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Abstract

In the production and further processing of modern materials and com-

ponents, such as metal alloys or semiconductor products, thermal energy

is applied to the raw material in order to achieve a temperature increase

and thus cause a transformation to the end product. This is achieved by

means of actuators, such as laser beams or heating elements, which sup-

ply a heat flow on the surface of the treated object.

In this dissertation, we create a mathematical model of such thermal

processes for rectangular and cuboidal objects. We consider materials

with temperature-dependent parameters and anisotropic thermal conduc-

tivity. In addition, we treat cooling effects that take place as heat trans-

fer and thermal radiation at the surface. Thus, we obtain a quasilinear

heat equation with nonlinear boundary conditions. We approximate this

model with the finite volume method in space and we obtain a large sys-

tem of nonlinear differential equations. We then discuss the special case

with constant material parameters, where we obtain a linear state space

model, and we present numerical methods for the temporal integration of

the differential equations.

Based on the thermal model, we design a concept for heat supply by

means of multiple actuators distributed over the surface. We distinguish

between two phases in the heat supply. In the first phase, the measured

temperatures should follow a predefined reference. To this end, we de-

velop a model-based control system using the theory of differential flat-

ness and numerical optimization. In the second phase, heat is to be con-

tinuously tracked by means of a control system in order to compensate

for thermal losses and to keep the measured values at the reference value.

Here we take up known approaches from linear-quadratic and model pre-

dictive control and we adapt them for our thermal model. Finally, we

demonstrate the methods presented in two comprehensive examples.

As part of this work, the author developed the two software packages

“Hestia.jl” and “BellBruno.jl” in the Julia programming language and made

them freely available. We use “Hestia.jl” to create thermal models in code

as differential equations and “BellBruno.jl” to calculate the derivatives of

the reference signal for the flatness-based control.
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Kurzbeschreibung

Bei der Produktion und weiteren Verarbeitung moderner Werkstoffe und

Komponenten, wie Metalllegierungen oder Halbleiterprodukten, wird dem

Ausgangsmaterial thermische Energie von außen gezielt zugeführt um ei-

ne Temperaturerhöhung zu erreichen und somit eine Transformation hin

zum Endprodukt hervorzurufen. Dies geschieht mittels Aktuatoren, wie

zum Beispiel Laserstrahlen oder Heizelementen, die einen Wärmefluss an

der Oberfläche des behandelten Objektes einbringen.

In dieser Dissertation erstellen wir ein mathematisches Modell solcher

thermischen Prozesse für rechteckige und quaderförmige Objekte. Dabei

betrachten wir Materialien mit temperaturabhängigen Parametern und

anisotroper Wärmeleitung. Außerdem behandeln wir Kühlungseffekte, die

als Wärmeübergang und Wärmestrahlung an der Oberfläche stattfinden.

Somit erhalten wir eine quasilineare Wärmeleitungsgleichung mit nicht-

linearen Randbedingungen. Wir approximieren dieses Modell mit dem

Verfahren der finiten Volumen im Raum und erhalten ein großes System

nichtlinearer Differentialgleichungen. Anschließend besprechen wir den

Spezialfall bei konstanten Materialparametern, bei dem wir ein lineares

Zustandsraummodell erhalten, und wir stellen numerische Verfahren zur

zeitlichen Integration der Differentialgleichungen vor.

Aufbauend auf dem thermischen Modell entwerfen wir ein Konzept zur

Wärmezufuhr mittels einem oder mehreren Aktuatoren, die verteilt auf

der Oberfläche wirken. Bei der Wärmezufuhr unterscheiden wir zeitlich

zwei Phasen. In der ersten Phase sollen die gemessenen Temperaturen

einer vordefinierten Referenz folgen. Dafür entwickeln wir, mit Hilfe der

Theorie der differentiellen Flachheit und der numerischen Optimierung,

eine modellbasierte Steuerung. In der zweiten Phase soll mittels einer

Regelung stetig Wärme nachgeführt werden, um thermische Verluste zu

kompensieren und um die Messwerte an dem Referenzwert zu halten. Hier

greifen wir bekannte Ansätze aus der linear-quadratischen und modell-

prädiktiven Regelung auf und passen diese für unser thermisches Modell

an. Abschließend demonstrieren wir die vorgestellten Verfahren an Hand

von zwei umfassenden Beispielen.

Im Rahmen dieser Arbeit wurden die beiden Softwarepakete „Hestia.jl“

und „BellBruno.jl“ in der Programmiersprache Julia entwickelt und frei zur

Verfügung gestellt. Wir nutzen „Hestia.jl“ um thermische Modelle als Dif-

ferentialgleichung zu erstellen und mit „BellBruno.jl“ berechnen wir die

Ableitungen des Referenzsignals für die flachheitsbasierte Steuerung.
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Symbols and Units

Units

Second s

Meter m

Centimeter cm

Kelvin K

Kilogram kg

Watt W

Symbols

Geometry

Number of dimensions Nd {1,2,3}

Length L R>0 in [m]

Width W R>0 in [m]

Height H R>0 in [m]

Rod Ω1 (0,L) in [m]

Rectangle inΩ2 (0,L)× (0,W ) in [m2]

Cuboid Ω3 (0,L)×(0,W )×(0, H) in [m3]

Boundary ∂Ωi :=Ωi \Ωi

Actuator Boundary Bi n ⊆ ∂Ω
Sensor Boundary Bout ⊆ ∂Ω

Material

Volumetric mass density ρ R>0 in
[

kg
m3

]
Specific heat capacity c R>0 in

[
J

kg K

]
Thermal conductivity λ R>0 in

[ W
m K

]
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Heat Equation

Position x Ωi in [m], [m2], [m3]

Final time T f i nal R>0 in [s]

Time t
[
0,T f i nal

]
in [s]

Temperature θ R>0 in [K ]

Temperature distribution ϑ
[
0,T f i nal

]×Ω in [K ]

Ambient temperature ϑamb
[
0,T f i nal

]×Ω in [K ]

Initial temperature ϑ0 Ω in [K ]

Boundary Conditions

Total heat flux φ
[
0,T f i nal

]×∂Ω in
[

W
m2

]
Supplied heat flux φi n

[
0,T f i nal

]×Bi n in
[

W
m2

]
Emitted heat flux φem

[
0,T f i nal

]×∂Ω in
[

W
m2

]
Supplied power Pi n

[
0,T f i nal

]
in [W ]

Emitted power Pem
[
0,T f i nal

]
in [W ]

Heat transfer coefficient h R>0 in
[

W
m2 K

]
Emissivity ϵ R>0

Stefan-Boltzmann constant σ≈ 5.67 ·10−8 in
[

W
m2 K 4

]
Remark: The unit of the heat flux and related quantities are specified in physics

for a three-dimensional object, here a cuboidΩ3.

Spatial Approximation

Spatial sampling ∆x1, ∆x2, ∆x3 in [m]

Number of cells along x1 N j

Number of cells along x2 Nm

Number of cells along x3 Nk

Total number of cells Nc = N j ·Nm ·Nm

Local indices in x1, x2, x3 j , m, k

Global index i as in Eq. (3.7)

Discrete temperatures Θ= (Θ1, . . . ,ΘNc )⊤ [0,T f i nal ] in [K ]

Diffusion matrix D1, D2, D3

Emission matrix E1, E2, E3

System matrix A1, A2, A3



5

Control Design

Number of actuators Nu

Number of sensors Ny

Actuator’s spatial b as in Eq. (6.3) in
[

1
m2

]
characteristics

Sensor’s spatial char. g as in Eq. (6.5) in
[

1
m2

]
Input signals u in [W ]

Output signals or y as in Eq. (6.6) in [K ]

temperature measurements

Reference signal r in [K ]

State & output weighing

matrix

Q RNc×Nc or RNy×Ny

Input weighing matrix R RNu×Nu
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Introduction

“Marzenia zawsze zwyciężą rzeczywistość, gdy im na to pozwolić.”

“A dream will always triumph over reality, once it is given a chance.”

– Stanisław Lem

Heat conduction is an essential physical process, which describes the

transfer of thermal energy in a medium like gas, liquid or solid. The re-

markable feature of this process is that the material does not move itself

on a macroscopic level, as in case of advection or convection. Energy is

only transferred via microscopic activity, e.g. oscillation, and interaction

of atoms and molecules. The state of this particle activity is quantified by

the temperature: a low value means less and a high value means inten-

sive activity. The temperature is denoted in the units Kelvin, Celsius and

Fahrenheit (United States of America), where Kelvin and degree Celsius

are SI units, see [1, page 133]. One may say that zero Kelvin corresponds to

a physical state at which no particle activity is present. At approximately

273.16 Kelvin (or zero degree Celsius), we have the triple point of water,

which is also known as ice point. At this point, all three phases of water

(gas, liquid and solid or ice) are in a thermodynamical equilibrium state at

atmospheric pressure of approx. 101.325 Pascal, see triple point in [2]. In

several of our examples, we assume an ambient temperate of 300 Kelvin or

approx. 27◦ Celsius, which is in a suitable range of the room temperature

in Germany.

Figure 1.1: Microscopic model of oscillat-
ing solid particles in a crystalline grid. The
stronger the oscillations the higher is the
thermal energy. Thermal energy is trans-
ferred via collisions of multiple particles.

In this thesis, we consider heat conduction in a solid with a cubic ge-

ometry, e.g. a one-dimensional rod, a two-dim. rectangle or a three-dim.

cuboid. The one- and two-dim. geometries do not exist in reality but they

approximate physical phenomena and they simplify their analysis, simu-

lation and control. We do not specify the solid material, but we assume

in our examples metals like aluminum or iron and mixtures of metals or

alloys like steel. Heat conduction is described mathematically by the vari-

ation of temperature in time and space in form of the heat equation. The

standard heat equation is a linear partial differential equation (PDE)1 with 1 We denote the singular and plural form
(equation/equations) as PDE.one first order derivative in time and second order derivatives in space.

Due to its simplicity, it is an elementary example for the analysis and nu-

merical simulation of PDE, see [3, p. 44] and [4, p. 75]. The PDE only

describes the spatio-temporal dynamical behavior inside an object. Addi-

tionally, we need to specify the data along all boundary sides for a com-
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plete problem formulation. In the analysis of PDE, we distinguish Dirich-

let and Neumann-type boundary conditions2, where the first one fixes the 2 In the literature one may also find Robin
boundary conditions, which combine the
Dirichlet and Neumann type.

data and the latter one defines a spatial gradient. In case of the heat con-

duction, the Dirichlet boundary data is a constant or time-varying tem-

perature value and the Neumann boundary condition represents a heat

flux, which goes inwards or outwards the object. Dirichlet boundary con-

ditions are easier to understand and implement because they affect the

thermal dynamics explicitly. For example: if both sides of a one-dim. rod

have a fixed temperature, e.g. low value on the left side and a high value

on the right side, then we know that the temperatures inside the rod con-

verge to values between the low and high value on both boundaries, see

Fig. 1.2. Dirichlet boundary conditions do not suit for our purposes in this

thesis because we are interested in thermal interaction of the object with

its surrounding. This interaction is realized via Neumann boundary con-

ditions in form of a heat flux and this exchange of thermal energy along

the boundary sides results in a cooling-down or heating-up procedure.

t = 0

t =∞
(a) Temperature Distribution

t = 0
t =∞

low

high

1
3 L 2

3 L L

Length of Rod

Te
m

p
er

at
u

re

(b) Temperature Graphs

Figure 1.2: Example temperature distribu-
tion in one-dim. rod with Dirichlet bound-
ary conditions. The temperature on the
left boundary is fixed at a low temperature
and the right boundary has a high value.

In the first part of this thesis, we create a numerical model to simulate

heat conduction including thermal emissions, which cause a cooling. In

the second part, we design a control system to heat up the object such

that its surface reaches a desired temperature. On one hand, we supply

thermal energy via actuators, like heating elements, to increase the ob-

ject’s temperature and on the other hand we have convective and radiative

emissions towards the surrounding, which disturb our control aims. This

general concept is embedded in a framework that enables several design

options for the geometry and material of the object, the interaction with

the surrounding, and the setup of actuators and sensors.

As heat conduction is a very wide field of research with many applica-

tions, we present two examples in the subsequent sections: laser welding

and semiconductor fabrication. We select these applications because the

physical modeling and the considered control approaches may (partially)

fit to our proposed heat conduction framework. So, we describe the con-

nections and the differences between these examples and our framework.

1.1 Laser Welding

Laser welding is a central processing step in the production of modern

materials and components because it enables us to create objects with

complex shapes. The technical procedure of welding is the melting and

subsequent solidification of material at the interface of adjacent objects.

In other words, the treated material changes its phase from solid to liquid

and the resulting weld pool connects the interface of both objects. This

procedure is well analyzed in research in order to understand the thermal

dynamics and to avoid material fatigue along the weld seam, see [5–7].

In the subsequent paragraph, we briefly describe the thermal behavior

in a single-spot pulsed laser welding process according to the article [8]

and doctoral thesis [9]. The laser supplies a constant amount of power on

a single spot in a short time interval, e.g. 1 to 50 milliseconds [9, page 33].

The temperature at this spot increases and the material changes its phase

at the solidus temperature to a mixture of partially solid and liquid. While
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the laser treatment continues, the phase at the welding spot changes com-

pletely to liquid and the resulting weld pool is growing. When the desired

weld pool size is reached (after 1 to 50 ms), the laser intensity is decreased

until it is shut down. Thermal conduction and loss via heat transfer and ra-

diation to the environment force the weld pool to cool down and its phase

transits back from liquid to solid. We depict the temperature distribution

of a laser welding example in Fig. 1.3 (a).

Laser

radial

axial

(a) Temperature Distribution

(b) Convective Heat Transfer

Figure 1.3: Visualization of a laser welding
example. The temperature distribution in
(a) shows a temperature gradient from the
hot weld spot towards the cold regions in
radial and axial direction. The blue arrows
in (b) symbolize a circular convective heat
transfer inside the weld pool according to
[9, page 78].

In this laser welding procedure, we find a few physical processes, which

we model and simulate in this thesis, too. As the laser supplies a high

amount of power to change the solid state into a weld pool, the treated

material reaches very high temperature values, e.g. 1000 Kelvin in case

of a specific class of aluminum alloys, see [8]. We even find higher tem-

peratures for other materials, e.g. in [5]. These high temperatures lead to

intensive thermal emissions via convective and radiative energy transfer.

