

Temp. in [K]
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Figure 7.26: Reference signal with hyper-
bolic tangent as in Eq. (7.68).
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Figure 7.27: Objective function J(p3) for
the norms Ly norm with its minimum
(purple crosses) at p3 = 9.21.
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signal u,.(t, p) with parameters p = (p1, p2, p3), apply it on the one-dim.
model and we portray the results in Fig. 7.28. Input u,.(¢, p) imitates the
flatness-based signal in Fig. 7.28 (a) and so the output y(#) tracks the ref-
erence signal in Fig. 7.28 (b) properly, but output y(¢) does not reach the
desired final temperature © ;.5 = 500 Kelvin.

The computed parameters of the approximated flatness-based control
are treated as initial values for the next optimization step. The parameters
of all three steps are listed in Table 7.8 in the end of this section.

Energy Supply

We consider again the original full model. In the previous paragraph we
found that the amount of supplied thermal energy is too less to reach the
desired temperature of 500 Kelvin. This situation is here even worse be-
cause the two-dim. model is equipped with non-ideal actuators, see the
spatial characteristics in Eq. (7.67), and thermal emissions. To gain an
overview about the energetic situation, we list and compare the internal,
supplied and emitted energy. We wish to heat up the two-dim. geome-
try with area [Q| = L-W =0.015 m? for Ar = 200 Kelvin. So, the internal
energy shall increase by

AU = ¢ p|Qa|Ar =9.6-10° Joule

as described in Eq. (7.56). The initial parameter set p = (12.2,2.07,7.88)
leads to the input signal energy for each actuator of

Trr 5
EOC(p)zf uOc(typ)dt:31.24‘10
0

as noted in Eq. (7.58). This amount is multiplied with the integral of the
spatial characteristics

3
Y (f bn(x)dx) ~181.24-107°
n=1\Jpn
to compute the supplied energy with Eq. (7.57) as
3
Ein= Eoc(p) ), U bn(x)dx) ~5.66-10° Joule.
n=1\YPn

Additionally, we estimate the emitted heat flux with Eq. (7.66) and we ap-
proach the emitted energy, see Eq. (7.62), as

Eom = —571.33-10° Joule.

134

Figure 7.28: Approximation of the flatness-
based input signal with the Gaussian func-
tion uyc in (a). The resulting output mea-
surement y(¢) follows the reference, but it
does not reach the desired final tempera-
ture © 7,5 = 500 Kelvin in (b).



12.4 S e-e-e-0--0--0 9.21{%
'3 . \
/ < \
<122 X Zotel
o / % ®
= ° g '
© / £ 9.17 .
120] | .
; a X
11.81¢@ 9.15 Lk
0 2 4 6 8 0 2 4 6 8

Iteration Number Iteration Number

(a) Increasing p;

(b) Decreasing p3

10| ®--o - M

7] - ~e,
3 ‘e . 3
- S < %
.9 0' A £ —
€ ? Z 9.20 2 X
< \ S o
%’10' N i 9.15 14
| ® 0.

_20 Te--o 9.10 ‘ ‘ U

0 2 4 6 8 11.75 12.00 12.25 12.50 12.75
Iteration Number Gain p,

(@) Loss logy (J(p1, p3)) (b) Objective function J(p1, p3)

We find that the supplied energy Ej;; for the initial parameters offers only
Ein
AU-Eem
ject properly. Hence, we minimize the distance between the supplied E;,

= 55.7 percent of the necessary energy amount to heat up the ob-

and necessary energy AU + E,,,. For this purpose, we fix parameter p, and
we search with objective function

3 2
J(p1,p3):= |AU = Eepy— Eoc(p) ) Uﬁ bn(x)dx)
n=1 n

for the best parameters p; (gain) or decrease p; (kurtosis) by solving the
optimization problem

(pi,p3) =arg min J(p1, p3). (7.69)
(p1,p3)

We know that gain p; need to be increased and kurtosis p3 must be de-
creased to raise the supplied energy E;,. We visualize in ig. 7.29 the inter-
mediate parameters of the numerical optimization and we notice that the
optimization behaves as expected. Furthermore, the optimizer finds a lo-
cal minimum after four iterations and in Fig. 7.30 (a), we see how the loss
is driven towards zero from the fifth iteration on. The objective function
in Fig. 7.30 (b) looks like a valley because it is significantly steeper in di-
rection p; in contrast to p3. Hence, we see larger variations for p; than ps
in the parameter path approaching the best values (p7, p3) = (12.39,9.19).
We design all three input signals u,,, (¢, p) with the found parameters and
we simulate the heat conduction problem, see Fig. 7.31. The output sig-
nals in Fig. 7.31 (b) do not match the reference signal in the second part
of the heating-up phase, e.g. ¢ > 600, because we supply more power than
necessary for a reference tracking during this time. On the other side, the
output signals reach the desired temperature at t = Ty = 1200 seconds
with this additional power.
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Figure 7.29: Parameter values of p; and
p3 per iteration in the optimization of the
supplied energy. The gain parameter p;
increases in (a) while the kurtosis param-
eter p3 decreases in (b).

Figure 7.30: Loss per iteration in logarith-
mic scale log;,(J(p1,p3)) and objective
function J(p1,p3). The loss approaches
zero from the fifth iteration onward in (a).
The objective function in (b) has a signifi-
cant gradient for pj in contrast to p3. The
dotted line shows the path of computed
parameters reaching the optimal values
(pik R p;‘) ~ (12.39,9.19) (purple cross).
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Optimization-based Reference Tracking

The energy-based input design is a simple and fast tool to fit proper pa-
rameters, but it neglects the dynamical behavior of the heat conduction
phenomena and the output tracking with reference signal r(f). We reca-
pitulate the nonlinear heat conduction problem (6.11) with material prop-
erties and spatial characteristics as described in the beginning of this sec-
tion. We notice that the first and third actuator, u; and us, face the same
physical situation, because

 the boundary conditions on By and Bg,
* the spatial characteristics of actuators b, (x) and sensors g, (x), and
e the reference signals ry,

are equal. Due to this symmetry, we consider the same set of parameters
p1:=(p1,1,P1,2, p1,3) for uy.1 and u,. 3, while the central actuator 1,2 has
a different set of parameters py := (p2,1, p2,2, p2,3)- This means, we apply
the input signals

Uoc,1(E, p1)

u(t) := | upc,2(t, p2)

Upc,3 (L, P1)
to steer the output signals y, along the specified reference signal r(#) in
Eq. (7.68) with steepness ps = 10. So, we wish to reduce the distance be-
tween reference and output

en(t,p) =r(t)—yn(t, p)

for n € {1, 2,3} by a suitable choice of parameter sets p; and p,. As we have
Uoe,1 = Uoc,3, We know that y; = y3 and we only need to consider the errors
e; and e;. In order to find suitable parameter sets for u(f), we solve the
optimization problem

. .1 2
(plvpz) - arg(gll,llg) ? ”2‘”1 el(t) p) +”2 ez(t) P) “LZ

with hyper-parameters p; = yp = 1. The parameter search is computed
numerically with a Conjugate Gradient optimizer for 21 iterations and the
resulting parameters are listed in Table 7.8. We notice in Fig. 7.32 that
the loss is halved in first iteration of Fig. 7.32 (a) by separating the gain
and time shift parameters, p; and p», for the inner and outer actuators.
The loss decreases further and reaches a local minimum where all three
parameters show a noticeable separation between .1 = Uyc,13 and Uy, 2.
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Figure 7.31: Input and output signals of the
first and second actuator and sensor of the
energy-based parameter search. The input
signal in (a) is applied on all three actua-
tors. The output signals in (b) are higher
than the reference signal for ¢ > 600 sec-
onds, but they match almost the desired fi-
nal temperature 0 ;, = 500 Kelvin.
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The input signals of the outer actuators have a higher peak value, their
peak times are later and their shape kurtosis is wider in comparison to
the inner actuator. This means, the actuators close to the boundary sides
need to supply more energy than the central actuator to reduce the impact
of thermal emissions.

In Fig. 7.33, we portray the computed input and resulting output sig-
nals of the first and second actuator and sensor. We find the higher peak
value and wider bell shape of input signal u,¢,1 = Uoc,3 in Fig. 7.33 (a). The
output signals in Fig. 7.33 (b) follow the specified reference well in the first
part of the heating-up phase. However, the thermal emissions on bound-
aries By, B and By cause a temperature drop for ¢ > 900 seconds and the
output signals do not reach the desired temperature at the final time Ty .

In Fig. 7.34, we present the evolution of the thermal dynamics via snap-
shots of a temperature distribution in the rectangle. In particular in Fig.
7.34 (a) and (b) we remark the influence of the actuators’ spatial charac-
teristics and the higher conductivity A, along the x,-axis on the temper-
ature distribution. In Fig. 7.34 (c), we find higher temperatures close to
the boundary sides By and Bg, which are caused by a higher energy sup-
ply with w1 and u,c3. As the heating stops after ¢ = 900 seconds the
temperatures close to the boundaries drop due to cooling, and we yield
temperatures below the reference value in Fig. 7.34 (d).
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Figure 7.32: Loss and parameters in each
optimization iteration of Eq. (7.6). The
loss is mainly reduced via separation of in-
ner versus outer actuator parameters. The
found gain parameter p; in (b) is larger for
the first (and third) actuator uec,1 = Ugc,3
to counteract the cooling on boundaries
By and Bg. In the same way, a smaller
kurtosis parameter of ugc1 = Uge,3 in (c)
leads to a wider bell shape of the input sig-
nals. The time shift parameter is close to 2
for both parameter sets in (b). The time of
the peak input value of inner versus outer
Trr

T
actuators differ for -+ — I 8 seconds.
P12 P22

Figure 7.33: Input and output signals of the
first and second actuator and sensor. The
input signal of the outer actuators ug¢1 =
Ugc,3 shows a higher peak value and a
wider kurtosis in (a). The output signals
in (b) track the reference function well un-
til they reach the desired temperature and
drop below this value afterwards.
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The output signals in Fig. 7.33 only present a mean value of the true
temperature on boundary By. Hence, we visualize the temperature dis-
tribution on By in Fig. 7.35. In contrast to the temperature distribution
of the whole rectangle in Fig. 7.34, we find in Fig. 7.35 an almost uni-
form temperature transition on By. In the second part of the heating-up
phase in Fig. 7.35 (b), we notice small temperature variations in space for
t € (600,800) and temperature peaks in a region close to By and Bg for t €
(800,1000). These peak values reach the desired temperature © ;.5 = 500
Kelvin and decrease for ¢ > 1000 seconds because of the non-insulated
boundary sides.

In this example, we showcased the complete feed-forward control de-
sign for the heating-up procedure. In the beginning, we simplified the
thermal dynamics to a linear one-dim. model without thermal emissions
and we designed a flatness-based control, which steers the output along
a predefined reference signal. This flatness-based input is approximated
by a bell-shaped parametrized function u,.. These initial parameter val-
ues do not lead to sufficient reference tracking for the simplified model,
see Fig. 7.28. Thus, we improve these parameters by approaching the sup-
plied and emitted thermal energy, while we ignore the nonlinear thermal
dynamics and the reference tracking. These considerations of the energy
balance lead to a well temperature transition and the final output values
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Figure 7.34: Snapshots of the temperature
distribution during the heating process.
The warm areas in (b) and (c) illustrate the
actuators’ spatial characteristics. The re-
gions close to boundary By, and Bp are
warmer than the central partin (c) because
of a higher amount of supplied energy with
the corresponding actuators. The thermal
emissions force a cooling-down along the
boundary sides By, Bg and By in the end
of the heating-up phase, ¢ > 900 seconds.
The warmest region in (d) is close to the
center of Bg because of the thermal insu-
lation along this boundary side.

Figure 7.35: Temperature distribution
along boundary By during the heating-up
phase. All temperatures are close to the
initial value of 300 Kelvin until ¢ = 400 sec-
onds and increase notable in the time span
t € (400,800) seconds. The regions close
to By and B reach the desired temper-
ature © 4, = 500 Kelvin in (b) during f €
(800,1000) seconds.



Scenario Parameters

p1 p2 p3
Approximation of FBC 11.815 2.070 9.212
Energy Supply 12.394 2.070 9.149

Optimization-based Design
Actuator 1 & 3 (outer) 12.318 2.056 8.195
Actuator 2 (inner) 12.191 2.090 8.717

almost match the desired temperature 04,5, = 500, see Fig. 7.31. As the
reference tracking is not included in the energy-based design, we return
in the last step to the original thermal model and solve an optimization
problem to include the reference tracking again. In this step, we find indi-
vidual parameter sets p; and p, for the inner and outer actuators. In this
example, we assumed a simple actuator and sensor setup and we obtained
remarkable differences between the inner and outer actuator, see Fig. 7.32
and 7.34. In scenarios with more complex actuator and sensor setups, this
last step of optimization-based reference tracking may be even more cru-
cial for a well temperature transition. As we face thermal emissions, which
force a cooling of the rectangle, we need to apply a feedback control to
counteract this cooling and to stabilize the measured temperatures at the
desired temperature. This concept is introduced in the next chapter.
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Table 7.8: Input Parameters of Feed-
forward Control Example.



8

Closed-Loop Control Design

In the previous chapter, we described the feed-forward control design to
heat up the object and steer the measured temperatures along a prede-
fined reference. After this heating-up procedure, we wish to stabilize the
measured temperatures at the reached and desired value. Here, we need
to counteract the cooling, which is driven by thermal emissions and forces
the measured temperature to depart from the reference value. Hence, we
return to the elementary physical situation and consider the balance of
supplied versus emitted power as noted for the energy in Section 7.5. In
particular, we seek for a control law that guarantees the equilibrium of
supplied and emitted power as

0=P;u(t) + Poyy(t) for t> Tff.

We know that the actuators need to supply the same amount of thermal
power, which is emitted along the boundary sides as

Pem(t)zf (Pem(tyx)dx
a0
=f —h(x) [9(t, X) = 9 gmp(X)] — 0 £(x) I(t, x) dx 8.1
00

to hold the average temperature of the object on a constant level. As we
are usually not able to measure temperatures on the entire surface, we are
not able to determine the actual value of the emitted power P,,,. We solve
this issue with the same “approximation trick” as in Section 7.5: we replace
the actual temperature 9(¢, x) by the desired temperature 0 4, to yield the
approximated emitted power

Pem = f —h(x) [Oges — Oamp(x)] — 0 €(x) O, dx. (8.2)
0Q

In the long run our feedback control shall drive the object’s temperatures
inside and on the boundary towards the desired value © ;¢ such that the
actual emitted power is leveling off and P,,, approaches P,,,. We find the
necessary power supply according to Section 7.5 as

Nll

Pin(t)=f Pin(t,x)dx = Z( bn(x)dx) Un(1).
0Q Bin

n=1
When the supplied and emitted power is in balance, then we have a con-
stant power supply

Ny
Pip= Z( 5 bn(x)dx) Uy, (8.3)

n=1



with constant input signals lim u, () = u,.

In this chapter, we realizeﬁfﬁe feedback control design with two com-
mon approaches. First of all, we introduce in Section 8.1 a state feed-
back with the linear-quadratic regulator (LQR) design and we show that
the found static feedback law leads after some time to a balanced sum of
supplied and emitted power with constant input signals as in Eq. (8.3).
The LQR design provides a static state feedback and it is tailored for lin-
ear dynamical systems, but we desire a control with output feedback for
our nonlinear heat conduction model as noted in Definition (6.1). Hence,
we present in Section 8.2 an output feedback via model predictive con-
trol (MPC), which computes iteratively a new feedback law depending on
the previous measurements. Accordingly, we find that this MPC approach
stabilizes the thermal dynamics at the desired steady state.

8.1 Linear-Quadratic Regulator

The linear-quadratic regulator is a control design for linear dynamical sys-
tems with multiple input and output signals. On one hand, we obtain
a common matrix-vector multiplication as feedback law with this tech-
nique. On the other hand, we need to solve an algebraic Riccati equa-
tion! numerically to yield this static feedback law and the complexity of
this numerical solution scales with the system dimension. Moreover, this
approach requires access to all system states, here temperatures, which
are usually available with additional tools like state observers or Kalman
filters.2 The books [152, p.- 7-28] and [153, p. 99, 211] present an introduc-
tion to LQR design and an extension for large-scale systems and partial
differential equations is described in the book [154, p. 103, 107]. Further-
more, the LQR design for a two-dim. heat conduction in a time-discrete
form is noted in the article [37].

In this section, we design the LQR control for the time-continuous lin-
ear heat conduction problem

iG)(t) = AO()+ B u(1)
dt

as described in Definition 6.1. The aim of a LQR design is to determine
a feedback matrix K € RM«*Ne which is used in a full-state feedback to
compute the input signals as

u(t) =-K 0(1).