In Section 2.5, we model these emissions and we find the heat radiation

as a nonlinear boundary condition. When the solid material turns into

a (partially) liquid medium, then a circular convective heat transfer oc-

curs inside the liquid weld pool as depicted in Fig. 1.3 (b), see [9, p. 78].

It moves material from the weld pool center towards its boundary in ra-

dial direction, then to the bottom and back. A convection can be mod-

eled as transport equation, see [4, p. 6, 7], but the authors of [8, 9] avoid

such a temperature-depending switching of the system model from a pure

heat equation to a heat and transport equation.3 Instead, they consider 3 As the heat equation is also known as dif-
fusion equation, a model with heat and
transport is called diffusion-convection
equation.

an anisotropic thermal conductivity, which means that heat transfer op-

erates better towards the radial than axial direction. Furthermore, the

phase transition is modeled with material properties, which are designed

as functions of the temperature. So, we find in article [8, Fig. 2] a signif-

icant difference in the thermal conductivity between the solid and liquid

phase. This fact is also noted in [9, p. 76 in Fig. 5.16, p. 78 in Fig. 5.19].

In Section 2.2, we propose an anisotropic thermal conductivity and tem-

perature-dependent material properties, but we do not explicitly consider

a phase transition.

Optimal

Control

Simulation
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Figure 1.4: Procedure of finding an optimal
control approach.

Regarding the control of laser welding, we have one laser in article [8]

and we can only evaluate the results after its operation. We do not mea-

sure the temperature or the weld pool size during the laser treatment and

so we cannot apply a feedback controller. Instead, we need to design a

feed-forward control approach, which computes the proper input signal

based on the full knowledge of the thermodynamical model. In article [8],

the authors compute a feed-forward control algorithm with optimization

techniques. They formulate and implement an optimal control problem

for a shut-down operation of the laser and solve it numerically. Numerical

optimization approaches offer a wide range of options, e.g. various norms

and hyperparameters, to design the control problem. Thus, we need to

evaluate the found input signal and the resulting simulation data to guar-

antee a proper operation. We can only apply the computed input signal on

the real system, here a laser, if the treated system really behaves as desired.

Otherwise, we need to recalibrate the optimization options and restart the

optimization routine as depicted in Fig. 1.4. Moreover, numerical optimal

control is a computationally costly approach, in particular for systems de-
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scribed by PDE because it solves an optimization problem iteratively for

each time step of the sampled temporal dynamics. In case of the heat

equation, we approximate the object in space and sample the time to yield

a temperature value for each spatial grid node and time step. Depending

on the problem complexity and hardware equipment this cooperation of

numerical simulation and optimization of the thermal dynamics may be

computationally costly and take a long time.

In Chapter 7, we derive the input signal in two steps to avoid such high

computational costs. In a first step, we derive an analytical feed-forward

control approach for a simplified heat conduction model, which is close

to an applicable solution. In the second step, we transfer the analytical

input signal to an optimization-based control approach for the realistic

heat conduction problem and solve it.

1.2 Semiconductor Fabrication

In the second application, we present heat conduction scenarios in semi-

conductor fabrication to produce electronic components like integrated

circuits. This technology consists of several complex, highly precise and

clean processing steps. Hence, we are not able to describe all thermal

treatments, but we select three processes: crystal growth, lithography and

rapid thermal processing, which represent a specific thermal treatment

and dynamics.

In the first step of semiconductor fabrication, a single crystal in form of

a cylinder is produced and afterwards cut into disks. These disks are called

wafers and they are treated in subsequent steps physically and chemically

in order to establish electrical circuits on a very small scale.

Crystal Growth

In crystal growth the semiconductor raw material is thermally treated in

a crucible to yield a single crystal. Here, we briefly discuss the Vertical-

Gradient Freeze (VGF) method, where we have very high temperatures,

e.g. above 1000 Kelvin, and a phase transition, liquid to solid, similar to

the welding example in Section 1.1. This VGF method and its control ap-

proaches are described in the articles [10, 11], in the book [12, p. 3] and

in the doctoral thesis [13]. In these contributions, the authors describe

a plant with heaters on the bottom, on the top and on the jacket of the

crucible. These heaters specify a desired temperature gradient in the melt

such that the single crystal grows from the bottom to the top, as depicted

in Fig. 1.5. This heating process is steered with flatness-based control,

see [11], [12, p. 7] and [13, p. 60], and model predictive control in [10].
Crystal

(solid)

Melt

Top Heater

Bottom Heater

Ja
ck

et
H

ea
te

rs

So
li

d
if

.

Figure 1.5: Model of a Vertical-Gradient
Freeze process according to [10, Fig. 2].
Heaters supply thermal energy to steer the
solidification of a melt from bottom to top.

In this thesis, we cover both approaches, because they are well-known

representatives of open-loop and closed-loop control methods. In Chap-

ter 7, we introduce the flatness-based control and we discuss its applica-

tion for the prototyping of a feed-forward control system. In Section 8.2,

we describe the model predictive control for our heat conduction model

framework.
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Photoresist

Wafer

Rotating
Chuck

(a) Photoresist Spin Coating

Heat
Supply

(b) Soft-Bake

Photomask

Lens

(c) Exposure

Heat
Supply

(d) Post-Exposure Bake

Figure 1.6: A selection of first processing
steps in lithography. The wafer is cleaned
and positioned on a rotating chuck. A liq-
uid photoresist is applied as a drop on top
of the wafer and the rotation distributes
the liquid uniformly in (a) according to
[18]. The liquid photoresist is heated to
solidify at ca. 100◦ Celsius in (b). A high
energy radiation is guided through a pho-
tomask and lens to expose predefined pat-
terns in the photoresist in (c) according to
[15, p. 4, Fig. 1.2]. The treated wafer with
photoresist are baked at ca. 100◦ Celsius
again in (d) to prepare them for the further
processing steps.

Lithography

The produced single crystal is sliced and cleaned for the further processing

steps of lithography. Lithography is one of the core technologies to con-

vert a (silicon) wafer into integrated circuits, e.g. microelectronic compo-

nents. The wafer topside is coated with a photoresist, which is exposed by

radiation. The type of lithography is distinguished by the radiation: for ex-

ample ultraviolet light in photolithography, electron beams or ion beams

in charged-particle lithography [14, p. 139]. In this manner, patterns of a

photomask are transferred on the photoresist and the resulting prototype

pattern structure is treated in subsequent processing steps like the inser-

tion of ions or other material, and etching, see [15, p. 2]. We have baking

procedures after the coating (soft bake) to evaporate the solvent from the

photoresist, and after the exposure (post-exposure bake) to trigger chem-

ical reactions in the photoresist at the exposed zones, see [16]. These first

processing steps of lithography are depicted in Fig. 1.6, further informa-

tion about it is noted in article [16] and in the books [15, p. 1] and [17, p.

2].

The initial manufacturing steps of wafers and photomasks are similiar.

A substrate made of (quartz) glass is coated with resist, followed by pat-

terning with an electron beam, a post-exposure bake and subsequent pro-

cesses like etching and cleaning, see [19, p. 7] and [20]. Hence, we denote

wafers and photomasks subsequently in the general term as substrate. For

the post-exposure bake (PEB), the substrate with resist is placed on top of a

metal plate with multiple controllable heating zones.4 In the literature, we 4 This plate is called hotplate, heating plate
or bake plate.find cylindrical forms in [16, 21] and cubic plate shapes in [22–24], where

the first one is rather used for wafers and the last one for photomasks. The

substrate may be placed on pins, which separate it from the heating plate

in close proximity. Additionally, the substrate and heating plate are cov-

ered with a lid on top to avoid thermal losses and external disturbances,

see patent [24] and datasheet [25].
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Lid / Cover

Wafer / Photomask

Multiple Zone Hotplate

Heat Supply via Multiple Heating Elements

Figure 1.7: Simplified side view of a multi-
ple zone hotplate with wafer or photomask
during the post-exposure bake, see [24,
Fig. 2]. The wafer or photomask is posi-
tioned with pins on the hotplate. Heat is
supplied via multiple heating elements on
the underside. A metal cover captures the
thermal energy inside and avoids distur-
bances like air fluctuations.

Regarding the heating process, multiple heating elements on the plate’s

underside supply thermal energy. This heat conducts through the plate

and is transferred further towards the substrate. Modern baking devices

can be operated up to 230◦ Celsius [25], whereas we find in the literature

PEB temperatures of 95◦ up to 150◦ Celsius, see [16, 23] and [21]. We re-

mark that the substrate’s temperature shall be steered in this process and

we know that the heat transfer from plate to substrate depends on the dis-

tance between both objects. As the heating plate with lid is completely

closed, one may assume that the substrate reaches the plate’s temperature

after some time. However, the bake shall operate quick and advantageous

to save energy and guarantee a well treatment of the substrate and resist.

Hence, a well-performing control system is necessary to steer the thermal

process accordingly. Here, we find the issue that temperature sensors are

located inside the plate [16, 26]. Thus, only the plate temperature can be

measured during the real operation. This problem can be solved in the

development and test of the heating plate using a sensor mask instead of

a substrate. The sensor mask measures the temperature at several dis-

tributed points, e.g. with PT1000 elements as in [22,23], and transmits the

data via a cable to a computer as depicted in Fig. 1.8.
1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Cable

Figure 1.8: Topview of a multiple zone
heating plate with sensor photomask on
top according to [23]. The 25 zones vi-
sualize the heating elements on the hot-
plate’s underside. The sensor mask with 25
PT1000 sensors (blue circles) is mounted
on top of the hotplate for calibration, see
[23].

In the literature, we find that the thermal dynamics of a heating plate

is modeled as linear differential equations, see e.g. [27] and [28, p. 18, 19].

These models are derived via an approximation of the heat conduction

using electrical circuit analog models, where the thermal resistance and

capacity are replaced by the electrical quantities. Such an electrical cir-

cuit model of a heating plate with three segments is exemplified in Fig.

1.9 according to the doctoral thesis [28, p. 19]. In such models, electrical

currents describe heat fluxes and voltages correspond to temperature dif-

ferences. On one hand these simplified models offer an intuitive way to

design modern control approaches, e.g. model predictive control in the

article [16, 27, 29, 30], but on the other hand they reduce the entire spatial

thermal dynamics to a single temperature value, which behaves like the

charging and discharging of an electrical capacitor. The latter statement

might be explained by the fact that only single, isolated, sensors are in-

stalled inside the heating plates. Hence, we are only able to measure iso-

lated temperature points - in contrast to distributed measurements with

e.g. thermal imaging. Regarding the control design of heating plates, we

also find standard PID control approaches, in which the parameters are

found numerically in real experiments using sensor photomasks as de-

picted in Fig. 1.8, see [22, 23].
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Current
Sources

Ra,1 Ra,2 Ra,3C1 C2 C3

R1,2 R2,3i1 i2 i3

u
a

,1

u
a

,2 u
a

,3

u1,2 u2,3

Figure 1.9: Analog electrical circuit model
of a cylindrical heating plate consisting of
three segments according to [28, p. 19].
The current sources exemplify the heating
elements, the electrical currents i corre-
sponds to the heat flux and the voltages u
relate to temperatures. The voltages u1,2
and u2,3 stand for the temperature dif-
ference between the plate segments, and
ua,1, . . . ,ua,3 are temperature differences
between the plate and its surrounding.

In this thesis, we take up various aspects of PEB, but we introduce and

treat them in the light of spatially distributed thermal dynamics. In Chap-

ter 2, we describe the shape as a cuboid, where the temporal and spa-

tial temperature evolution takes place. The thermal losses, which are ap-

proached as currents through resistances Ra,n in Fig. 1.9, are modeled in

Sections 2.4 and 2.5 as boundary conditions of the heat equation using

heat transfer and heat radiation. Similarly, we describe the heat supply

via multiple spatially distributed heating elements in Section 6.1 as heat

fluxes. In contrast to the described temperature sensors inside the heat-

ing plate, we assume temperature measurements only on the surface of

the cuboid. This idea also corresponds to the measurement using a sensor

photomask as depicted in Fig. 1.8. Since the modelling and simulation of

the spatially distributed thermal dynamics is significantly more complex

than a small system of linear differential equations, we focus primarily on

feed-forward control in Chapter 7 to design the control system. Subse-

quently, a predictive feedback control approach is intended in Chapter 8

to stabilize the measured temperature at the reference value while com-

pensating thermal losses.

Rapid Thermal Processing

Wafer

Lamp Array

Lamp Array
Pyrometer
with window

Figure 1.10: Simplified side view of rapid
thermal processing according to [31, p.
317, Fig. 31.2 (b)] and [32, p. 10, Fig. 1.2].

Finally, we take a look at rapid thermal processing (RTP) to heal defects in

the crystal structure of wafers, which are caused by ion implementation,

see e.g. [31, p. 316] and [32, p. 5]. In this process, the wafer is heated up

quickly for a short time and cooled down afterwards via thermal emission,

e.g. convection and radiation. There are different designs of RTP systems,

see [31, p. 317, Fig. 31.2]. They have in common that powerful lamps,

e.g. (tungsten) halogen lamps [32, p. 9], supply a high amount of thermal

energy to the treated wafer and a pyrometer measures its temperature. In

Fig. 1.10, we depict a simplified version of one possible RTP design. The

wafer reaches very high temperatures, e.g. 1000 Kelvin, but only for a cou-

ple of seconds, see [33] and [31, p. 318]. Such high temperatures force the

material properties to change. Hence, the thermal conductivity and the

heat capacity are modeled in article [33] as functions of the temperature.5 5 In Section 1.1 we noted the temperature-
dependent material properties in the laser
welding modeling.

This fact underlines our temperature-dependent modeling of the material

properties in Section 2.2.



15

1.3 Contribution and Outline

The previous application examples provide a brief overview about the wide

field of research in thermal process engineering. As we are not able to

cover all these interesting research topics, we choose a few ideas in the

domain of modeling, simulation and control of thermal problems and we

gather and arrange them in a preferably general and practical framework.

In the subsequent paragraphs, we outline the topics in each chapter and

we state the scientific contribution including the previously published ar-

ticles.

Thesis Outline

This thesis is divided into two main parts: firstly modeling and simulation

of the heat conduction, and secondly the control design of the heating-

up procedure. In the first part, we derive a mathematical heat conduction

model and approximate it in space. We analyze the mathematical struc-

ture of the approximated thermal model and present numerical methods

to solve the large-scale differential equation in time. In the second part,

we design a feed-forward control approach to heat up the object and we

propose feedback methods to stabilize the reached temperature in pres-

ence of thermal emissions.