We derive the closed-loop system when we identify input u(¢) in the linear
heat conduction problem by the feedback law as

d
E@(t) =A0O(1)—-BKO(1)
- [A=BK]O(t) = Ay O(1).
—_——
=1A¢

The resulting system matrix of the closed-loop A.; does not have the pre-
vious banded or Toeplitz-like shape of A, and all eigenvalues are smaller
than zero. Hence, the closed-loop system approaches a steady-state as

A ®()—0 and O(1) — 0.
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! Jacopo Francesco Riccati (*1676, 11754)
studied this type of equations, see [150].

2This filter is named after Rudolf Emil
Kalman (*1930, 12016), see [151].



As we wish to drive the temperatures towards a desired value 0 4,; and not
to zero, we consider the state feedback with offset as

u(t) = —K [0(1) — Ogesl . (8.4)

We visualize the procedure of the state feedback control for the heat con-
duction problem in Fig. 8.1.

The LQR design exists for time-discrete and time-continuous systems,
where the final optimal state shall be reached either on a finite or infinite
time horizon. We choose the infinite horizon because this simplifies the
computation of feedback matrix K. In this control technique, we wish to
solve the optimization problem

min{](u) :foo(a(t)TQG(t)+u(t)TRu(t)dt} (8.5)
0

with subject to the linear heat conduction problem (6.12) in a closed form.
The matrices Q € RNe*Ne and R € RN«*Nv in Eq. (8.5) weigh the influence
of states versus input signals in the resulting feedback law. These matrices
must be positive definite and they are usually designed as diagonal matri-
ces. Amatrix M € RV*N with N > 0 is called positive definite if the inequal-
ity v" Mv > 0 holds for all vectors v € CV. The speed of the closed-loop op-
eration depends on choice of the matrix values: if Q > R (element-wise),
then we yield a fast operation and otherwise a slow or energy-efficient ex-
ecution.
The closed-form solution of the optimal control problem (8.5) provides
the feedback matrix as
K=R'B"P (8.6)

with matrix P € RVe*Ne, which has to be found numerically by solving the
algebraic Riccati equation for time-continuous dynamical systems

0=Q+PA+A" P-PBR'B'P. 8.7)

In Appendix A.2 we derive the feedback law (8.6) and the Riccati equa-
tion (8.7) from the optimal control problem (8.5). Mathematical software
like the MATLAB functions Ilgr [155] for the LQR design and icare [156]
to solve the the time-continuous algebraic Riccati equation offer well es-
tablished tools to treat the LQR design. In the subsequent example, we
find the solution of the algebraic Riccati equation with the JULIA library
MatrixEquations.jl [157].

Example: Linear-Quadratic Regulation of 2-Dim. Heat Conduction

We return to the example in Section 7.6, where we consider a rectangle
with length L = 0.3, width W = 0.05, density p = 8000 and specific heat
capacity ¢ = 400, and three actuators along boundary Bs. Here, we as-
sume constant anisotropic thermal conductivity (11, 12) = (40, 60) %( We
approximate the heat conduction problem in space and we yield a linear
system as in Eq. (6.12). We do not include the thermal emissions (7.66) ex-
plicitly in our heat conduction model, instead we treat it as an (unknown)
external disturbance here. Furthermore, we consider three ideal sensors
as in Section 7.6 to evaluate temperatures on boundary By. We remind

Desired Temp.
~

State
Controller

Input

Temperatures

Heat
Conduction

| Measurements
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Figure 8.1: Scheme of state feedback con-

trol.
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that we do not include the sensors in the control design because the LQR
technique is a state space approach and treats all temperatures. We build
the state space system with A, B and we adjust the weighing matrices as

Q=101Iy, and R=1I3

because we wish to reach the steady state quickly. The initial temperatures
are set to 500 Kelvin because we are only interested in the stabilization at
the desired value © 4, = 500 Kelvin. We compute the feedback matrix K by
solving the algebraic Riccati equation (8.7) numerically, and we compute
the input signals as in Eq. (8.4). We simulate the close-loop system for
600 seconds and we visualize our results in Fig. 8.2. The input signals in
Fig. 8.2 (a) and temperature measurements in (b) converge in 200 seconds
because the supplied power is able to compensate the thermal emissions
for t > 0, see Fig. 8.2 (c). At the initial temperatures, we find the emit-
ted power with Eq. (8.2) as P, (0) = —942 Watt. These thermal emissions
cause a temperature drop, see Fig. 8.2 (b), and consequently, the emitted
power decreases to ca. P, (600) ~ —933 Watt. Hence, we need to sup-
ply even a bit more energy in the balanced situation to reach the desired
temperatures 0 ;,; = 500 Kelvin exactly.
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Figure 8.2: Simulation results of the LQR
design. The input signals in (a) and the re-
sulting temperature measurements in (b)
settle after 200 seconds, because the sup-
plied power compensate the emissions,
see (c). The emitted power in (c) is noted
as absolute values, |Pe;;|. The temper-
ature distribution in (d) unveils a maxi-
mum variation of 6 Kelvin between actu-
ators and the upper left and right corners.



8.2 Model Predictive Control

In the previous section we designed a state feedback for the linear heat
conduction. However, we do not have access to all states in general be-
cause we cannot measure temperatures inside the object. Hence, we de-
sign an output feedback in this section, which is also able to treat non-
linear systems. Model predictive control (MPC) is a well-established feed-
back approach and it is described in detail in several books, see e.g. [119,
120]. Moreover, we find examples of MPC approaches applied on the heat
equation in the articles® [132-134], in the doctoral thesis [121, p. 51] and in
our contribution [40]. Here, we consider in general the nonlinear spatially
approximated heat conduction system as noted in Definition 6.1. The
MPC approach is usually designed for sampled systems and so we convert
the time-continuous state space (6.11) to a time-discrete one. We sample
the remaining time interval (T s, Tripa] with Ny € N equidistant time
steps
th=nAT+1ty with AT= Nit (Tfinai— Trf)

and for n = 0 we define #, := Ty. The input signal is kept constantly from
one step to the next one as u(r) = u(t,) for t € [t,, t,+1). We apply an one-

step integration method as described in Chapter 5 on Eq. (6.11) and we
yield the time-discrete state space

O(tn+1) = f(O(tn), ulty), w(ty, O(ty))),
y(tn) = Cg(tn)

(8.8a)
(8.8b)

in which f describes the sampled right-hand side of Eq. (6.11a) including
the sampling time AT.

The MPC routine is described in two nested iterations. The outer iter-
ation describes a temporal behavior of the real system dynamics in each
step n € {0,1,..., N; — 1}. The inner iteration contains a simulation of the
system dynamics and an optimization routine to compute suitable con-
stant input signals. The controller applies the found input signals on the
simulation to predict the future states and it checks, whether the system
dynamics behaves as desired. If suitable input signals are found, then the
first input value, u(t,), is applied on the real system in the outer loop. The
real system reacts on this input signal and we measure the output in the
next step y(t,+1), which is fed back to our controller to compute the in-
put signal for the next iteration. This procedure is visualized in Fig. 8.2.
Here, we remark that we need a state observer in real world experiments
to update the states in the simulation with data from the measurement of
the real system. In our examples, we assume that the simulation and the
real system work identically. Inside the inner loop, we calculate the error
between the desired temperature and the measurements as

e(ty) :=0Bges— y(ty)

and the difference between subsequent input signals

Aulty) := u(tys1) — ulty)
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3 Due to the wide range of heat conduction
and diffusion models, e.g. with Dirichlet
or Neumann boundary conditions, we find
several different MPC approaches.
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Figure 8.3: Scheme of model predictive
control.



for Nyupc € N> iterations, this number is also called conirol horizon. Here,
we consider the state space (8.8) for both: the internal simulation and the
real system. In practice both systems differ because we are not able to
create an ideal model of the real process. The input signals of Ny, inner
iterations are found by solving the optimization problem
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Ninpe—1 Nimpe—2
U (1), U (H{4 Nyype-1)) = QTGN Y etnTQen+ Y. Au(t)"RAu(t) (8.9)
I=n

subject to Eq. (8.8) as the internal simulation model.

In Eq. (8.9) we consider the weighing matrices Q € R™Ny*Ny and R € RNw*Nu

like for the linear-quadratic regulator design. We solve the optimization
problem (8.9) and we apply the first input signal u*(#,,) on the real model
(8.8). The remaining input values u* (t,+1),..., u* (fn+Nyppe—1)) are treated
as initial values for the next MPC iteration step.

Adjusting the Sampling Time

In the MPC design, we face the task to choose a suitable sampling time AT
We know that heat conduction is a slow process and thermal energy needs
some time to conduct from the actuators to sensors. This is an advantage
here because the computation of input signals takes some time: we need
to simulate and optimize a large scale system several times during one
time step. However, we face in practice unknown external disturbances,
which need to be rejected quickly. So, the sampling time should not be
too long in accordance to receive quickly fresh measurements.

In Chapter 5, we discussed the numerical stability of integration meth-
ods and we found that explicit solvers like the forward Euler method re-
quire an upper limit of sampling time AT, while implicit solvers do not
so. In Section 5.2, we stated that we implement our simulations with the
implicit Runge-Kutta solver KenCarp5.

In the next step, we discuss the step and impulse response of the linear
heat conduction to gain an idea of a suitable choice of AT. In Section 4.3,
we note the solution of the linear system with a constant heat flux in Eq.
(4.52). If we consider a one-dim. heat conduction with one actuator on
By (left) and one sensor on B, (right), then we note the output as

— P — — - @
Y1) =CO) = CV ' exp(A1HVOW0) +CV ' M(HVE; A—l
X1
with we have C = (0,...,0,1) and a constant heat flux ®@; as the step input.
Furthermore, we yield the first derivative of the output as

d —T ~ ~ = —T -~ = D,
—y()=CV Arexp(A,HVO(0)+CV exp(A HVE —
dt Ax

where we have %M (1) = exp(Al t). We evaluate the step response y(f)
and impulse response %y(t) withA=c=p=1,Ax; =102 and N;j =100
nodes and we visualize the results in Fig. 8.4. As this heat conduction
problem has no thermal emissions, we gain a pure temperature integra-
tion. In the beginning of the heating process, we obtain a small time lag

0.5

= Qutput y
Derivative L1;1/
0.0- it
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Figure 8.4: Step and impulse response of
a one-dimensional linear heat conduction
problem. The output y(¢) integrates the

supplied heat flux ®; = 1. The integration
has a time lag of ca. 0.2 seconds.



until ca. 0.2 seconds, where the integration is significantly below the ratio
of one Kelvin per second. The reason of this time lag is the slow heat con-
duction from actuator to sensor. We can apply this finding on the choice
of sampling time AT when we evaluate a step response.

We find a similar concept in the fundamentals of thermodynamics re-
garding the Fourier number

L a
FO(t) = @f

with diffusivity a, time ¢ = 0 and characteristic length £ = 0, see also
(49, p. 129]. The definition of the characteristic length depends on the ge-
ometry and the physical process, see also [137]. The dimensionless Fourier
number qualifies in a heat conduction process as described above, whether
enough time has passed to sense a noticeable temperature change or not,
see [138, p. 69]. In case of very small Fourier numbers as Fo(t) < 1, we do
not notice any temperature change and for Fo(t) = 1, we definitely yield
significant values. In the previous example, see Fig. 8.4, we have a =1
mTZ and a characteristic length & = L = N;jAx; = 1 meter and so we have
Fo(r) = 7. Hence, a sampling time AT = 1 may guarantee a proper step
response, but we can even admit lower values as long as AT > 0.2 seconds.
In this context, we see that Fo < 0.2 < 1.

Example: Model Predictive Control of 2-Dim. Heat Conduction

We consider the two-dim. example from Section 8.1 with three actua-
tors on By, three ideal sensors on By and an initial temperature (T y) =
Oges = 500 Kelvin. We apply a step response with u;(¥) = uz(t) = 6000
and u (1) = 3000 and we depict the simulation results in Fig. 8.5. We see
that a sampling time AT = 30 seconds provides a sufficient temperature
change to compensate small thermal emissions. We set the number of it-
erations N; = 10 and the control horizon Ny,,. = 3. We emphasize that
the choice of the control horizon may have a crucial impact on the closed-
loop performance, this issue is analyzed in the doctoral thesis [121, p. 35].
Regarding the weighing matrices of errors Q and input signals R in the
optimization problem (8.9), we have small errors compared to large input
signals, e.g. ey, € (0,10) and Auy, € (10%,10%) for the n;-th sensor and np-
th actuator. Thus, we specify the weighing matrices as

1077

=] and R=———
Q=1n, Ny [(Npupe — 11

In,

to yield almost similar values for both: sensor and actuator weighing. Fi-
nally, we need to set an initial guess of the input signals u(y) to start the
optimization (8.9). We calculate the emitted power for the initial tempera-
ture ©(0) = 500 Kelvin with Eq. (8.2) as P, (0) = —942 Watt. So in the long
run, we need to supply the same positive value to yield a proper balance
of emitted and supplied power. We consider the same initial guess for all
three input signals and so we reformulate Eq. (8.3) to yield

P; Py (0
ﬁ: n — em( ) :5197

SN (fiy Bat0dx) XN ([, ba(o)dx)
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Figure 8.5: Step response of two-dim. heat
conduction with u (#) = ugz(#) = 6000 and
up =3000.
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(c) Supplied and abs. Emitted Power

(d) Temperature Distribution

We implement the MPC routine with internal simulation and the external
real system simulation as specified above, and we visualize the numerical
results in Fig. 8.6. The input signal in Fig. 8.6 (a) starts with high values
and converges in only five steps to u; = us = 6472 and u; = 2584. This
high initial input value is necessary to compensate the temperature drop
in the first 60 seconds as depicted in Fig. 8.6 (b), and the measurement
temperatures settle afterwards close to © 4.5. In Fig. 8.6 (c), we see that the
supplied power compensates the emitted power after four steps precisely.
We compare the temperature distribution in Fig. 8.6 (d) and in Fig. 8.2 (d)
and we notice higher temperatures overall in case of the MPC design.

We summarize the findings of LQR and MPC design and we note that
both approaches stabilize the measurements close to desired tempera-
ture. The linear-quadratic approach is easier to design and implement
because we compute the static feedback matrix offline, but the perfor-
mance close to the desired temperature is weak due to the static propor-
tional gain. The model predictive approach requires more detailed work
to specify the necessary control parameters, but it provides a good perfor-
mance due to its prediction. Furthermore, we can apply the MPC design
directly on our nonlinear heat conduction model as described in the next
section. We find one drawback of model predictive control in case of real
world applications. In such a case, we require all temperatures from the
real system, e.g. with a state observer, to update the initial temperatures
in the internal simulation after each step of the outer iteration, see Fig.8.2.
A state observer design for a rapid thermal processing system is described
in article [158].

147

Figure 8.6: Simulation results of the MPC
design. The input signals in (a) and the re-
sulting temperature measurements in (b)
settle after 200 seconds, because the sup-
plied power compensate the emissions,
see (c). The emitted power in (c) is noted
as absolute values, |Pe;;|. The temper-
ature distribution in (d) unveils a maxi-
mum variation of 6 Kelvin between actu-
ators and the upper left and right corners.
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Measurements on Boundary By Figure 8.7: Model of a cuboid with four
actuators on the underside By and four
T V3 T V4 sensors on the topside Br. The actuators
and sensors are placed in a (2 x 2) checker-
............... e e Insulated
Boundary By

board pattern. The boundary sides By,
By (gray) and By are insulated for thermal
emissions.

Insulated
Boundary By,

X3 Heat Supply via Boundary By

X1

8.3 Simulation and Control of Heat Conduction in a Cuboid

We demonstrate the feed-forward and model predictive control design for
a cuboid in this section. We portray the three-dim. model with actuators

and sensors in Fig. 8.7. We consider the dimensions L = W = 0.2 meter, .
Thermal Emissions ¢em

H = 0.05 meter and the material properties alts 1\ JIL
k ! ] ] Br
p=8000 8 | c=a00 L 5 e
m3 kgK £ ]EBW o
and A(0) = diag(A, (0), 1, (6), 12(6)) with £ By
y) \
Length L !
A1(0) =~ 1465 —14.80 +56.3-107°6% =93-107%0% +56.7-10799* and Figure 8.8: Side view of cuboid on bound-

ary Bg with thermal emissions on bound-
ary sides Bg and BT.