In Chapter 2, we introduce the geometrical objects with its temperature-

dependent material properties. We derive the fundamental quasilinear

heat equation and we specify its boundary conditions, which cause a

cooling or heating of the object.

In Chapter 3, we approximate the entire heat equation formalism in space

using a finite volume method and we obtain a large-scale ordinary dif-

ferential equation. In case of constant material properties, we yield a

linear system consisting of sparse matrices.

In Chapter 4, we describe the algebraic structure of the approximated lin-

ear system. We compute the eigenvalues and eigenvectors, which we

use to construct an analytical solution.

In Chapter 5, we present the numerical solvers to integrate the approxi-

mated heat equation in time. We introduce the Euler integration ap-

proaches and Runge-Kutta methods and compare them with respect to

an application on the heat equation.

In Chapter 6, we model the spatially distributed multiple actuators and

sensors on the boundary faces. We also sketch the heating-up proce-

dure, which is driven by a feed-forward control approach and the sub-

sequent stabilization with a feedback controller.

In Chapter 7, we design a feed-forward control to heat up the object. In a

first step we derive an analytical prototype input signal for a simplified

heat conduction model and in an second step we adjust the input func-

tion with optimization-based methods. The whole feed-forward design

approach is exemplified in a comprehensive two-dim. example.
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In Chapter 8, we construct a feedback law to stabilize the reached tem-

perature such that the supplied power compensates the thermal emis-

sions. We present a linear-quadratic regulator concept and a model

predictive control technique, and we discuss the applicability of both

controllers for the considered heat conduction phenomena. Further-

more, we apply the feed-forward and feedback control on an example

with a three-dimensional geometry.

In Chapter 9, we summarize the findings of this thesis and we state four

promising concepts and methods to enhance the proposed heat con-

duction framework.

In Appendix A, we state a brief introduction to the analytical solution of

the heat equation for Neumann and Dirichlet boundary conditions. The

analytical solution for the Neumann problem provides true data for

a comparison with the numerical solvers in Chapter 5. Furthermore,

we derive the Riccati equation, which is a central fact to compute the

linear-quadratic regulation in Chapter 8.

In Appendix B, we list the evaluations of numerical experiments and their

corresponding source code listings.

Scientific Contribution

The topics of this thesis were presented in seven articles [34–40]. More-

over, the author developed with the J U L I A programming language the soft-

ware libraries Hestia.jl [44] to model and approximate the heat conduction

scenarios and BellBruno.jl [45] to compute the derivatives of the reference

signal in the flatness-based control in Section 7.1. Further available nu-

merical simulations are cited in the mentioned articles. Additionally, the

author contributed to the articles [41–43], which discuss the system re-

construction from given simulation or measurement data. This topic is

not covered in this thesis.

We visualize the scientific contributions in the mind map below.
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Modeling and Simulation





2

Heat Conduction

The thermal dynamics in a solid object is the fundamental phenomenon

in this work. It is described by the heat conduction inside the object and

the heating and cooling processes on the boundary surfaces of the object.

In this chapter, we introduce a heat conduction model in continuous time

and space. This model incorporates the geometrical object, the material

properties, the heat equation and the boundary conditions. We discuss

our heat conduction problems in this work for the one-dimensional rod,

the two-dim. rectangle and three-dim. cuboid and so we present these

geometries in Section 2.1. The object is further characterized with its ma-

terial properties in Section 2.2. Their values determine the speed of tem-

perature variation inside the object. From the physical laws of heat trans-

fer, we derive the heat equation in Section 2.3, which contains the core

elements for all further ideas regarding the simulation and control. The

heat equation operates inside the object and so describe the interaction

with the object’s surrounding in Section 2.4. Finally, the natural cooling

via convective and radiative emissions is explained in Section 2.5.

The heat conduction modeling with cooling and heat supply is based

on our article [34].

2.1 Geometric Cubic Model

In this thesis, we consider three geometries for our heat conduction phe-

nomena:

• a one-dimensional rodΩ1 := (0,L),

• a two-dim. rectangleΩ2 := (0,L)× (0,W ) and

• a three-dim. cuboidΩ3 := (0,L)× (0,W )× (0, H)

with a fixed length L > 0, width W > 0 and height H > 0. We identify the

number of spatial dimensions by Nd = {1,2,3}. In general, the boundary is

defined by ∂ΩNd := ΩNd \ΩNd where ΩNd denotes the closed set of ΩNd .

One may think of the boundary as an infinitesimal thin interface between

the object and its surrounding. The boundary plays an important role be-

cause the supplied and emitted heat is specified on the boundary and it

drives the thermal dynamics inside the object. A position inside the ob-
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BE

BS

BT

BW

BN

BU

x1

x3

x2

Figure 2.1: Three-dim. cuboid with
boundary sides. The boundary sides
BE (east, blue),
BS (south, green) and
BT (topside, purple) are visible.
Not visible are
BW (west; opposite to BE ),
BN (north; opposite to BS ) and
BU (underside; opposite to BT ).

ject or on the boundary is defined as x ∈ΩNd with

x =


x1 if Nd = 1,

(x1, x2)⊤ if Nd = 2,

(x1, x2, x3)⊤ if Nd = 3.

All three geometries have a western and eastern boundary side BW and BE ;

the rectangle and the cuboid have a southern and northern side BS and

BN ; and only the cuboid has a underside BU and topside BT . The bound-

ary sides of the cuboid are portrayed in Fig. 2.1 and the specifications of all

boundary sides are noted in Table 2.1. In case of the one-dim. rod Ω1, we

only have two boundary sides BW and BE which are separated points. This

simple situation limits significantly the possible boundary specification as

we are only able to supply or emit thermal energy on these two sides, see

also Section 2.4. In the literature, one-dim. models are assumed

• to study the analytical and numerical behavior of the heat equation,

and

• to design control and observer algorithms for thermal systems with one

actuator (on one boundary side) and one sensor (on the opposite bound-

ary side)1, see e.g. [46, 47]. 1 Such systems are called single-input
single-output (SISO) systems.

We consider one-dim. heat conduction examples in the modeling, sim-

ulation and control design to highlight the discussed physical processes.

We illustrate the thermal dynamics inside the rod and on the boundary

sides in the subsequent Sections 2.3, 2.4 and 2.5. Furthermore, the one-

dim. heat equation helps us to understand the numerical approximation

in Chapter 4 and 5, and we note the continuous analytical solution of the

one-dim. problem in Appendix A.1. Finally, it is a fundamental system to

derive the feed-forward and feedback control algorithms also for two- and

three-dim. objects in Chapter 7 and 8.

BW BE

BS

BN

Ω2

Figure 2.2: Rectangle object with boundary
sides BW (west), BE (east), BS (south) and
BN (north).

The two-dim. rectangle has four one-dim. connected boundary sides

BW , BE , BS and BN , see Fig. 2.2. These sides enable us to design simu-

lations with multiple actuators and multiple sensors along the boundary

sides, and thermal emissions with a relevant cooling impact. The two-

dim. rectangular is still an approximation of the real three-dim. situa-

tion. Due to computational aspects it may be useful in several cases to

discuss the two-dim. geometry rather than the full three-dim. object be-

cause the simulation and optimization in three dimensions require usu-

ally more data storage and more computing steps than the two-dim. case.
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Name Symbol Rod Rectangle Cuboid

West BW {0} {0}× [0,W ] {0}× [0,W ]× [0, H ]

East BE {L} {L}× [0,W ] {L}× [0,W ]× [0, H ]

South BS [0,L]× {0} [0,L]× {0}× [0, H ]

North BN [0,L]× {W } [0,L]× {W }× [0, H ]

Underside BU [0,L]× [0,W ]× {0}

Topside BT [0,L]× [0,W ]× {H }

Table 2.1: Specification of Boundary Sides.

Two- and three-dim. geometries are often utilized in simulations to inves-

tigate realistic scenarios like physical or chemical phenomena and experi-

ments. Based on these simulations, optimization-based control strategies

can be designed to steer the dynamical system, e.g. the temperature. We

consider the cuboid as geometry to formulate the heat equation because

it represents appropriately a realistic scenario, such that physical proper-

ties, units and laws fit to the mathematical model.

2.2 Material and Physical Properties

We consider a metal or metal alloy as the material of the object and it has

the properties: mass density ρ, specific heat capacity c and thermal con-

ductivity λ. These properties specify the ability of an object to store or con-

duct thermal energy and this means that they influence how fast the tem-

perature varies inside an object. We showcase the speed of thermal con-

duction in a small numerical experiment, see Fig. 2.3. Here, we assume a

one-dim. rod with length L = 0.1 meter, simulation time T f i nal = 10 sec-

onds, specific heat capacity c = 1, density ρ = 1 and two different values

of the thermal conductivity. In the first simulation, we assume λ= 5 ·10−6

and we notice only a small temperature variation in Fig. 2.3 (a). In the sec-

ond simulation, we have λ= 2 ·10−5 and we obtain a fast conduction Fig.

2.3 (b) such that the temperature is almost in an equilibrium state at the

final time.

Length in [cm]
0 5 10

0.0

0.5

1.0 t = 0
t = Tfinal/2
t = Tfinal

(a) Slow, λ= 5 ·10−6

Length in [cm]
0 5 10

0.0

0.5

1.0 t = 0
t = Tfinal/2
t = Tfinal

(b) Fast, λ= 2 ·10−5

Figure 2.3: Comparison of slow and fast
heat conduction in a one-dim. rod with
c = ρ = 1 and T f i nal = 20 seconds. The rod
is insulated on both boundary sides, BW
and BE , as explained in Section 2.4.

The condition of a material may depend on its age, composition (in

case of alloys), temperature and further internal and external influences.

We neglect most of these dependencies and only consider two facts: the

temperature of the material and a possible anisotropy of the thermal con-

ductivity. Hence, we model the material properties with temperature θ as

polynomial functions

ρ(θ) :=
Nρ∑

n=0
ρn θ

n and (2.1)

c(θ) :=
Ncap∑
n=0

cn θ
n . (2.2)

This general setup shrinks to constant values if Nρ = 0 or Ncap = 0 and so

we have ρ = ρ0 or c = c0. The mass density ρ, the mass mΩ and the volume

VΩ of objectΩ are related via the physical law mΩ = ρ VΩ. This means that

a change of ρ(θ) via a variation in θ affects physically either the mass mΩ
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(a) Initial, t = 0 (b) Half, t = T f i nal

2
(c) Final, t = T f i nal

Figure 2.4: Anisotropic heat conduction in
a rectangle with
λ = diag

(
5 ·10−6,2 ·10−5)

, c = ρ = 1,
and T f i nal = 10 seconds. The tempera-
ture varies faster in y-direction than in x-
direction.

or the volume VΩ. In this work, we neglect both effects and we assume

hereby only (very) small variations of ρ(θ) and so d
dθρ(θ) ≈ 0.

The thermal conductivity is assumed to be depend on the temperature,

too.2 Additionally, we distinguish isotropic and anisotropic heat conduc- 2 The concept of temperature-dependent
thermal conductivity is also known from
the Wiedemann-Franz law λ

σ = L · θ
with the electrical conductivity σ and the
Lorenz number L, see [48].

tion, see also [49, p. 330]. In the anisotropic case, the thermal conductivity

differs for each spatial direction, which is only plausible for geometries

in two and three dimensions. Anisotropic heat conduction implies that

the temperature varies faster along one spatial orientation than along the

other(s). We define the thermal conductivity as diagonal matrix3 3 In case of a rectangle, Nd = 2, we have
λ(θ) := diag(λ1(θ),λ2(θ)).

λ(θ) :=

λ1(θ)

λ2(θ)

λ3(θ)

 (2.3)

with the polynomial function

λ j (θ) :=
Nλ∑

n=0
λ j ,n θ

n for j ∈ {1,2,3} (2.4)

similar to the mass density and the specific heat capacity above. If the

thermal conductivity does not depend on the spatial orientation asλ1(θ) ≡
λ2(θ) [≡λ3(θ)] ≡ λ(θ), then we have an isotropic scenario. We visualize in

Fig. 2.4 the effect of anisotropic heat conduction for a two-dim. square

geometry with L =W = 0.1 meter and material properties

c = ρ = 1 , λ=
(

5 ·10−6

2 ·10−5

)
.

We see that the temperature varies faster in x2-direction than in x1-direction

because λ2 >λ1.

In material science, the identification of these material properties, in

particular for a temperature range, is a specialized field of research. We

find tables with the material properties for various metals in [50, p. 21] and

in the doctoral thesis [51, p. 124]. In the latter contribution [51, p. 120], the

author notes the specific heat capacity and thermal conductivity as poly-

nomials of the temperature for some specific types of steel. Furthermore,

the document [52] provides a large data set of material properties for var-

ious temperatures. In the most of our examples, we assume steel as the

treated material but we do not specify the steel.
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2.3 Formulation of the Heat Equation

This section provides a basic introduction to the mathematical modeling

of heat transfer in solid objects. We explain the fundamental elements of

the first law of thermodynamics in accordance with the literature, see [49,

p. 118] and [53, p. 54], and we guide step-by-step towards the heat equa-

tion in integral and differential form. We consider the three-dim. cuboid

Ω3 for this formulation to yield a proper physical interpretation, and we

showcase how to transfer these ideas to the one-dim. heat conduction in

the end of this section. The core element of this derivation and further

calculations is function

ϑ : [0,T f i nal ]×Ω→R≥0 (2.5)

with final time T f i nal ∈ R>0. It describes the variation in time and space

of the temperature distribution inside the geometry and on the boundary

sides. Hence, ϑ(t , x) is the solution of the heat equation. As we introduce

several physical properties in this section, we list them in Table 2.2.

Table 2.2: Thermodynamical Variables.

Sym. Property Unit

u Specific int. energy J
kg

U Internal energy J

Q Stored heat J

W Supplied work J

P Supplied power W

Q̇ Rate of heat flow W

q̇ Heat flux inΩ W
m2

φ Power density on ∂Ω W
m2

First of all, we find the specific internal energy u via the integration of

the specific heat capacity c over temperature θ as∫ θ

θ0

c(θ̃)d θ̃ =: u(θ) (2.6)

and we see that u may be noted as polynomial function like c in Eq. (2.2).