A2(0) = —2332+230 - 83-107°0? +133.3-107%0° - 80-107%¢*

as formulated in Section 7.6. The cuboid has six boundary sides and three
of them are insulated for thermal emissions: By, By and By. The remain-
ing boundaries,Bg, Bs and Br, are open and we specify the thermal emis-
sions as in Eq. (7.66). In Fig. 8.8 we depict the side view on boundary
Bs. We assume four actuators on boundary By and four sensors on BT,
which are placed in a (2 x 2) checkerboard pattern. We specify the spatial
characteristics of the actuators as

30
by (x) :exp(( 30) [x—xcyn]‘l) (8.10)

el

4
yn(t) = m[yu I(t, x)dx

with central points
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Scenario Parameters

p1 p2 p3

Energy-based Optimization 13.065 2.070 9.076

Optimization-based Design

Actuator 1 &4 12.895 2.055 7.682
Actuator 2 12.967 2.054 8.301
Actuator 3 12.944 2.066 8.459

In the subsequent paragraphs, we apply concepts of feed-forward and feed-
back control design on the cuboid model.

Feed-forward Control

In the initial step, we apply the flatness-based control approach on the
one-dim. model and we approximate the found input signal. We consider
the same reference signal (7.68) and heat-up time Try = 1200 seconds as
in Section 7.6. As we have the same reduced one-dim. model, we take the
results from Section 7.6 as noted for the approximated input signal in the
first row of Table 7.8. We continue with the energy-based optimization and
we search for parameters p; (gain) and ps (kurtosis) such that the supplied
energy E;, leads to a proper temperature transition. We wish to increase
the temperature by 200 Kelvin and so we have a change of internal energy
as
AU =p c|Qz]Ar=1.28-10° Joule

with volume |Q3| = L W H =2-10"3 m3. The emitted thermal energy on
boundaries Bg, Bs and Br is approximated according to Eq. (7.62) as

Eom ~—-85.70-10° Joule.

Summing up both quantities, we formulate and solve the optimization
problem (7.69) with objective function

4 2
J(p1,p3) := | AU = Eoip — Eoc(p) Z(fﬁ bn(x)dx)

n=1

and parameterized input energy E,. as in Eq. (7.58). The computed pa-
rameters p; and pj3 are listed in Table 8.1. We demonstrate the forced tem-
perature transition with the found input parameters in Fig. 8.9. Here, we
find in Fig. 8.9 (b) that the measured temperatures are noticeable above
the reference values and we need to reduce these temperatures to match
the desired reference.

We continue with the optimization-based reference tracking to decrease
the distance between measured temperatures y(¢) and reference function
r(1). In the specification of the actuator positions, we find a symmetry for
the actuation in segment ; and f4, see Fig. 8.7. Hence, we reduce the
parameter finding problem of originally four parameter sets to three and
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Table 8.1: Input Parameters for the
Feed-Forward Control of the Three-
Dimensional Example.
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we have the input signals
Uoc,1 (L, p1)
Uoc,2 (L, p2)
u(t) = '
Uoc,3(L, P3)
Uoc,a(L, P1)

with pn = (pn1, Pn2, pnyg)T. We consider the error e(t) between reference
r(t) and output y(f) and we solve the minimization problem

4 2
Y Hnen(t,p)

n=1

(py,py,pa)=arg min —
P1>P2:Ps g(Pl,szP:z) T

Ly

in which we assume e (£, p) = e4 (¢, p) and we set y,, = 1. We note the com-
puted parameters in Table 8.1 and we visualize the simulation results in
Fig. 8.10. In Fig. 8.10 (b), we remark that the distance between the mea-
sured temperatures and the reference is reduced but the thermal losses
force a temperature drop, which shall be compensated by a model predic-
tive control approach in the next paragraph.

Feedback Control

The feedback control shall stabilize the measured temperatures at the de-
sired value © 4,5 = 500 Kelvin. We consider a model predictive control as
feedback approach because it can be applied on nonlinear systems with-
out the need of linearization. We choose a sampling time AT = 30 seconds
because it leads to proper temperature change for this scenario, see also
Fig. 8.5. As the initial temperature of the feedback control is below the de-
sired value, e.g. Yn(Trp) =495 Kelvin for n € {1, 2, 3,4}, we need to consider
the emitted power to stabilize the output value and an additional power
to push the output temperatures closer to the reference value. We assume
that entire cuboid has a temperature of 495 Kelvin and we find the change
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Figure 8.9: Energy-based optimization of
input signals ugc,n for a cuboid exam-
ple. The measured temperatures increase
to the desired value © ;,; = 500 Kelvin in
(a), but they overshoot 500 Kelvin in (b) by
more than 5 Kelvin.

Figure 8.10: Optimization-based control
for reference tracking applied on a cuboid
example. The measured temperatures fol-
low the reference values in (a) and the
overshoot in (b) is reduced. However, the
thermal losses lead to a temperature drop
and the temperatures do not match exactly
the reference.
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of internal energy as

We wish that this energy shall be supplied in the first iteration and accord-
ingly, we find the additional power as P,;4 = % ~ 1066.67 Watt. We re-
mark that this additional power is just an approximated value because the
temperatures are not at 495 Kelvin in the whole cuboid. To stabilize the
output measurements at the desired temperature, we need to compensate
the thermal emission and we find the emitted power for © 4, = 500 Kelvin

as
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Hence, we need to apply input signals in the beginning of the MPC run

Bs Bg Br

~ —141 Watt.

with an average value of
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u=
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Figure 8.11: Model predictive control de-
sign for cuboid example. Actuator 2 has
the highest input values in (a) because it is
adjacent to boundaries Br and Bg, where
we have thermal emissions. Actuator 3 has
the lowest input values because it is adja-
cent to the insulated boundaries By, and
Bp. Actuator 1 and 4 have almost equal
values because their situation is symmet-
ric. The measured temperatures increase
in (b) to approx. 497.5 Kelvin and stay
at this value. The supplied power in (c)
starts at a high value to compensate the
temperature error of five Kelvin and it ap-
proaches the amount of the absolute emit-
ted power after few iterations. The temper-
ature distributions at t = Tf;pq; in (d), (€),
(f) show the impact of spatial characteris-
tics on the forced temperature evolution.
The region of the highest temperatures is
close to boundaries Bg and Bg.



and later this value shall converge towards the average value of

|Pem|

~ ~11.5-10°
=y (M5, o) dx)

u=

We set the initial guess of the input values for the MPC optimization rou-
tine (8.9) in accordance with these ideas: in the first iteration we need to
set a high input value u, = 98-10° and in the remaining iterations we have
low input values, u, = 11.5-103. We design the objective function in the
optimization routine (8.9) with the weighing matrices

1 1078

=——— Iy and R=——«——
< Y Nu (Nonpe — 1]

In,
Ny [Nmpce +11

to yield similar parts for the impact of measurement errors e(t,) and the
input differences Au(t,;). We run the MPC routine for N; = 10 iterations
and we visualize our results in Fig. 8.11.

The input signals in Fig. 8.11 (a) start at a high level and approach after
a couple of iterations almost constant values close to the expected aver-
age value 7 = 11.5-10%. The supplied power acts analog to the input values
and approaches the absolute value of the emitted power |P,,,| = 141 Watt
in Fig. 8.11 (c) in the long run. The temperature measurements in Fig.
8.11 (b) rise and they are stabilized but they do not reach the desired value
Oges = 500 Kelvin. So, we need to supply a higher power value to minimize
this steady-state error. The temperature distributions in Fig. 8.11 (d), (e),
(f) are snapshots at the final time T;,q = Ty +300 = 1500 seconds and
they unveil the significant influence of the actuator’s spatial characteris-
tics on the thermal treatment. Finally, we portray the temperatures inside
the cuboid at the final time T¥;y4; in Fig. 8.12.
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9

Conclusion and Future Work

In this theses, we developed a mathematical framework, which connects
the modeling and simulation of heat conduction with the control design
via multiple actuators and sensors. In each part of this work we note con-
nections to related topics in order to give an idea about the wide field of
research on heat transfer problems. In this chapter, we present a selection
of related topics and we discuss how they can improve our proposed heat
conduction framework.