The specific internal energy expresses the internal energy per mass. So, we

find the internal energy U : [0,T f i nal ] →R≥0 as we sum up u over each in-

finitesimal small mass element. The mass equals an integration of density

ρ over the volume ofΩ, and thus we yield the internal energy

U (t ) :=
∫
Ω

ρ(ϑ(t , x)) u(ϑ(t , x))d x. (2.7)

According to the first law of thermodynamics, the rate of change of the

internal energy ∆U is driven by the stored heat Q and the supplied work

W as 4 4 In some contributions, the first law of
thermodynamics is noted with the inexact
differential δ or d̄ on the right-hand side as
dU = δQ +δW with dU as the total differ-
ential of U . See also [54, p. 81].

∆U (t ) =Q(t )+W (t ). (2.8)

We assume the net energy transfer W into the system (or object) as posi-

tive and from the system as negative. We reformulate Eq. (2.8) in terms of

a variation in time as

d

d t
U (t ) = d

d t
Q(t )+P (t ) (2.9)

with power P (t ) := d
d t W (t ). We formulate each part of Eq. (2.9) sepa-

rately in the next steps. We differentiate U (t ) in Eq. (2.7) to yield

d

d t
U (t ) =

∫
Ω

dρ(ϑ)

dϑ

∂ϑ

∂t
u(ϑ)+ρ(ϑ)

du(ϑ)

dϑ

∂ϑ

∂t
d x

=
∫
Ω

[
dρ(ϑ)

dϑ
u(ϑ)+ρ(ϑ) c(ϑ)

]
∂

∂t
ϑ(t , x) d x
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with ϑ=ϑ(t , x) and d
dθu(θ) = c(θ) from Eq. (2.6). We neglect a variation of

the mass and the volume, d
dθρ(θ) ≈ 0, and so we obtain

d

d t
U (t ) =

∫
Ω

ρ(ϑ(t , x)) c(ϑ(t , x))
∂

∂t
ϑ(t , x) d x. (2.10)

On the right-hand side of Eq. (2.9), the rate of heat flow d
d t Q(t ) describes

how much thermal energy (or heat) is transferred per time in the cuboid.

It is defined by

d

d t
Q(t ) := −

∫
∂Ω

q̇(t , x) · n⃗ d x (2.11)

with heat flux5 q̇ and the outer normal vector on the boundary n⃗ ⊥ ∂Ω. 5 q̇ is also known as heat flux density.

The heat flux describes motion of heat from warm to cold areas. According

to Fourier’s law, it is defined as

q̇(t , x) :=−λ(ϑ(t , x)) ∇ϑ(t , x) (2.12)

with the temperature gradient

∇ϑ(t , x) :=
(
∂

∂x1
ϑ(t , x),

∂

∂x2
ϑ(t , x),

∂

∂x3
ϑ(t , x)

)⊤
.

As the temperature gradient ∇ϑ(t , x) points towards the hot regions, the

heat flux q̇ forces the hot regions to reduce the temperature while the tem-

perature in the cold regions increase. The rate of heat flow describes the

thermal dynamics inside the cuboid. Therefore, we apply the divergence

theorem 6 6 The divergence theorem is originally
described by and also named after Johann
Carl Friedrich Gauß (∗1777,†1855),
Mikhail Vasilyevich Ostrogradsky
(∗1801,†1862) [55] and George Green
(∗1793,†1841).

∫
∂Ω

v(x) · n⃗ d x =
∫
Ω

div(v(x))d x

on Eq. (2.11), see [3, p. 20]), and we obtain the rate of heat flow as

d

d t
Q(t ) = −

∫
Ω

div
[
q̇(t , x)

]
d x

=
∫
Ω

div[λ(ϑ(t , x)) ∇ϑ(t , x)] d x. (2.13)

The integrand in Eq. (2.13) can be noted as

div[λ(ϑ(t , x)) ∇ϑ(t , x)] =
Nd∑
i=1

∂

∂xi

[
λi (ϑ(t , x))

∂

∂xi
ϑ(t , x)

]
(2.14)

with Nd = 3. If the thermal conductivity is temperature-independent, then

we note the integrand as

div[λ ∇ϑ(t , x)] =
Nd∑
i=1

λi
∂2

∂x2
i

ϑ(t , x).

The second term on the right-hand side of Eq. (2.9) describes the supplied

and emitted power P (t ). It expresses the transition of heat from the object

to its surrounding and backwards and so it acts on the object’s boundary.

We define the power analog to the rate of heat flow as

P (t ) :=
∫
∂Ω

φ(t , x) · n⃗(x) d x (2.15)
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with outer normal vector on the boundary n⃗ ⊥ ∂Ωwhich is defined by

n⃗(x) :=
−1 if x ∈ BW ∪BS ∪BU ,

+1 if x ∈ BE ∪BN ∪BT

(2.16)

and power density

φ(t , x) :=λ(ϑ(t , x)) ∇ϑ(t , x) (2.17)

analog to the heat flux in Eq. (2.12). The power density φ and the heat

flux q̇ are equivalent physical objects but we distinguish both as q̇ occurs

inside the geometrical object Ω and φ operates on the boundary ∂Ω. In

Section 2.4 we introduce the boundary conditions and discuss the power

density φ with respect to its cooling and heating behavior. We summarize

Eq. (2.15, 2.17) to note the supplied power

P (t ) =
∫
∂Ω

[λ(ϑ(t , x)) ∇ϑ(t , x)] · n⃗(x)d x. (2.18)

Finally, we assemble Eq. (2.10, 2.13, 2.18) in the first law of thermodynam-

ics (2.9). Thus, we yield the integral form of the quasilinear heat conduc-

tion ∫
Ω

ρ(ϑ) c(ϑ)
∂

∂t
ϑ(t , x) d x

︸ ︷︷ ︸
d

d t U (t )

=
∫
Ω

div[λ(ϑ) ∇ϑ(t , x)] d x

︸ ︷︷ ︸
d

d t Q(t )

+
∫
∂Ω

[λ(ϑ) ∇ϑ(t , x)] · n⃗(x)d x

︸ ︷︷ ︸
P (t )

. (2.19)

This integral equation (2.19) provides the core element to derive the finite

volume approximation in Chapter 3 and to design energy-based control

approaches in Section 7.5 and in Chapter 8.

Now, we reformulate the heat equation (2.19) in differential form. We

integrate on both sides over the same volume Ω and so we omit the inte-

gral and note the partial differential equation of the heat conduction.

Definition 2.1 (Quasilinear heat equation)

We note the quasilinear heat equation as

ρ(ϑ) c(ϑ)
∂

∂t
ϑ(t , x) = div[λ(ϑ) ∇ϑ(t , x)] (2.20a)

for (t , x) ∈ (0,T f i nal ]×Ω and with boundary condition

[λ(ϑ(t , x)) ∇ϑ(t , x)] · n⃗(x) = φ(t , x) for x ∈ ∂Ω (2.20b)

and initial condition

ϑ(0, x) =ϑ0(x) for x ∈Ω. (2.20c)

⃝

A partial differential equation is called quasilinear if it has coefficients

with the unknown variable (here: temperature ϑ) and its highest order

derivative is linear and lower order derivatives may be nonlinear. This

description is not clearly recognizable in Eq. (2.20a) but we find it, if we

evaluate the differential operators in Eq. (2.14) and we note the nonlinear

expression



27

div[λ(ϑ(t , x)) ∇ϑ(t , x)] =
3∑

i=1

λi (ϑ(t , x))
∂2

∂x2
i

ϑ(t , x)︸ ︷︷ ︸
linear

+ ∂

∂ϑ
λi (ϑ(t , x))

(
∂

∂xi
ϑ(t , x)

)2

︸ ︷︷ ︸
nonlinear

 .

For further information on quasilinear PDE, we refer to the book [3, p. 2]

and to the doctoral thesis [56, p. 2]. We remark that the term “quasilinear

heat equation” is not unique because some authors denote other types of

the heat equation with it.

In this thesis, we do not discuss the analysis of the quasilinear heat

equation explicitly because it is out of scope of this work and much more

complex than the linear heat equation, see e.g. [56, p. 2, 4]. In contrast, we

rather consider the spatially approximated quasilinear heat equation for

the controller design, which is introduced in Chapter 3.

If we assume constant material properties, as λ = diag(λ1,λ2,λ3) with

ρ ∈ R>0 and c ∈ R>0, then we obtain from Eq. (2.14) and (2.20a) the well-

known (anisotropic) linear heat equation

∂

∂t
ϑ(t , x) = 1

c ρ

Nd∑
l=1

λi
∂2

∂x2
l

ϑ(t , x). (2.21)

In the next chapters, we also note the linear heat equation (2.21) with

diffusivity αl = λl
c ρ for l ∈ {1,2,3}. We consider the linear heat equation

as an important special case because it helps us to understand the spa-

tial approximation and its numerical behavior, see Section 3.4 and Chap-

ter 4. Furthermore, the linear system is one of the central elements of

the flatness-based control design in Chapter 7. In Appendix A.1, we note

the analytical solution of the one-dim. heat equation with zero Neumann

boundary condition: φ(t , x) = 0.

We refer to the literature [3, p. 44], [4, p. 75] for further information

about the mathematical analysis of the linear heat equation.

Example: Temperature-dependent Heat Conduction

As we have a formal description of quasilinear heat conduction now at

hand, we apply these ideas on a one-dim. rod model with length L = 0.2

meter to showcase the thermal dynamics. Such a reduction of a real three-

dim. object to a one-dim. model might be reasonable, if the width and

the height are much smaller than the length or if the heat conduction in

the directions x2 and x3 are not relevant. We assume an object made of

steel with a specific heat capacity c = 400, a mass density ρ = 8000, and a

temp.-dependent thermal conductivity as noted in Table 2.3. We have five

data samples in Table 2.3 and so we approximate the curve by a quartic

function

Table 2.3: Th. conductivity data.

Θ in [K] λ

300 40

400 50

500 70

600 85

700 90

λ(θ) =λ0 +λ1θ+λ2θ
2 +λ3θ

3 +λ4θ
4

where we find the approximated parameters as

[λ0, . . . ,λ4] = [370,−2.85,8.458 ·10−3,−10−5,4.1667 ·10−9].
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Figure 2.6: Heat conduction with non-
linear thermal conductivity in a one-dim.
rod. The snapshots of the temperature dis-
tribution in (a) and the thermal dynamics
at five points in (b) show that temperatures
converge to the mean value of 500 Kelvin.

The graph of the thermal conductivity function is portrayed in Fig. 2.5.

Consequently, we note the one-dim. quasilinear heat equation as

∂

∂t
ϑ(t , x) = 1

ρ c

∂

∂x

[
λ(ϑ(t , x))

∂

∂x
ϑ(t , x)

]
with thermal conductivity

λ(θ) = 370−2.85θ+8.458 ·10−3θ2 −10−5θ3 +4.1667 ·10−9θ4. (2.22)

We assume the initial temperature distribution

40

50

60

70

80

90

300 400 500 600 700 θ

λ

Figure 2.5: Nonlinear thermal conductivity
λ(θ) as in Eq. (2.22).

ϑ(0, x) =
300 for x ∈ [0, L

2 ],

700 for x ∈ [ L
2 ,L].

The one-dim. rod has two boundary sides BW and BE . We assume that

both boundary sides are insulated, which means we have a heat flux or

power density of φ(t , x) ≡ 0. We know from identity (2.16) that n⃗ = −1 on

BW and n⃗ =+1 on BE . So, we yield the boundary conditions

−λ(ϑ(t , x))
∂

∂x
ϑ(t , x) = 0 for x ∈ BW and

λ(ϑ(t , x))
∂

∂x
ϑ(t , x) = 0 for x ∈ BE .

The one-dim. rod is approximated, see Chapter 3, and the heat equation is

simulated for T f i nal = 800 seconds. The simulation results are visualized

in Fig. 2.6, in which Fig. 2.6 (a) portrays the temperature in each position

x ∈Ω at five time stamps; and Fig. 2.6 (b) presents the temperature varia-

tion in time at five positions. We find that the high temperatures close to

boundary BW decrease faster than the low temperatures close to BE rise.

This behavior is caused by the strong thermal conductivity for high tem-

peratures. All temperatures approach for t →∞ the mean temperature of

500 Kelvin because both boundary sides are insulated.

2.4 Emitted and Supplied Heat Flux

Boundary condition (2.20b) describes the interaction between the ther-

mal dynamics inside the object and the surrounding. We introduced in

Section 2.1 the boundary sides, see Table 2.1, and we stated that bound-

ary ∂Ω is an infinitesimal thin interface between object Ω and its sur-

rounding. In Section 2.3, we explained that thermal energy can be sup-

plied to or emitted from the object. The overall sum of supplied and emit-

ted power P is noted in Eq. (2.18). According to the first law of thermo-
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dynamics, see Eq. (2.8, 2.9), the amount of internal energy U (t ) is de-

termined by the rate of heat flow d
d t Q(t ) inside the object and the sup-

plied and emitted power P (t ) on the boundary sides. We do not have

heat sinks or sources inside the geometry, and so only the power via “ex-

ternal” processes P (t ) increase or decrease the level of internal energy.

This idea includes the fact that d
d t Q(t ) ≡ 0, but we remark that it does not

mean div[λ(ϑ(t , x)) ∇ϑ(t , x)] ≡ 0. If the overall power is positive, then the

amount of internal energy and equally the mean temperature increase,

whereas a negative power implies a decreasing internal energy and mean

temperature. We distinguish the processes on boundary ∂Ω as

1. P < 0 cooling down: thermal emissions cause a temperature drop,

2. P > 0 heating up: heat supply leads to a temperature rise.

The emission of heat is assumed to occur naturally, which means that it

depends on the physical properties of the object and its surrounding. This

natural process is assumed to be driven by heat transfer and heat radia-

tion as are explained in Section 2.5. In contrast to this, we consider the

heat supply as an artificial process, which is carried out by actuators op-

erating on the boundary. We assume thermal actuators like heating ele-

ments or lasers. Although some thermal actuators like Peltier elements

might be able to heat and to cool, we only consider actuators, which are

solely able to heat. The actuators are considered to operate on a subset

of the whole boundary, Bi n ⊆ ∂Ω. This actuator’s boundary Bi n might be

identical with a boundary side like BW , BE , etc. or an union of boundary

sides for example Bi n = BW ∪BS . We might have thermal emissions on the

actuator’s boundary Bi n , too.

In the previous Section 2.3, we introduced the supplied power as the

integral of heat flux or power density φ over the boundary. This heat flux

consists of thermal emissions φem from the object to the surrounding and

of heat supply φi n from the actuator to the object. The emitted and sup-

plied heat flux are described below in Def. 2.2.

Definition 2.2 (Emitted and supplied heat flux)

The emitted and the supplied heat flux vary in time t and space x. The

emitted heat flux is defined on the whole boundary ∂Ω to be less than

or equal to zero. The supplied heat flux is only defined on the actuator’s

boundary Bi n ⊆ ∂Ω and is considered to be greater than or equal to zero.

So, we note emitted heat flux as φem : [0,T f i nal ]× ∂Ω→ (−∞,0] and the

supplied heat flux as φi n : [0,T f i nal ]×Bi n → [0,∞).

We summarize these ideas and we note the total heat flux as

φ(t , x) =
φi n(t , x)+φem(t , x) for x ∈ Bi n ,

φem(t , x) for x ∈ ∂Ω\ Bi n .
(2.23)

⃝

We conclude from Definition 2.2 to distinguish the boundary condition

(2.20b) for the actuated boundary side x ∈ Bi n as

[λ(ϑ(t , x)) ∇ϑ(t , x)] · n⃗ = φi n(t , x)+φem(t , x)
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and for the remaining (not actuated) boundary x ∈ ∂Ω\ Bi n as

[λ(ϑ(t , x)) ∇ϑ(t , x)] · n⃗ = φem(t , x).

If a boundary side has a vanishing emitted heat flux, φem(t , x) ≡ 0, then

we denote it as insulated. If all boundary sides are insulated and no heat

supply is active then all temperatures converge towards the mean temper-

ature

ϑ= 1

VΩ

∫
Ω
ϑ0(x)d x

with initial values ϑ0(x) and volume VΩ = L ·W ·H in the three-dim. case.

Furthermore, we distinguish the supplied power

Pi n(t ) :=
∫

Bi n

φi n(t , x)d x (2.24)

and the emitted power

Pem(t ) :=
∫
∂Ω
φem(t , x)d x. (2.25)

We stated in the beginning of this section that the overall power

P (t ) = Pi n(t )+Pem(t )

drives the internal energy and the mean temperature either to increase, to

decrease or to hold. In the second part of this thesis, we design control

approaches to heat up the object and stabilize the reached temperature.

Hence, we need to guarantee that

P (t ) = Pi n(t )+Pem(t )

> 0 during the feed-forward control and

= 0 in the temperature stabilization.

We consider the remaining case P (t ) < 0 as an undesired behavior because

the temperatures leave the desired reference values.

Example: Balanced and Unbalanced Heat Supply and Emission

We demonstrate the findings of this section with an example of a one-dim.

rod with length L = 0.2 and material properties λ = 50, c = 400, ρ = 8000.

This rod has a pure heat supplyφi n on boundary BW and an emissionφem

on BE . We study two scenarios: firstly, the amount of supplied and emitted

heat is equalφi n =−φem = 104; and secondly, the supply is higher than the

emissions with φi n = 2 ·104 and φem =−104. The whole rod has an initial

temperature of 300 Kelvin. We see in Fig. 2.7 that the temperature rises

on the left side (next to BW ) and declines on the right side (next to BE )

in both scenarios. In the first scenario, in Fig. 2.7 (a), the temperature

increases on the left side with the same value as it decreases on the right

side because the inflow and outflow of heat are equal. So, we see that the

average temperature in the rod is constant as

1

L

∫ L

0
ϑ(t , x)d x = 300 Kelvin

at every time t ∈ [0,T f i nal ]. We may denote this thermal situation as bal-

anced. In the second scenario, in Fig. 2.7 (b), the temperature increases
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Figure 2.7: Temperature distribution for
heat supply on the left side at x = 0 and
heat emission on the right side at x = 0.2.
In the first scenario (above), we assume
φi n = 104 and φem = −104. In the second
scenario (below), we assume φi n = 2 · 104

and φem =−104.

stronger on the left side than it drops on the right side. This unbalanced

situation also means that the internal energy and the average temperature

in the rod increase by time.

The emissive heat flux φem is described next in detail with the linear

(convective) heat transfer and nonlinear heat radiation, and the supplied

heat flux φi n is explained in the second part of this thesis, in Chapter 6.

2.5 Heat Transfer and Heat Radiation

We assume that the cooling process of the object is mainly influenced by

heat transfer φtr and heat radiation φr ad to the ambient environment as

φem(t , x) =φtr (t , x)+φr ad (t , x) (2.26)

for x ∈ ∂Ω, t ∈ [0,T f i nal ]. In the first part of this section, we introduce the

convective heat transferφtr and second part we discuss the heat radiation

φr ad . For a comprehensive introduction, we refer to [49, p. 12], [53, p. 19]

for heat transfer, and to [49, p. 28], [53, p. 28] for heat radiation.

Convective Heat Transfer

The solid object is surrounded by a quiescent or moving fluid like a liquid

or a gas. The boundary ∂Ω is an interface between two media and so we

need to distinguish the emitted heat flux in the solid object7 7 We neglect the possible temperature-
dependency in λ in this paragraph to im-
prove the readability. See also Eq. (2.17).φsol i d (t , x) :=λsol i d ∇ϑsol i d (t , x)

and in the fluid

φ f lui d (t , x) :=λ f lui d ∇ϑ f lui d (t , x) (2.27)
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along the boundary as x ∈ ∂Ω. We know that both emissions have to be

identical as

φtr (t , x) ≡φsol i d (t , x) ≡φ f lui d (t , x) (2.28)

but their thermal conductivity values are different, e.g. λsol i d ̸=λ f lui d be-

cause the material (solid / fluid) is different. This fact implies that the tem-

perature gradients are different as

∇ϑsol i d (t , x) ̸= ∇ϑ f lui d (t , x).

Next, we derive the convective heat transfer with the heat flux in the fluid

φem, f lui d . Here, we denote the boundary temperature as ϑ∂Ω and the

fluid temperature far away from the boundary as the ambient tempera-

ture ϑamb . The temperature in the fluid ϑ f lui d does not change suddenly

from ϑ∂Ω to ϑamb because there exists a very thin space, a so called ther-

mal boundary layer8, between the object’s boundary and the surrounding 8 The boundary layer is firstly discovered
and described by Ludwig Prandtl (*1875,
†1953) [53, p. 272, 273].

with a smooth temperature profile. The thermal boundary layer is defined

as the space where the inequality

ϑ f lui d −ϑamb

ϑ∂Ω−ϑamb
> 0.01

holds, see [53, p. 277]. The temperature profile with the boundary layer in

the near field of the boundary is illustrated in Fig. 2.8.

The exact physical description of the fluid’s behavior and its thermal in-

teraction with the object may be hard to describe. Thus, the heat transfer

emission is approached by the formula

φ f lui d (t , x) =−h [ϑ∂Ω(t , x)−ϑamb] , (2.29)

see [49, p. 12] and [53, p. 276]. Heat transfer coefficient h sets the intensity

of the emission, and it can be determined with Eq. (2.27) as

h =−λ f lui d
∇ϑ f lui d (t , x)

ϑ∂Ω(t , x)−ϑamb
.

We consider the heat transfer coefficient h and the ambient temperature

ϑamb to depend on the position on the boundary as h : ∂Ω → R≥0 and

ϑamb : ∂Ω→R≥0. We explicitly neglect that the ambient temperature varies

in time. This simplification may not be physically accurate as the object’s
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temperature directly influences the ambient temperature. In accordance

with identity (2.28), we note the emissions of the heat transfer as

φtr (t , x) =−h(x) [ϑ(t , x)−ϑamb(x)] (2.30)

with (t , x) ∈ [0,T f i nal ]×∂Ω. If we only consider heat transfer without

heat radiation, then we find the boundary condition (2.20b) as

[λ(ϑ(t , x))∇ϑ(t , x)]n⃗ =−h(x) [ϑ(t , x)−ϑamb(x)] (2.31)

with λ as the thermal conductivity of the solid object.

Heat Radiation

Each object which has a temperature above zero Kelvin9 emits heat radia- 9 We consider temperatures below zero
Kelvin as physically not realizable.tion in form of electromagnetic waves. The transport of thermal energy via

heat radiation does not depend on a (solid or fluid) medium like air or wa-

ter and so thermal energy can be transmitted through vacuum. The ability

to emit heat radiation depends on the material and its surface condition,

e.g. the surface color or if it is polished or oxidized. This information is

stored in the emissivity value ε ∈ [0,1]. If the object is unable to emit heat

radiation, then we have ε= 0 and on the opposite we have ε= 1 in case of

a black body. In real experiments, we face the issue to have several objects

in the neighborhood of our test object, and all of these neighbor objects

emit heat radiation towards the test object. Here, we neglect all of these

neighbors and we only deal with the heat radiation of the considered ob-

ject. Hence, we define the heat flux of the heat radiation as

φr ad (t , x) :=−σ ε(x) ϑ(t , x)4 (2.32)

with the Stefan-Boltzmann constant σ≈ 5.67 ·10−8 W
m2K 4 .10 We assume 10 Jožef Štefan (*1835, †1893) and his

student Ludwig Boltzmann (*1844,†1906)
worked initially on the heat radiation phe-
nomena as in Eq. (2.32) [49, p. 29].

that the emissivity depends on the position x ∈ ∂Ω because each boundary

side may have a different surface condition. A list of emissivity values for

certain properties in noted in [53, p. 542]. We summarize the findings of

this section in the following definition.

Definition 2.3 (Heat transfer and heat radiation)

The emitted heat flux in Eq. (2.26) consists of a heat transfer term (2.30)

and a heat radiation term (2.32). The heat transfer coefficient h : ∂Ω→R≥0

in Eq. (2.30) and the emissivity ε : ∂Ω→ [0,1] in Eq. (2.32) scale the in-

fluence of convective heat transfer and heat radiation for each position on

the surface x ∈ ∂Ω. In conclusion, we note the total emitted heat flux as

φem(t , x) := −h(x) [ϑ(t , x)−ϑamb(x)]−σ ε(x) ϑ(t , x)4 (2.33)

with the ambient temperature ϑamb : ∂Ω→R≥0 and the Stefan-Boltzmann

constant σ≈ 5.67 ·10−8 W
m2K 4 . ⃝

We remark that we find nonlinear expressions in two parts of our heat

conduction problem: in the quasilinear diffusion div[λ(ϑ(t , x)) ∇ϑ(t , x)]

and in the heat radiation (2.32). Both facts imply the need to approximate
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Figure 2.9: Comparison of heat transfer
with h = 10, ϑamb = 300 versus heat ra-
diation with ε = 0.2. The linear behavior
of the heat transfer φtr and the nonlinear
heat radiation φr ad are visualized on the
left side (a). The cooling-down process on
boundary BE of the one-dim. rod is plot-
ted on the right side (b).

the heat equation in space and time properly. In case of constant mate-

rial properties and no heat radiation, we are able to find an approximated

closed-form solution, see Section 4.3.

Example: Comparison of Heat Transfer and Heat Radiation

In the end of this section, we present a small simulation example of heat

transfer and heat radiation. We assume a one-dim. rod with length L = 0.2,

material properties λ= 50, c = 400, ρ = 8000 and an initial temperature of

ϑ0(x) = 600 Kelvin for x ∈Ω= [0,L]. The rod is assumed to be insulated on

the left side, φem(x) = 0 for x ∈ BW , and non-insulated on the right side,

φem(x) ≥ 0 for x ∈ BE . We distinguish three scenarios of emissions:

1. pure heat transfer as φem(t , x) = φtr (t , x) = −h [ϑ(t , x) − ϑamb] with

h = 5 and ϑamb = 300,

2. pure heat radiation as φem(t , x) =φr ad (t , x) =−σε ϑ(t , x)4 with ε= 0.2

and

3. heat transfer and heat radiation asφem(x) =φtr (x)+φr ad (x) with h = 5,

ϑamb = 300 and ε= 0.2.

We evaluate these three emissions for a temperature range of 300 to 700

Kelvin in Figure 2.9 (a). We notice that the heat radiation plays an impor-

tant role in particular for high temperatures, e.g. above 500 Kelvin. This

implies that we cannot neglect the nonlinear heat radiation when we sim-

ulate heat conduction phenomena with high temperatures. In Fig. 2.9 (b),

the temperature on boundary BE of the one-dim. rod drops stronger for

the heat transfer than for the heat radiation. So, the heat transfer influ-

ences mainly the cooling-down process but the heat radiation has a sig-

nificant impact, too.

We notice that this example shall only demonstrate the heat transfer

and heat radiation. It does not provide a qualitative statement like “heat

transfer is always stronger than heat radiation” because both physical pro-

cesses depend on the condition of the object and its surrounding.
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Spatial Approximation

Partial differential equations like the heat equation need to be solved in

time and space. For some simple scenarios, we are able to find an ana-

lytical solution. For example, in appendix A.1, we derive an analytical so-

lution for the one-dim. linear heat equation with zero Neumann bound-

ary conditions.1 However, we usually need to find a numerical solution 1 Insulated boundaries as φ(t , x) ≡ 0.

of the (partial) differential equation. Due to the wide range of types and

specifications of partial differential equations, there exist a lot of numeri-

cal methods to solve a them: for example the well-known finite difference,

finite volume and finite element methods as well as

• radial basis function methods [57, 58],

• pseudo-spectral methods [59] and

• physics-informed neural networks (PINN) [60, 61].2,3 2 The article [60] occured also as long
preprint version in two parts [62, 63].
3 In Chapter 9, we state a short outlook on
the use of PINN to solve heat conduction
problems.

In this work, we approximate the integral equation (2.19) with finite vol-

umes because it preserve the temperature-dependent heat conduction and

we can implement it with a simple meshing. This spatial discretization

leads to a large scale (nonlinear) ordinary differential equation (ODE) which

is solved with numerical integration approaches like Runge-Kutta meth-

ods, see also Chapter 5. The finite volume approach is noted for a two-

dim. model in our article [34] and implemented in Hestia.jl, see [35, 44].