In the simulation of technical systems, which are described by par-
tial differential equations, we find the significant issue that computational
costs increase by the number of spatially approximated states. In par-
ticular the size of an approximated system may grow quadratically for a
two-dim. and cubically for a three-dim. geometry. To solve this issue, we
can reduce the system size before the computation using model order re-
duction methods, e.g. proper orthogonal decomposition, and we can ac-
celerate the matrix-vector operations during the simulation with parallel
computing, e.g. using graphics processing units (GPU). The scientific field
of model order reduction provides a wide range of well-established ap-
proaches for PDE and common state space models. These approaches are
described in the literature, see the book [159] and they are implemented as
software libraries, see e.g. [160,161]. In case of simple geometries like rect-
angles or cuboids, these approaches may perform very well, but we need
to take care about the boundary sides to maintain the spatial character-
istics of actuators and sensors with a minimum loss of information. This
issue is crucial to yield a proper evaluation of supplied heat and temper-
ature measurements. When we concern the hardware, we have a fast de-
velopment of GPU, which comes along with recent needs in the domain of
computer graphics and artificial intelligence. GPU-based computational
methods are also applied on problems in scientific computing to solve
PDE, see e.g. [162, 163], and additionally we find applications in model
predictive control, see [164]. One major advantage of GPU approaches is
the fast operation of linear algebra methods on large matrices. Hence, we
may apply GPU methods to solve the linear spatially approximated heat
conduction problems in Section 3.4 and Chapter 4.



The recent developments in artificial intelligence also enforce new con-
nections between scientific computing and machine learning. One of these
branches is known as Scientific Machine Learning (SciML), which focuses
on computational methods to improve scientific models with data-based
approaches and machine learning techniques. In particular, real data from
lab experiments can enhance SciML models dramatically. We refer to the
website [165] for an introduction and we find related SciML software li-
braries for the Julia programming language on the website [166]. Next, we
briefly present two SciML approaches, Physics-Informed Neural Networks
and Dynamic Mode Decomposition, which provide powerful tools to im-
prove the modeling of processes.

Neural networks are popular techniques in machine learning for clas-
sification and regression purposes. They are extended for the modeling
and simulation of physical systems as Physics-Informed Neural Networks
(PINN)!, see [60-63]. The input layer receives spatial coordinates, e.g.
(x1,x2,x3), and time t to compute the states, e.g. temperature 9(t, x), in
the output layer. The objective function of this neural network type con-
tains the considered PDE, including initial and boundary conditions, and
possibly the evaluation of errors between computed states and experi-
mental data. The PDE derivatives are realized with algorithmic differenti-
ation, see [148,149]. This PINN approach might be very helpful in scenario
where we have a good model of the actual process but additional uncer-
tainties like unknown parameters or external influences on the process. In
the sense of our thermal dynamics, we assume to have a perfect geome-
try state several assumptions regarding a perfect geometry, known mate-
rial properties and thermal emissions. Furthermore, we neglect close or
adjacent objects in the object’s surrounding. In real experiments we can-
not assure these assumptions and so we may improve the thermal model
with a PINN approach and experimental data. However, one drawback of
PINN and neural networks in general is the large size of the network archi-
tecturere. This situation leads to high computational costs® and a weak
understanding of learning process.>

Another vibrant field of SciML was established in computational fluid
dynamics: Dynamic Mode Decomposition (DMD), see the article [167].
This approach is used to compute a time-discrete mapping f : RY — RN
with known data snapshots z as in

2(tns1) :f(Z(tn))-

The basic concept was proposed for linear systems where standard meth-
ods from linear algebra, e.g. singular value decomposition, are applied to
recover a linear mapping f(z) = Az. When we transfer this concept to our
framework, then we find the linear operator as the system matrix Ay, and
the states as temperature O, see Section 3.4 and Chapter 4. Hence, we are
able to reconstruct the diffusive behavior from known temperature data
via DMD. This basic DMD approach was extended in many directions, e.g.
for systems with inputs in [168] and physics-informed DMD in [169], and
so we find promising interfaces to our heat conduction framework. Re-
cent contributions of the author focus on DMD approaches for systems
with structured system matrix as described in Section 3.4, see [42,43].
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! We mentioned PINN in the beginning of
Chapter 3 as an alternative to the proposed
finite volume approach.

2 Here we refer to the parallel computing
approaches mentioned above.

3 This issue is discussed in the field of
Explainable Artificial Intelligence.



In a nutshell, the described heat conduction framework provides links
to various modern and auspicious fields of research. In future work, the
extensions should improve the computation of the thermal dynamics and
they should include data-based approaches to enhance the practicality for
real-world scenarios like industrial applications.
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A

Mathematical Fundamentals

A.1 Analytical Solution of the Heat Equation

In this section, we derive an analytical solution of the one-dimensional
heat equation. Firstly, we describe the case of Neumann boundary con-
ditions and secondly, we discuss briefly the case of Dirichlet boundary
data. We utilize a separation of variables approach, which is a well known
technique in the literature, see e.g. [4, p. 75], [170, p. 124] and [171]. We
assume the one-dim. heat equation with length L > 0 constant material

properties: A >0, ¢ > 0, p > 0, and we note them as diffusivity a = %.
Accordingly, we consider the linear heat equation (2.21) as
0 82
—9(t,x) =a-—=9(t, Al
at(x) aaxz(x) (A.1)
for (¢, x) € (0, T) x (0, L) with initial condition
9(0,x) = 9o (x) :=p x (L—x) (A.2)

and scaling p > 0. We assume thermally insulated boundary sides and
note the boundary conditions as

-7i(x) =0 and i1‘)(~,x) ‘H(x) =0 (A.3)
0x

0
2o,
0x 60 x=L

x=0

with outer normal vector 7i(0) = —1 on the left and 7(L) = +1 on the right
boundary. We assume a separation of variables as

9(t,x) = f(1) gx)

in Eq. (A.1) to separate the temporal and spatial dynamics as

d d?
Ef(t)g(x) = af(t)%g(x)

or equivalently )

fo  g'w u

af(t) gk
We find the solution of the first-order differential equation f BH=paf(d)
as

f)=exp(uat) f(0), (A.4)



where we set f(0) = 1. In the next step, we solve the second-order differ-

ential equation
2

d
ﬂg(x) =pglx) (A.5)

and we notice that u determines the solution g(x). Hence, we have to dis-
cuss three cases ¢ =0, p>0and u <0.

1. If p =0, then Eq. (A.5) is simplified as ddex g(x) =0 and we yield
g(x) =c1x+ cp.

We evaluate the boundary condition (A.3) as % g(x) =0for x =0and
x = L and we find ¢; = 0. Thus, the solution of Eq. (A.5) for u =0 is
g(x) = cop, but this is not possible due to the initial conditions. There-
fore, u =0 is not a possible value.

2. If 4> 0, then we may assume the solution!
g(x) = c1exp(\/px) + c2 exp(—+/ux)
and its first derivative
%g(x) =/pc1exp(y/Hx) — /o exp(—/ix).

We find the boundary conditions (A.3) the linear system of equations
sl —pm) ()1
dx\gw|,..;) \vEe: —yme V| \c) |0

which is solved with the inverse matrix as

al 1 -vEe VEL ) (o
C2 _u(—e_\/ﬁL+e\/ﬁL) —\/ﬁe\/ﬁL Vi) \o

and so we find ¢; = ¢, = 0. We note that the expression

) (A.6)

1
0
i (—eVEL 4+ gvVELy ?

for all x and L. As we cannot find any u > 0, which solves Eq. (A.6), we
need to exclude this approach as a candidate solution. Additionally, we
also ignore the approach

g(x) = cyexp (v=px) + coexp (—/—px)

because it leads to the wrong second-order differential equation

d2
Wg(x) =—ugx).

3. Inthelast case u < 0, we assume the solution of Eq. (A.5) as

g(x) = ¢y sin(y/—px) + ¢ cos(y/—pux) (A7)

and we calculate with the first derivative

da
ag(x) = /= [c1cos(y/=Hx) — c2sin(y/—px)] .
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'If ¢; = cp then we may write g(x) =
1 cosh(y/mx) and if ¢; = —cp then we have
g(x) = c1 sinh(,/ix).



We yield the boundary conditions as

d
ag(x= 0)=—-y—-pc =0,

which implies ¢; =0, and

d
Eg(x =L)=—-cy/—psin(y/—pL) =0.

We notice that this approach offers a suitable solution if the expression

—v/—psin(y/=uL) =0
is guaranteed for certain values of . We find these roots as y = — [”—L”]2
with ne{0,1,...,00}, see Fig. A.1.