General Formulation of the Finite Volume Method

Finite volume methods are designed originally to solve partial differential

equations of the type4 4 Such differential equations are also de-
noted as conservation laws and hyperbolic
partial differential equations [66].∂

∂t
z(t , x)+div

(
f (z, t , x)

)+ g (t , x) = 0 (3.1)

for (t , x) ∈ (0,T f )×Ω. The state z : [0,T f ]×Ω→ R corresponds to a physi-

cal quantity like mass or energy, see, f : R× [0,T f ]×Ω→ Rd is called flux

function with dimension d ∈ {1,2,3}, and g : [0,T f ]×Ω→ R might be in-

terpreted as a source term. We refer for a brief introduction to the online

article [64] and for detailed explanations to article [65] and book [66]. We

omit to specify a certain boundary condition for Eq. (3.1) here because it

is less relevant for our further explanations. We integrate Eq. (3.1) over the
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whole spaceΩ, apply the divergence theorem and obtain∫
Ω

∂

∂t
z(t , x)+div

(
f (z, t , x)

)+ g (t , x) d x

= ∂

∂t

∫
Ω

z(t , x) d x +
∫
∂Ω

f (z, t , x) · n⃗ d x +
∫
Ω

g (t , x) d x = 0 (3.2) Ωi
f · n⃗W

f · n⃗E

f · n⃗S

f · n⃗N

Figure 3.1: A single finite volume with flux
f on cell boundaries and the outer normal
vectors n⃗W , n⃗E , n⃗S , n⃗N .

Now, we subdivide the space Ω in Nc > 0 finite volumes Ωi and cell

boundaries ∂Ωi , and we say that Eq. (3.1) holds in each finite volume Ωi .

The sum of all finite volumes is the geometry as Ω =
Nc⋃
i=1
Ωi . The sum of

all cell boundaries is more than the boundary ∂Ω because cell boundary

∂Ωi is the interface of each cell to its neighbors and so we find it on the

boundary sides ∂Ω and inside the geometry Ω. We formulate the integral

equation (3.2) for a finite volume as

∂

∂t

∫
Ωi

z(t , x) d x +
∫
∂Ωi

f (z(t , x), t , x) · n⃗ d x +
∫
Ωi

g (t , x) d x = 0 (3.3)

with index i ∈ {1,2, . . . , Nc }. An example of a single cell with its fluxes is

sketched in Fig. 3.1. The finite volume Ωi is also called control volume

or cell and it might be realized via quadrilateral [67], triangular [68] and

other meshing types [69]. The approximation of flux f (z, t , x) at the cell

boundaries ∂Ωi is a key factor to ensure proper numerical results. We ap-

proximate each term of Eq. (3.3) and we yield the ODE

∂

∂t
z̃i (t )+ f̃i (z̃i (t ), t )+ g̃i (t ) = 0 (3.4)

for the i -th finite volume with the spatial approximations z̃i , f̃i and g̃i .

In Section 2.3, we derived the heat equation with flux

f (ϑ(t , x)) =λ(ϑ(t , x)) ∇ϑ(t , x)

to describe the heat flux inside the object, see Fourier law in Eq. (2.12),

and the supplied and emitted thermal energy on the boundary sides in Eq.

(2.17). As a result of this derivation, we noted the quasilinear heat equa-

tion in integral form in Eq. (2.19). We compare the quasilinear heat equa-

tion (2.19) and Eq. (3.2) and we find that the source term is zero: g (t , x) ≡ 0

and we need to split integral
∫
∂Ω f (z, t , x) ·n⃗d x into two parts: heat flux in-

side Ω and thermal emission and power supply on ∂Ω. Hence, we derive

the ODE for the inner domain ofΩ in Section 3.2, and we approximate the

exchange of thermal energy along the boundaries in Section 3.3 with the

supplied and emitted heat flux φ, see also Definition 2.2.

3.1 Meshing with Finite Volumes

In this section, we describe the spatial approximation of the geometric

shapes from Section 2.1: one-dim. rod, two-dim. rectangular, three-dim.

cuboid. These objects are subdivided in many small cells and we assume

that each cell contains a certain thermal energy. Such a cell is an interval

in case of a rod, an area in case of a rectangular or a volume in case of a

cuboid. The subsequent derivation of the finite volume approximation is

explained for the three-dim. cuboid, but might be easily reduced to the
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one- or two-dim. case by neglecting the corresponding dimension(s). A

cuboid has a length L > 0, width W > 0 and height H > 0 and so we note

the total volume |Ω| = L ·W · H . This total volume is subdivided in small

finite volumesΩ j ,m,k at position ( j ,m,k) ∈J ×M ×K with sets

J := {
1,2, · · · , N j

}
, M := {1,2, · · · , Nm} , K := {1,2, · · · , Nk } .

Along each axis we have the dimensions and the numbers of cells as

Table 3.1: Size of a finite volume.

Length ∆x1 := L
N j

Width ∆x2 := W
Nm

Height ∆x3 := H
Nk• ∆x1 > 0 and N j ∈N for x1,

• ∆x2 ≥ 0 and Nm ∈N for x2 and

• ∆x3 ≥ 0 and Nk ∈N for x3.

We note the relations in Table 3.1. These properties are reduced in the

one-dim. case as ∆x2 = 0, Nm = 1 and ∆x3 = 0, Nk = 1, and in the two-dim

case as ∆x3 = 0, Nk = 1. We find the volume of a cell as

∆x1

∆x 2

∆
x 3

Figure 3.2: Finite volumeΩ j ,m,k|Ω j ,m,k | = ∆x1 ∆x2 ∆x3 = L ·W ·H

N j ·Nm ·Nk
= |Ω|

Nc
. (3.5)

with the total number of cells Nc = N j ·Nm ·Nk . We define the finite volume

at position ( j ,m,k) as

Ω j ,m,k := [
j ∆x1, ( j +1) ∆x1

] × [m ∆x2, (m +1) ∆x2]

× [k ∆x3, (k +1) ∆x3] . (3.6)

and we note the corresponding position of its central point as

x j ,m,k :=


x j

1

xm
2

xk
3

=


[

j − 1
2

]
∆x1[

m − 1
2

]
∆x2[

k − 1
2

]
∆x3

 .

We call a cell via its central point x j ,m,k in the subsequently when we de-

rive the numerical approximation of the quasilinear heat equation. The

temperature values in all cells Ω j ,m,k are stored in a vector.5 To call one 5 We store the temperature data in vectors
because we use CPU-based algorithms. In
case of GPU-based computations, we rec-
ommend to store the data in matrices, ten-
sors or multidimensional arrays.

element of this vector, we use the global identifier

i ( j ,m,k) = j + (m −1) ·N j + (k −1) ·Nm ·N j . (3.7)

Inversely, we find the local position ( j ,m,k) as

j = (i −1) mod N j +1 ,

m = i − j

N j
mod Nm +1 and

k = i − j − (m −1) N j

N j ·Nm
+1

where expression mod denotes the modulo operation. A grid of finite

volumes is depicted in Fig. 3.3 to exemplify the relation between position

( j ,m,k) and its corresponding global identifier i . In the next section, we

discuss the finite volumes at following positions in detail: Ω1,1,1 Ω2,1,1 Ω3,1,1 ΩN j ,1,1

Ω1,2,1 Ω2,2,1 Ω3,2,1 ΩN j ,2,1

i = 1 i = 2 i = 3 i = N j

i = N j +1 i = N j +2 i = N j +3 i = 2N j

Figure 3.3: A grid of finite volumes with the
relation between global index i and posi-
tion ( j ,m,k).
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Name Symbol j m k

West SW 1 ∈M ∈K

East SE N j ∈M ∈K

South SS ∈J 1 ∈K

North SN ∈J Nm ∈K

Underside SU ∈J ∈M 1

Topside ST ∈J ∈M Nk

Table 3.2: Index set of finite volumes next
to boundary sides.

i ( j −1,m,k) = i ( j ,m,k)−1 for j ∈ {2, . . . , N j },

i ( j +1,m,k) = i ( j ,m,k)+1 for j ∈ {1, . . . , N j −1},

i ( j ,m −1,k) = i ( j ,m,k)−N j for m ∈ {2, . . . , Nm},

i ( j ,m +1,k) = i ( j ,m,k)+N j for m ∈ {1, . . . , Nm −1},

i ( j ,m,k −1) = i ( j ,m,k)−N j ·Nm for k ∈ {2, . . . , Nk },

i ( j ,m,k +1) = i ( j ,m,k)+N j ·Nm for k ∈ {1, . . . , Nk −1}.

At the remaining positions, e.g. i ( j −1,m,k) for j = 1, we assume “virtual”

cells to derive the approximated boundary conditions in Section 3.3.

We distinguish the cells inside the object versus the cells at the bound-

ary sides. The index set of all finite volumes is defined by

S := {
i ( j ,m,k) | j ∈J , m ∈M , k ∈K

}
(3.8)

and the indices of inner domain are stored as

S̊ := {
i ( j ,m,k) | j ∈J \ {1, N j }, m ∈M \ {1, Nm}, k ∈K \ {1, Nk }

}
.

Consequently, the set of indices of all cells next to the boundary sides is

found as S \ S̊ . Table 3.2 lists the index sets for each boundary side sep-

arately. We remark that the i -th index may occur in multiple sets of the

boundary sides because the corners and edges intersect, which means

(SW ∩SS )∪ (SW ∩SN )∪ (SW ∩SU )∪ (SW ∩SU ) ̸= {} and

(SE ∩SS )∪ (SE ∩SN )∪ (SE ∩SU )∪ (SE ∩SU ) ̸= {}.

We have the cardinality of the index set as

|S | = N j Nm Nk = Nc .

This box-shaped meshing with finite volumes of the same size provides us

an intuitive approach to approximate the heat equation in the next sec-

tion. Though, we need to remark that this approach leads to high com-

putational costs because the number of cells grow cubically, see the cardi-

nality above. We visualize the finite volumes as two-dim. boxes in the next

sections but we consider small three-dim. cuboids.
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3.2 The Finite Volume Method

We consider a physical quantity z : [0,T f i nal ]×Ω→R≥0, which represents

for example the thermal energy or temperature. We consider the value of

z in the cell ( j ,m,k) as the average

z(t , x j ,m,k ) = 1

|Ω j ,m,k |

x
k+ 1

2
3∫

x
k− 1

2
3

x
m+ 1

2
2∫

x
m− 1

2
2

x
j+ 1

2
1∫

x
j− 1

2
1

z(t , x)d x1d x2d x3

= 1

|Ω j ,m,k |
∫

Ω j ,m,k

z(t , x)d x (3.9)

with |Ω j ,m,k | as in Eq. (3.5). This averaging approach is visualized in Fig.

3.4, and it is applied on the Eq. (2.19) to yield the integral form of the heat

equation in each cell ( j ,m,k) as

x1
∆x1

j-2 j-1 j j+1

Figure 3.4: Averaging in one-dim. finite
volume as in Eq. (3.9).

1

|Ω j ,m,k |
∫

Ω j ,m,k

ρ(ϑ) c(ϑ)
∂

∂t
ϑ(t , x) d x

︸ ︷︷ ︸
d

d t U j ,m,k (t )

=

1

|Ω j ,m,k |
∫

Ω j ,m,k

div[λ(ϑ) ∇ϑ(t , x)] d x

︸ ︷︷ ︸
d

d t Q j ,m,k (t )

+ 1

|Ω j ,m,k |
∫

∂Ω j ,m,k

[λ(ϑ) ∇ϑ(t , x)] · n⃗d x

︸ ︷︷ ︸
P j ,m,k (t )

. (3.10)

We see in Eq. (3.10) that the first and second term, d
d t U j ,m,k (t ) and

d
d t Q j ,m,k (t ) affect all cells, but the third term P j ,m,k (t ) only affects bound-

ary cells, see Table 3.2. This implies that P j ,m,k (t ) ≡ 0 for all cells of the

inner domain.

The left-hand side of Eq. (3.10), describes only the variation in time and

not in space. Therefore, we find its approximation as

1

|Ω j ,m,k |
∫

Ω j ,m,k

ρ(ϑ(t , x)) c(ϑ(t , x))
∂

∂t
ϑ(t , x)d x

≈ ρ(ϑ(t , x)) c(ϑ(t , x))
∂

∂t
ϑ(t , x)

∣∣∣∣
x=x j ,m,k

. (3.11)

In the next step, we evaluate the term d
d t Q j ,m,k (t ) on the right-hand side

of Eq. (3.10). We recapitulate from Section 2.3 that we derived d
d t Q with

the heat flux q̇ and divergence

div(q̇(t , x)) =
3∑

l=1

∂

∂xl
q̇(t , x)

in Eq. (2.13). Here, we approximate the derivatives ∂
∂xl

q̇l for axis l ∈ {1,2,3}

in a first step and afterwards we approximate the temperature gradient



40

∂
∂xl

ϑ(t , x) in

q̇l (ϑ(t , x)) =−λl (ϑ(t , x))
∂

∂xl
ϑ(t , x), (3.12)

see also Eq. (2.12).

We find the finite volume approach of d
d t Q(t ) in Eq. (3.10) as

1

|Ω j ,m,k |
∫

Ω j ,m,k

div[λ(ϑ(t , x))∇ϑ(t , x)]d x

= −1

|Ω j ,m,k |
∫

Ω j ,m,k

div
[
q̇(ϑ(t , x))

]
d x

= −1

|Ω j ,m,k |
∫

Ω j ,m,k

3∑
l=1

∂

∂xl
q̇l (ϑ(t , x))d x

= −1

|Ω j ,m,k |
3∑

l=1

∫
Ω j ,m,k

∂

∂xl
q̇l (ϑ(t , x))d x. (3.13)

In accordance with the fundamental theorem of calculus, we solve the lat-

ter integral as∫
Ω j ,m,k

∂

∂xl
q̇l (ϑ(t , x))d x

=∆xl1 ∆xl2

[
q̇l (ϑ

(
t , x̃ + δxl

2

)
)− q̇l (ϑ

(
t , x̃ − δxl

2

)
)

]
(3.14)

with the central point x̃ := x j ,m,k , distance δxl =∆xl el and standard basis

vector el ∈R3 for l ∈ {1,2,3} and indices

l1 := [l mod 3]+1 and l2 := [(l +1) mod 3]+1,

which determine orthogonal directions of el . We see that ∆xl1 ·∆xl2 de-

notes an area and we find
∆xl1 ·∆xl2
|Ω j ,m,k | = 1

∆xl
. We continue our ideas from Eq.