We conclude from these calculations that au, = —a [%]2 are the eigen-
values and

X
@n(X) = c2,5 cOS(y/—pXx) = C2,,, COS (n b/ Z)

are the eigenvectors? of the linear heat equation (A.1). In the next steps,
we find the coefficients ¢, ,,. We know that eigenvectors span an orthonor-
mal basis and thus we calculate the inner product of the function space
L*((0,L),R) as

X

L
(On, Pm) = fcz,ncos(nn %) cz,mcos(mn Z)dx = 0j,j
0

) 1 for n=m, .
withé,,,, = In case of equality n = m, we find
0 otherwise.

L
(Pn, Pn) = cz‘nfcos(nn Z) dx=c5, 521
0

for n > 0 and thus we have ¢, , = \/%, and for n = 0 we find ¢y = %
Otherwise n # m the integral vanishes as
L
x x
fcos(nn —) cos(mn —)deO
L L
0
for all x € [0, L] and so we note the orthonormal eigenvectors

- —\/5 ) f 0 A8
(po(x)—ﬁ and ¢,(x) = Zcos(nnz) or n>0. (A.8)

The principle of superposition provides us a general solution of the heat
equation (A.1) as

I(t,x) = Co +

18

Cn fn(t) Pn(x)

3
1l
—

:~0+

Cn exp (a pn 1) \/%cos(nn%) (A.9)

where the coefficients ¢y and ¢,, describe the behavior at the initial time,

18

Il
—

n

see Eq. (A.2). These coefficients are computed in the following steps. At
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Figure A.l1:  Eigenvalues of analyti-
cal heat equation. Function graph of

—/—psin(,/=fL) with roots
u=- [LL”]Z for ne{0,1,...,4}.

% They are also known as eigenfunctions.



the initial time ¢ = 0 we know that f;;(0) = 1 for all n > 0 in Eq. (A.9) and so
we have
()
9(0,x) =9 (x) =G+ )_ Cn Pn(). (A.10)
n=1

We multiply Eq. (A.10) with the eigenvector ¢, on both sides and apply
the inner product as

<1C)0;(Pn> =Co{L,@n) +CnlQn, @n) , (A.11)
—— ——
n=0 n>0

which is distinguished as

(90, o) = Co(1,p0) for n =0 and (A.12)
(90, Pn) = CnlPn, Pn) for n>0. (A.13)

We find the left-hand side of Eq. (A.12) as

L 1 L
Do, o) = ff) d:—f L-x)d
(9o, P0) = Po | o(x)dx o px(L—x)dx

1 (Lo o[- 1,2
o VL 6

- p[ke- L) -

and the right-hand side of Eq. (A.12) as
~ ~ L _ 1
o1, 90) = Co Yo fo ldx = COEL-

2
Hence, we compute the coefficient ¢, = p%. In case of the second equa-
tion (A.13), we know that (¢, ®,) = 1 and we reduce our calculations as

L
En = <790r(pn> = L (pn(x) ﬁo(x)dx

2 (L X
\/;fo [px(@L-x] cos(mtz)dx
_\/? L (L)Z [(_1)n+1]

L p nm ’

2 if niseven,
-D"+1=
0 if misodd

We see that

and we specify the coefficients
2 L2 . .
- —2\/; pL(5;)" if niseven,
0 if nisodd.

We identify the coefficients ¢, and ¢, with n > 0in Eq. (A.9) and we yield
I? e 1 ; nmy2 x
9(t,x) = p? -2p ? ;1 ? [(—1) + 1] exp (—a (T) t) cos (nnz).

Finally, we consider only even indices as # = 2k and we note the analytical
solution of the one-dim. linear heat equation with initial temperature in
Eq. (A.2) as

2 LZoo

L
LX) =p==P— )
k=1

1 a km zt 2k X
ﬁexp -« b cos( nz).

(A.14)
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We evaluate the found solution (A.14) for an example with length L =1,
diffusivity & = 0.1 and scaling p = 4, where we neglect physical units. We
compute the solution (A.14) for k € {1,...,100} and we visualize the com-
puted data in Fig. A.2. In Fig. A.2 (a) we see that the temperature is con-
verging towards the mean value of the initial temperature distribution

- 1t 2 2
Yo = —f 4x[L-xldx==1?="=.
LJo 3 3
In Fig. A.2 (b), we notice the continuous transition of the temperature val-
ues and we find the temperatures rise close to the boundary sides.

Side Note: Relations to the Basel Problem
At (¢, x) = (0,0) we yield for Eq. (A.14)

1

9(0,0) = — ¢
1 k2

(A.15)

18

k

o0
withé=p 7LI—§ The series }_ é equals the Riemann Zeta function
k=1
X1
¢(s)= Z -
n=11

oo

for s = 2, and the exact calculation of series Y # is known as the “Basel
k=1

problem”. According to Leonhard Euler, we note the series

i 1
ikt 6

and we find coefficient ¢, in Eq. (A.15) as

© 1 7[2
c0=«9(0,0)+ck;ﬁzﬁ(o,oncF
12 72 12
=9(0,0 = Z_=900,0 =.
( )+;v”2 5 0,00+p 6
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Figure A.2: Simulation of the heat equation
with Neumann boundary conditions.The
scaling of the initial temperature is p = 4.
The computed temperature converges to-
wards the mean value of the initial temper-
ature distribution.



Heat Equation with zero-Dirichlet Boundary Conditions

In this paragraph, we compare the previous results with a heat equation,
which is equipped with a Dirichlet boundary condition. This means that
a temperature data - instead of a gradient - along all boundary sides is
fixed. As we do not assume Dirichlet conditions in this thesis, we only state
briefly the differences to our previous case with Neumann conditions. We
consider the heat equation (A.1) with fixed temperatures as

9(,00=0 and 9I(,L)=0. (A.16)

We split again the temporal and spatial terms, f(t) and g(x), we note the
temporal term as in Eq. (A.4) and we consider the spatial term as in Eq.
(A.7). Here, we apply the Dirichlet boundary conditions and we calculate

gx=0)=c=0
on the left side and
g(x=L)=c sin(y/=pL)=0 A.17)

on the right side. As we assume c; # 0, we know that
- [M 2
F="17
fulfills Eq. (A.17). Hence, we find the eigenvectors as

on(x)=c1,n sin(nn%),

where we have ¢g(x) = 0. We evaluate the inner product

<<Pn»(Pm> =

S

. X
cllnsm(nnz) clmsm(mn )dx = 6i,j

and we yield the coefficients c;,,, = \/% for n = m. We formulate a prelim-
inary version of the analytical solution as

) 2
A(t,x) = Z En @n(x) exp (—a [n_Ln] t)

ge\fsm( S op(-a[ 2] 1]

in which we need to determine the coefficients ¢, via the initial tempera-
ture distribution in Eq. (A.2). For this purpose, we need to solve Eq. (A.13)
as

L
5n=<190,<pn>=f @n(x) Do(x)dx

\/7/ [px(@L-x)] sm(mr)
i M

(e = 0 if niseven,
2 if misodd.

and we have
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Thus, we note the coefficients as

_ 0 if niseven,
Cn= 2 (L3 . .
4p\/% (55) if misodd.
We insert the coefficients ¢, in the solution (A.18), we define the new index
k =2n—1 and we obtain the solution

L2 [eS)
N, x)=8p— ) ———
(b0 =8p23 n; 2k—1)3
We evaluate the solution of the Dirichlet problem (A.19) for the same
example as above with length L = 1, diffusivity @ = 0.1, scaling p = 4, and
ke{l,...,100}. We portray the resulting temperatures in Fig. A.3, where we
see that the temperatures are decreasing towards zero because the data on
both boundary side is fixed at zero.

A.2 Riccati Equation

In Section 8.1, we apply the linear-quadratic regulator approach on the
heat conduction problem to find a stabilizing feedback law. Here, we de-
rive the feedback law (8.6) and the algebraic Riccati equation (8.7). The
subsequent ideas are based on [172, p. 296]. Further information about
solving the linear-quadratic problem may be found in [153, page 120],
(173, p. 363] and [174, p. 218].

We consider the quadratic optimal control problem

Ty
min{](u) = 2(Ty) " Sz(Ty) +f 207 Qz(1) + u(t)TRu(t)dt}
0
with subject to the state space system

%z(t) =Az(t)+Bu(t) with z(0)=z. (A.20)

We have the states z : [0, Tf] — RY, the input signals u : [0, Tf) — RV and
the matrices A€ RV*N, Be RV*Nu § Q e RV*N and R € RN«*Nu_ We note

the Hamiltonian
1
H(z,u,v) = 5 [z"Qz+u"Ru]+v" [Az+B u]

with costate v : [0, Trl— RY and we derive necessary (first-order) optimal-
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Figure A.3: Simulation of the heat equation
with Dirichlet boundary conditions. The
scaling of the initial temperature is p = 4.
The computed temperature decreases in
time towards zero.

B 2
sin([Zk—l]n%) exp(—a [[Zk#] t). (A.19)



ity conditions
0H(zuv)—Az+Bu— dz(t) (A.21a)
ov T CdtT” '
9
aH(z, u,v)=Ru+B v=0, (A.21b)
aH(zu v)—Qz+ATv——d v(t) (A.21c)
oz T T dt ’

with the terminal value

v(Tp) [2(Tp) " S2(Tp)] = Sz(Tp).

_d

B dz(Ty)
We obtain from Eq. (A.21b) the optimal input signal

u ()=-R'BTv(» (A22)

and we insert u* in the state-space system (A.20) to yield the closed-loop

system
d
Ez(t):Az+B u=Az(t)-BR'BTu(1). (A.23)
We summarize the differential equations (A.21c) and (A.23) as
zw)\ (A -BR'BT\[z(1)
_ - - (A.24)
v(1) Q A v(t)

with the initial value z(0) = zo and the terminal value v(Ty) = Sz(T¢). As
we have a system of linear ODEs in Eq. (A.24), we can consider a linear
state-to-costate mapping

v(t) = P(t)z(t) (A.25)

with P : [0, Tf — R¥*N]. In the end of this section, we note one way to
proceed from Eq. (A.24) to Eq. (A.25).
The mapping (A.25) is inserted in Eq. (A.22) and we find the feedback
law
u*(H)=-R'BT P(1)z(1).

In the next steps we derive the Riccati equation to find P. We differentiate
the mapping (A.25) as

d . ,
E v(t) = P(t)z(t) + P(t) z(t)

= P(t)z(t)+ P(t) [A z(t)— BRT'BT P(1)z(1)]
= [P()+ P()A-P(OBR'B"P(1)] z(0). (A.26)

In the third optimality condition (A.21c), we specify the the derivative % v(t)
as
d T T
Ev(t) = —-Qz(H)—A v(t)=-Qz(t)— A" P(1)z(1)
= [-Q-ATP@)]z(0) (A.27)

We summarize Eq. (A.26, A.27) and we obtain the Riccati differential equa-
tion
P(O+Q+A" P(t)+P(t) A—-P(t) BR™' BT P(t)=0.
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If we consider an infinite time horizon, Ty — oo, the terminal costs vanish
as
Z2(Tp)" Sz(Tp =0

and P is constant, P = 0. Hence, we yield the algebraic Riccati equation

0=Q+PA+A" P-PBR!B'P.

Approach to find Equation (A.25)

Next, we propose a naive approach to calculate the state-to-costate map-
ping (A.25). Firstly, we introduce

z(1) A —-BR!BT
w(t) := and M:= T
v(1) Q A

such that w(t) = Mw(t) expresses the differential equation (A.24). We
solve this ODE from any time ¢ € [0, Ty) towards the final time Ty as

Ty
w(Ty) = exp (f Mdr) w(t) (A.28)
t
N— —
=:Q(7)
in which we have the 2 x 2-matrix
Q Q
o= 12|
Qo1 Qo
We formulate the solution (A.28) in terms of the original states z(¢) and
v(r) with identity v(Ty) = Sz(Ty) as

t
z(Ty) _ Q11(8) Q120 [2(1) (A.29)
Sz(Ty) Qo1(8) Q22(8)) \v(8)

Now, we solve the linear equations (A.29) and we note the state-to-costate

mapping as

v(t) = [Qz,z(t)—SQLz(t)]_l [Q2,1(8) = SQ1,1 ()] x(2)
= P(1) x(1).
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Implementation of Simulations

In this thesis, we present several simulation results to exemplify and visu-
alize the proposed concepts and methods. These numerical experiments
are implemented with JULIA programming language on a basis of the soft-
ware library Hestia.jl [44]. The provided functions of Hestia.jl are explained
in the online documentation [175]. The simulations are stored online on
GitHub and Zenodo in the project ThesisSimulations.jl [176,177].

We need to specify several coefficients to setup a heat conduction sim-
ulation with Hestia.jl. First of all, we define the dimensions: length L,
width W, height H, and their corresponding number of finite volume cells:
Nj, Nm, Ni. In the next step, we set the material properties with the
(anisotropic) thermal conductivity A, density p and specific heat capac-
ity c. On all boundary sides, we have a thermal emission and so we denote
a heat transfer coefficient # and an emissivity €. In case of an insulated
boundary side, the values h = € = 0 are set by default. If we assume ac-
tuators and sensors, then we need to specify the number of actuators N,
and sensors Ny, the corresponding boundary sides, the checkerboard pat-
terns in case of a three-dim. problem and the spatial characteristics with
the scaling m, curvature matrix M and power v. The central point x. is
computed internally. Finally, we state the initial temperature 9y and the
simulation time T'f;,q; or Ty r for the feed-forward control.

Subsequently, we list the source code files of the simulations and the
corresponding figures in this thesis.

Heat Conduction

Fig. 2.3 wvia 11l_slow_fast_heat_conduction.jl
Fig.2.4 via 12_anisotropic_heat_conduction.jl
Fig.2.6 via 13_dynamic_heat_conduction.jl

Fig. 2.7 via 14_heat_supply_vs_emission.jl
Fig.2.9 wvia 15_heat_transfer_heat_radiation.jl

Folder: src/modeling

Approximated Linear System

Fig. 4.8 via 21 _relative_error_condition_number.jl
Fig.4.11 wvia 22_analytical_sol_gauss_quad.jl

Folder: src/simulation
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Numerical Time Integration

Fig.5.8 wvia 23_numerical_error_time_integration.jl

Folder: src/simulation

The Control System Framework

Fig.6.6 via 31l_actuation_narrow_wide.jl
Fig.6.5 via 32_actuator_characteristics_2d.jl

Folder: src/control_feed_forward

Feed-forward Control

Fig. 7.1 via 41_gevrey_transition_bump.jl

Fig. 7.2 via 42_gevrey_derivatives.jl

Fig. 7.4  via 43_gevrey_input_heat_eq_pde.jl
Fig. 7.7 via 44_flatness_ode_1d.jl

Fig. 7.9 via 45_flatness_ode_2d.jl.jl

Fig. 7.10 via 46_polynomial_transition.jl

Fig. 7.15 wvia 47_opt_input_approximation.jl
Fig.7.16 via 47_opt_input_approximation.jl.jl
Fig.7.18 via 48_opt_reference_tracking.jl
Fig.7.19 via 48_opt_reference_tracking.jl

Fig. 7.21 via 49_opt_energy_parameter_search.jl
Fig. 7.22 via 49_opt_energy_parameter_search.jl

Folder: src/control_feed_forward

Simulation of the Feed-forward Controlled System

Fig. 7.27 via 51_ff_example_approx_input.jl
Fig. 7.28 wvia 51_ff_example_approx_input.jl
Fig. 7.29 wvia 52_ff_example_energy_supply.jl
Fig. 7.30 via 52_ff_example_energy_supply.jl
Fig. 7.31 wvia 52_ff_example_energy_supply.jl
Fig.7.32 via 53_ff_example_optimization.jl
Fig.7.33 via 53_ff_example_optimization.jl
Fig.7.34 via 53_ff_example_optimization.jl

Folder: src/control_feed_forward/example_2d

Closed-Loop Control

Fig.8.2 wvia 61_1lqr_linear_2d.jl
Fig. 8.4 via 62_step_impulse_response.jl
Fig. 8.5 wvia 63_mpc_step_response_2d.jl
Fig.8.6 via 64_mpc_linear_2d.jl

Folder: src/control_feedback



Simulation and Control of Heat Conduction in a Cuboid

Fig. 89  via
Fig. 8.10 via
Fig. 8.11 via
Fig. 8.12 via

71_cuboid_energy_opt.jl
72_cuboid_opt_control.jl
73_cuboid_mpc.jl
74_cuboid_volume_plot.jl

Folder: src/control_feedback/example_3d

Analytical Solution of the Heat Equation

Fig. A.2 via
Fig. A3 via

81 _analytical_solution_neumann_dirichlet.jl
81_analytical_solution_neumann_dirichlet.jl

Folder: src/simulation
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