(3.13) with the latest findings in Eq. (3.14) as

−1

|Ω j ,m,k |
3∑

l=1

∫
Ω j ,m,k

∂

∂xl
q̇l (ϑ(t , x))d x

=−1
3∑

l=1

1

∆xl

[
q̇l (ϑ

(
t , x̃ + δxl

2

)
)− q̇l (ϑ

(
t , x̃ − δxl

2

)
)

]
and we replace q̇l as in Eq. (3.12) to yield

1

|Ω j ,m,k |
∫

Ω j ,m,k

div[λ(ϑ(t , x))∇ϑ(t , x)]d x

=
3∑

l=1

1

∆xl

[
λl

(
ϑ

(
t , x̃ + δxl

2

))
∂

∂xl
ϑ

(
t , x̃ + δxl

2

)
−λl

(
ϑ

(
t , x̃ − δxl

2

))
∂

∂xl
ϑ

(
t , x̃ − δxl

2

)]
(3.15)

The derivative ∂
∂xl

ϑ
(
t , x̃ ± δxl

2

)
in Eq. (3.15) is approximated with a cen-

tered finite difference approach as

∂

∂xl
f (x) = 1

∆xl

[
f

(
x + δxl

2

)
− f

(
x − δxl

2

)]
+O (∥∆xl∥2) ,
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which we derive via Taylor series approximation, see [71, p. 3], and we find

the finite difference approximation at position x ± δxl
2 as

∂

∂xl
f

(
x ± δxl

2

)
≈ 1

∆xl

[
f (x ±δxl )∓ f (x)

]
. (3.16)

We apply the finite difference stencil in Eq. (3.16) on derivative ∂
∂xl

ϑ in

Eq. (3.15) and we conclude

1

|Ω j ,m,k |
∫

Ω j ,m,k

div[λ(ϑ(t , x))∇ϑ(t , x)]d x

≈
3∑

l=1

1

∆x2
l

[
λl (ϑ

(
t , x̃ + δxl

2

)
) ϑ (t , x̃ +δxl )

+λl (ϑ

(
t , x̃ − δxl

2

)
) ϑ (t , x̃ −δxl )

−
[
λl (ϑ

(
t , x̃ + δxl

2

)
)+λl (ϑ

(
t , x̃ − δxl

2

)
)

]
ϑ(t , x̃)

]
. (3.17)

We do not have access to the temperature ϑ(t , x̃ ± δxl
2 ), which occur inside

the thermal conductivity in Eq. (3.17), and so we approximate it via

ϑ

(
t , x̃ ± δxl

2

)
= 1

2
[ϑ(t , x̃)+ϑ(t , x̃ ±δxl )] .

To improve the readability, we change the notation from position ( j ,m,k)

to global identifier i ( j ,m,k), see Eq. (3.7), and we note the cell tempera-

tures as

Θi (t ) := ϑ (t , x̃) and Θi±µ(t ) := ϑ (t , x̃ ±δxl ) (3.18)

with offset

µ=


1 if l = 1,

N j if l = 2,

N j ·Nm if l = 3.

(3.19)

Temperatures with index i ±µ are geometrically adjacent to the i -th tem-

perature as portrayed in Fig. 3.5, but for l ∈ {2,3} in Eq. (3.19) they are not

adjacent in the vector of stored temperatures

Θ :=

Θ1, . . . ,ΘN j︸ ︷︷ ︸
m=1

,ΘN j +1, . . . ,Θ2N j︸ ︷︷ ︸
m=2

, . . . , ,Θm N j , . . . ,ΘN j Nm


⊤

.
ΘiΘi−1 Θi+1

Θi+N j

Θi−N j

Θi+N j Nm

Θi−N j Nm

{j-1,m,k} {j+1,m,k}

{j,m-1,k}

{j,m+1,k}

{j,m,k-1}

{j,m,k+1}

Figure 3.5: Neighboring temperatures of
the i -th cell inside the object.

Furthermore, we define

λ̃l (w1, w2) :=λl ([w1 +w2]/2) (3.20)

as the thermal conductivity along a cell boundary and we note

λl (ϑ

(
t , x̃ ± δxl

2

)
) ≈λl

(
ϑ (t , x̃)+ϑ (t , x̃ ±δxl )

2

)
:= λ̃l (Θi ,Θi±µ).

Consequently, we formulate Eq. (3.17) in terms ofΘi ,Θi±µ and λ̃ as

1

|Ω j ,m,k |
∫

Ω j ,m,k

div[λ(ϑ(t , x))∇ϑ(t , x)]d x

≈
3∑

l=1

1

∆x2
l

[
λ̃l (Θi ,Θi+µ)Θi+µ(t )+ λ̃l (Θi ,Θi−µ)Θi−µ(t )

− [
λ̃l (Θi ,Θi+µ)+ λ̃l (Θi ,Θi−µ)

]
Θi (t )

]
. (3.21)
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Summarizing the results of the spatial approximation in Eq. (3.11) and

(3.21), we find diffusion for all cells of the inner domain i ∈ S̊ as

ρ(Θi ) c(Θi )
∂

∂t
Θi (t ) =

3∑
l=1

1

∆x2
l

[
λ̃l (Θi ,Θi+µ)Θi+µ(t )+ λ̃l (Θi ,Θi−µ)Θi−µ(t )

− [
λ̃l (Θi ,Θi+µ)+ λ̃l (Θi ,Θi−µ)

]
Θi (t )

]
. (3.22)

3.3 Spatial Approximation of Boundary Conditions
Ω1,1,·

Ω1,2,·

Ω0,1,·

Ω1,0,·

Ω2,1,·

Ω2,2,·Ω0,2,·

Ω2,0,·
x1

x2

− dϑ
d x1

− dϑ
d x2

BW

BS

Figure 3.6: Cells next to boundary sides
BW and BS for an arbitrary k-th index. The
temperature gradients − dϑ

d x1
and − dϑ

d x2
are

antiparallel to x1 and x2.

The thermal dynamics inside the cuboid is described by Eq. (3.22) in terms

of d
d t U j ,m,k (t ) and d

d t Q j ,m,k (t ) in Eq. (3.10). Additionally, we need to de-

scribe the influence along the boundary sides with P j ,m,k (t ) as in Eq. (3.10),

because the temperaturesΘi+µ andΘi−µ are not known for i ∈ SE∪SN∪ST

and i ∈ SW ∪SS ∪SU , respectively. For this purpose, we assume virtual (or

ghost) cells outside, which are adjacent to the cuboid as depicted in Fig.

3.6 and 3.7. So, we calculate the temperature gradients between the inner

cell and the virtual cell, see Definition 2.1. We begin with the boundary

condition

λ(ϑ(t , x))∇ϑ(t , x) · n⃗|x=∂Ω =φ(t , x)

where φ : [0,T ]×∂Ω→ R represents the supplied and emitted energy flux

as noted in Definition 2.2.

The outer normal vector n⃗ is orthogonal to the boundary side and is

positive if it is parallel to x1, x2 or x3, and negative if it is antiparallel to

these directions. Accordingly, we note the gradients on the boundary sides

as

∇ϑ(t , x) · n⃗ =



− ∂ϑ(t ,x)
∂x1

for x ∈ BW ,

∂ϑ(t ,x)
∂x1

for x ∈ BE ,

− ∂ϑ(t ,x)
∂x2

for x ∈ BS ,

∂ϑ(t ,x)
∂x2

for x ∈ BN ,

− ∂ϑ(t ,x)
∂x3

for x ∈ BU ,

∂ϑ(t ,x)
∂x3

for x ∈ BT .

We approximate the boundary condition with finite differences in case of

the negative outer normal vector as

λl (ϑ (t , x̃ −δxl /2))
1

∆xl
[ϑ(t , x̃ −δxl )−ϑ(t , x̃)] =φl (t , x̃) (3.23a)

for (x̃ − δxl /2) ∈ BW ∪BS ∪BU ; and in case of the positive outer normal

vector as

λl (ϑ (t , x̃ +δxl /2))
1

∆xl
[ϑ(t , x̃ +δxl )−ϑ(t , x̃)] =φl (t , x̃) (3.23b)

for (x̃ + δxl /2) ∈ BE ∪BN ∪BT . In Eq. (3.23), we consider φl at position x̃

because we claim

φl (t , x̃ ∓δxl /2) ≈φl (t , x̃).
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2

Figure 3.7: Side view on the cuboid, on
boundary side BS , with finite volume cells
inside object and virtual cells outside. The
vectors ∂ϑ

∂x1
and ∂ϑ

∂x3
represent the temper-

ature gradients on boundary sides BE and
BT .

Furthermore, we distinguish φl for axis l ∈ {1,2,3} because cells with two

or three boundary surfaces have different fluxes for each side. Now, we

step over to the spatially discrete case where all nodes x̃ = xi = x j ,m,k are

inside the object. Here, we lose the unique relation between the position

on the boundary and its outer normal vector because a cell may have two

or three boundary sides. Thus, we need a decision variable to connect the

position and its associated direction as

pos(l , i ) =


1 if (l , i ) ∈ {1}×SW ∪ {2}×SS ∪ {3}×SU ,

2 if (l , i ) ∈ {1}×SE ∪ {2}×SN ∪ {3}×ST ,

0 else.

We identify the cell temperatures asΘi (t ) =ϑ(t , x̃±δxl ), see Eq. (3.18) and

the averaged thermal conductivity in Eq. (3.20), and we formulate

Θi−µ(t ) = Θi (t )+ ∆xl φl (t , xi )

λ̃l (Θi ,Θi−µ)
(3.24a)

with xi = x( j ,m,k), µ as in Eq. (3.19), l ∈ {1,2,3} and all i ∈ SW ∪ SS ∪ SU ,

which guarantee pos(l , i ) = 1 and

Θi+µ(t ) = Θi (t )+ ∆xl φl (t , xi )

λ̃l (Θi ,Θi+µ)
(3.24b)

for l ∈ {1,2,3} and i ∈ SE ∪ SN ∪ ST such that pos(l , i ) = 2. The approxi-

mation of the supplied and emitted heat flux for the l -th direction can be

condensed as a mapping

φ1 : [0,T f i nal ) →R2Nm Nk ,

φ2 : [0,T f i nal ) →R2N j Nk and

φ3 : [0,T f i nal ) →R2N j Nm .

with the heat flux vectors6 as 6 We drop the time-dependency of φl (t )
for a better readability.
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φ1 =



φ1,i (1,1,1)

φ1,i (N j ,1,1)

φ1,i (1,2,1)

φ1,i (N j ,2,1)

...

φ1,i (1,m,k)

φ1,i (N j ,m,k)

...

φ1,i (1,Nm ,Nk )

φ1,i (N j ,Nm ,Nk )



, φ2 =



φ2,i (1,1,1)

. . .

φ2,i (N j ,1,1)

φ2,i (1,Nm ,1)

. . .

φ2,i (N j ,Nm ,1)

...

φ2,i (1,1,k)

. . .

φ2,i (N j ,1,k)

φ2,i (1,Nm ,k)

. . .

φ2,i (N j ,Nm ,k)

...

φ2,i (1,1,Nk )

. . .

φ2,i (N j ,1,Nk )

φ2,i (1,Nm ,Nk )

. . .

φ2,i (N j ,Nm ,Nk )



and φ3 =



φ3,i (1,1,1)

. . .

φ3,i ( j ,m,1)

. . .

φ3,i (N j ,Nm ,1)

φ3,i (1,1,Nk )

. . .

φ3,i ( j ,m,Nk )

. . .

φ3,i (N j ,Nm ,Nk )



(3.25)

in which φl ,i ( j ,m,k) is a short notation for

φl ,i ( j ,m,k)=̂φl (t , x j ,m,k ) =φl (t , xi )

with global index i = i ( j ,m,k). If φl represents the thermal emissions as

noted in Def. 2.3, we note the approximated heat flux as

φem,l (t , xi ) := −hl (xi ) [Θi (t )−ϑamb,l (xi )]−σ εl (xi )Θi (t )4 (3.26)

and we distinguish here hl , ϵn and ϑamb,l for each direction l ∈ {1,2,3}.

According to Eq. (3.22), the diffusion in the l -th direction is approximated

by

[
λ̃l (Θi ,Θi+µ)Θi+µ(t )+ λ̃l (Θi ,Θi−µ)Θi−µ(t )− [

λ̃l (Θi ,Θi+µ)+ λ̃l (Θi ,Θi−µ)
]
Θi (t )

]
/∆x2

l

and we identify the unknown temperatures at i±µwith the identities (3.24).

We find the diffusion in each direction l ∈ {1,2,3} as

Dl (Θi ,Θi−µ,Θi+µ) :=



λ̃l (Θi ,Θi+µ)
(
Θi+µ−Θi

)
/∆x2

l if pos(l , i ) = 1,

λ̃l (Θi ,Θi−µ)
(
Θi−µ−Θi

)
/∆x2

l if pos(l , i ) = 2,[
λ̃l (Θi ,Θi+µ)Θi+µ+ λ̃l (Θi ,Θi−µ)Θi−µ

−[
λ̃l (Θi ,Θi+µ)+ λ̃l (Θi ,Θi−µ)

]
Θi

]
/∆x2

l else

(3.27)

and we note the “external” processes on the boundary

El (t , xi ) =
φl (t , xi )/∆xl if pos(l , i ) ∈ {1,2},

0 else.
(3.28)

We conclude this section by summarizing the numerical approximation of

the quasilinear heat conduction in the following definition.
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Definition 3.1 (Spatially approximated quasilinear heat conduction)

We consider an object with length L > 0, width W ≥ and height H ≥ 0. This

object is discretized with Nc = N j ·Nm ·Nk finite volumes with the dimen-

sions ∆x1 = L
N j

, ∆x2 = W
Nm

and ∆x3 = H
Nk

, see Table 3.1. We note the cell

temperatures as Θ ∈ RNc and we approximate the thermal conductivity at

the cell boundaries λ̃l as in Eq. (3.20). The left-hand side of the quasilinear

heat equation (2.20) is approximated as in Eq. (3.11). The diffusion inside

the objectΩ as in Eq. (3.22) is equipped with the boundary conditions and

the temperatures in the virtual cells is found as in Eq. (3.24). In conclusion,

we formulate the spatially approximated quasilinear heat conduction as

c(Θi ) ρ(Θi )
d

d t
Θi (t ) =

3∑
l=1

[
Dl (Θi ,Θi−µ,Θi+µ)+ El (t , xi )

]
. (3.29)

with offset µ in Eq. (3.19), approximated diffusion Dl in Eq. (3.27) and

“external” processes El in (3.28). ⃝

3.4 Sparse Representation of the Linear System

In the end of Section 2.3, we introduced the linear heat equation (2.21)

with constant material properties λ = diag(λ1,λ2,λ3), ρ > 0 and c > 0.

Here, we approximate the linear heat equation with the finite volume ap-

proach and we note the ODE (3.29) in matrix-vector notation as

c ρ
d

d t
Θ(t ) =

Nd∑
l=1

λl

∆x2
l

Dl Θ(t )+El
φl (t )

∆xl
(3.30)

with Nd ∈ {1,2,3}, diffusion matrices Dl ∈ RNc×Nc , temperature vector

Θ : [0,T f i nal ] → RNc and number of finite volume cells Nc = N j ·Nm ·Nk .

The approximated boundary conditions are specified by

E1 ∈RNc×2Nm Nk , φ1 :[0,T f i nal ) →R2Nm Nk ,

E2 ∈RNc×2N j Nk , φ2 :[0,T f i nal ) →R2N j Nk ,

E3 ∈RNc×2N j Nm , φ3 :[0,T f i nal ) →R2N j Nm .

The heat flux vectors φl are specified in Eq. (3.25), and the sparse7 matri- 7 The term sparse means that a vector or
matrix consists of many zero entries. This
fact may be used to reduce the storage or
to accelerate the computation of a matrix-
vector multiplication.

ces Dl and El are described in detail next. We recommend to compare the

definition of the index set in Eq. (3.8) and the corresponding Table 3.2 for

boundary cells to follow the subsequent ideas. In Eq. (3.27) with µ= 1, we

have the diffusion at the boundary sides as

Θi+1 −Θi = (−1,1) ·
(
Θi

Θi+1

)
for i ∈SW ,

Θi−1 −Θi = (1,−1) ·
(
Θi−1

Θi

)
for i ∈SE ,

and elsewhere as

Θi+1 +Θi−1 −2Θi = (1,−2,1) ·

Θi−1

Θi

Θi+1

 .
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We formulate these iterations as the matrix

D̃1 =



j : 1 2 3 . . . N j

−1 1 0 . . . 0

1 −2 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1 −2 1

0 . . . 0 1 −1


, (3.31)

which is stacked to form the diffusion along direction x1 as

D̃1

D̃1

D̃1
D1 =

=−2 =−1 =+1

Figure 3.8: Sparse pattern of matrix D1 to
express the diffusion in x1-direction.

D1 = diag( D̃1, . . . ,D̃1︸ ︷︷ ︸
Nm Nk blocks

).

The sparse pattern of matrix D1 is visualized in Fig. 3.8. The position of

flux φ1 at SW and SE corresponds to j = 1 and j = N j and so we note the

matrices

Ẽ1 =


1 0

0
...

... 0

0 1

 , E1 = diag( Ẽ1, . . . , Ẽ1︸ ︷︷ ︸
Nm Nk blocks

).

We continue with direction x2 and we find the boundary conditions in

Eq. (3.27) with µ= N j as

Θi+N j −Θi = (−1,0N j −1,1)


Θi

Θi+1
...

Θi+N j

 for i ∈SS ,

Θi−N j −Θi = (1,0N j −1,−1)


Θi−N j

...

Θi−1

Θi

 for i ∈SN

and for all other indices i ∈S \SS ∪SN , we note the diffusion

Θi+N j +Θi−N j −2Θi = (1,0N j −1,−2,0N j −1,1)



Θi−N j

...

Θi−1

Θi

Θi+1
...

Θi+N j


.

We iterate over j ∈ {1, . . . , N j }, m ∈ {1}∪ {2, . . . , Nm − 1}∪ {Nm} to yield the
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matrix blocks

D̃2 =



m : 1 2 3 . . . Nm

−IN j IN j 0N j . . . 0N j

IN j −2IN j IN j

. . .
...

0N j

. . .
. . .

. . . 0N j

...
. . . IN j −2IN j IN j

0N j . . . 0N j IN j −IN j


, (3.32)

which are summarized via an iteration over k ∈ {1, . . . , Nk } as

D̃2 =

=−2 =−1 =+1

Figure 3.9: Sparse pattern of matrix D2,k
to express the diffusion in x2-direction in
layer k ∈ {1, . . . , Nk }.

D2 = diag(D̃2, . . . ,D̃2︸ ︷︷ ︸
Nk blocks

).

An example of the sparse pattern of the sub-matrices D2,k is expressed in

Fig. 3.9. The heat fluxes occur at m = 1 and m = Nm for N j cells in each

“layer” k ∈ {1, . . . , Nk } and so we note the matrices

Ẽ2 =


IN j 0N j

0N j

...
... 0N j

0N j IN j

 , E2 = diag(Ẽ2, . . . , Ẽ2︸ ︷︷ ︸
Nk blocks

).

The diffusion in x3-direction is noted in Eq. (3.27) with µ= N j ·Nm for

the boundary sides as

Θi+N j Nm −Θi = (−1,0N j Nm−1,1)


Θi

Θi+1
...

Θi+N j Nm

 for i ∈SU ,

Θi−N j Nm −Θi = (1,0N j Nm−1,−1)


Θi−N j Nm

...

Θi−1

Θi

 for i ∈ST

and we find for all other indices i ∈S \SU ∪ST

Θi+N j Nm +Θi−N j Nm −2Θi = (1,0N j Nm−1,−2,0N j Nm−1,1)



Θi−N j Nm

...

Θi−1

Θi

Θi+1
...

Θi+N j Nm


.

The boundary conditions are active at “layer” k = 1 and k = Nk for all

( j ,m) ∈ {1, . . . , N j }×{1, . . . , Nm}, and for all other layers k ∈ {2, . . . , Nk −1} we

have the diffusion matrix blocks (IN j Nm ,−2IN j Nm , IN j Nm ). Consequently,
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we note the matrices

D3 =



k : 1 2 3 . . . Nk

−IN j Nm IN j Nm 0N j Nm . . . 0N j Nm

IN j Nm −2IN j Nm IN j Nm

. . .
...

0N j Nm

. . .
. . .

. . . 0N j Nm

...
. . . IN j Nm −2IN j Nm IN j Nm

0N j Nm . . . 0N j Nm IN j Nm −IN j Nm


(3.33)

and

E3 =


IN j Nm 0N j Nm

0N j Nm

...
... 0N j Nm

0N j Nm IN j Nm

 .

We see that Dl and El with l ∈ {1,2,3} are large-scale matrices with only

few nonzero entries and so its summation in Eq. (3.30) leads to a large-

scale sparse matrix again.

Due to these large-scale and sparse matrices, the evaluation of Eq. (3.30)

should not be implemented as s matrix vector operations in a CPU-based

computation because of potentially high computational costs. However,

the linear system formulation in Eq. (3.30) provides a suitable form to an-

alyze the eigenvalues, eigenvectors, and related properties like the analyt-

ical and numerical stability, stiffness, etc. of the linear system in Chapter

4. Furthermore, we consider the linear system for the design of the open-

loop and closed-loop control in Chapter 7 and 8.

We conclude this section by summarizing the diffusion matrices D1, D2

and D3 to formulate the system matrix A for the one-, two- and three-dim.

case.

Definition 3.2 (State space formulation of the free system)

We consider the spatially approximated heat equation (3.30) with ther-

mally insulated boundary sides and without actuation, e.g. φl (t ) ≡ 0 for

l ∈ {1,2,3}. We denote the state space formulation as

d

d t
Θ(t ) = ANdΘ(t ) (3.34)

with Nd ∈ {1,2,3}, system matrix

ANd :=
Nd∑
l=1

αl

∆x2
l

Dl (3.35)

and diffusivity αl := λl
c ρ . We distinguish the temperature vector for each

geometry as temperature states

Θ : [0,T f i nal ] →RN j if Nd = 1 ,

Θ : [0,T f i nal ] →RN j Nm if Nd = 2 and

Θ : [0,T f i nal ] →RN j Nm Nk if Nd = 3.

Subsequently, we formulate ANd for each Nd ∈ {1,2,3}. In the one-dim.
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case (Nd = 1), we find the tridiagonal system matrix

A1 = α1

∆x2
1

D̃1 = α1

∆x2
1



−1 1

1 −2 1
. . .

. . .
. . .

1 −2 1

1 −1

 ∈RN j ×N j (3.36)

with the tridiagonal matrix D̃1 as in Eq. (3.31).We formulate the state-space

of the two-dim. heat equation (Nd = 2) as

A2 = α1

∆x2
1

diag(D̃1, . . . ,D̃1︸ ︷︷ ︸
Nm blocks

)+ α2

∆x2
2

D̃2

=



Ã2,0 Ã2,2

Ã2,2 Ã2,1 Ã2,2

. . .
. . .

. . .

Ã2,2 Ã2,1 Ã2,2

Ã2,2 Ã2,0

 ∈RN j Nm×N j Nm (3.37)

with D̃2 as in Eq. (3.32) and the matrix blocks

Ã2,0 = A1 − α2

∆x2
2

I = α1

∆x2
1

D̃1 − α2

∆x2
2

I ,

Ã2,1 = A1 − 2 α2

∆x2
2

I = α1

∆x2
1

D̃1 − 2 α2

∆x2
2

I and

Ã2,2 = α2

∆x2
2

I .

We continue our previous ideas for the three-dim. scenario (Nd = 3) and

we formulate the system matrix as

A3 = α1

∆x2
1

D1 + α2

∆x2
2

D2 + α3

∆x2
3

D3

=



Ã3,0 Ã3,2

Ã3,2 Ã3,1 Ã3,2

. . .
. . .

. . .

Ã3,2 Ã3,1 Ã3,2

Ã3,2 Ã3,0

 ∈RN j Nm Nk×N j Nm Nk (3.38)

with D̃2 as in Eq. (3.32) and the matrix blocks

Ã3,0 = A2 − α3

∆x2
3

I ,

= α1

∆x2
1

diag(D̃1, . . . ,D̃1︸ ︷︷ ︸
Nm blocks

)+ α2

∆x2
2

D̃2 − α3

∆x2
3

I ,

Ã3,1 = A2 − 2 α3

∆x2
3

I

= α1

∆x2
1

diag(D̃1, . . . ,D̃1︸ ︷︷ ︸
Nm blocks

)+ α2

∆x2
2

D̃2 − 2 α3

∆x2
3

I and

Ã3,2 = α3

∆x2
3

I .

⃝
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Approximated Linear System

In this chapter, we discuss the system properties of the linear heat conduc-

tion phenomena as described in Definition 3.2. In particular, we compute

the eigenvalues1 µn ∈C and eigenvectorsψ ∈CN of the system matrix ANd
1 The common eigenvalue symbol λ is re-
served for the thermal conductivity.in Eq. (3.34) for Nd ∈ {1,2,3}. A general linear differential equations

d

d t
z(t ) = Az(t ) (4.1)

with states z : [0,T f ] →RN , system matrix A ∈RN×N and number of states

N ∈N, represents a heat conduction problem with zero-Neumann bound-

ary conditions as in Eq. (3.34). In this setting, we have a system matrix

A := ANd , states or temperature values z(t ) :=Θ(t ) and the number states

of finite volume cells N := Nc . We find the eigenvalues µn of matrix A in

Eq. (4.1) by solving the well-known eigenvalue problem

Aψ=µψ or equivalently (A−µI )ψ= 0. (4.2)

In case of small-scale systems, e.g. N ∈ {1,2,3,4}, we may find the eigen-

values through manually solving the characteristic polynomial

p(µ) := det(A−µI )
!= 0.

In case of larger systems, such a computation is usually much more com-

plicated for arbitrary matrices and need be evaluated numerically. How-

ever, in some cases we may derive the eigenvalues directly: for example in

case of diagonal and upper or lower triangular matrices as



a1,1 a1,2 a1,3 . . . a1,N

a1,2 a2,3 . . . a2,N

. . .
...

aN−1,N−1 aN−1,N

aN ,N

 or



a1,1

a2,1 a2,2

a3,1 a3,2
. . .

...
...

. . . aN−1,N−1

aN ,1 aN ,2 . . . aN ,N−1 aN ,N


we yield the eigenvalues as diagonal entries µn = an,n . If matrix A is not in

a triangular or diagonal form then it may be transformed to such a form.

System matrix ANd is not diagonal or triangular, but it is a tridiagonal

matrix for Nd = 1 and a tridiagonal block matrix for Nd ∈ {2,3}, see Defi-

nition 3.2. Thus, the eigenvalues are not the diagonal elements and they

need to be calculated numerically as discussed in Section 4.1. In Section
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4.2, we analyze the matrix properties of ANd and the system behavior of

the related differential equation using the found eigenvalues and eigen-

vectors. We continue these ideas in order to derive the solution of differ-

ential equation (3.30) in Section 4.3 and we exemplify our findings with

small-scale simulations.

4.1 Computation of Eigenvalues and Eigenvectors

In Definition 3.2, we formulated the system matrix ANd for each number

of dimension Nd ∈ {1,2,3}. In the one-dim. case, we have A1 = α1

∆x2
1

D̃1

and we see that D̃1 contains ones on the upper an lower sub-diagonal and

−2 on almost all diagonal elements, except the first and last row and col-

umn. We call such a matrix shape tridiagonal. In the two- and three-dim.

cases, the system matrices A2 and A3 contain matrix blocks on the diag-

onal and sub-diagonal and these matrix blocks have a similar tridiagonal

shape as in the one-dim. case. These matrices do not match the previ-

ously described triangular or diagonal form, which have the eigenvalues

as diagonal entries. In general, these matrices are too large to calculate

the eigenvalues manually and so they are usually computed numerically.

Standard eigenvalue solvers provide useful results, but they prone to small

numerical errors and the computational costs increase by the matrix size.

In this section, we provide an approach to compute the eigenvalues and

eigenvectors exactly for one-, two- and three-dim. geometries. To reach

this goal, we firstly estimate the range of eigenvalues with the Gershgorin

Circle Theorem and secondly, we compute the eigenvalue and eigenvec-

tors exactly with cosine expressions. We prove the correctness of the found

eigenvalues and eigenvectors and we show that the eigenvalues are in fact

inside the Gershgorin circles.

Gershgorin Circle Theorem

We approximate the eigenvalues of an arbitrary matrix A ∈RN×N with the

Gershgorin circle theorem2, see also [71, p. 277]. For the further explana- 2 These ideas are based on the work
of Semyon Aronovich Gershgorin (*1901,
†1933) [70].

tions, we have an eigenvalueµ and the related eigenvectorψ= (ψ1, . . . ,ψN )⊤,

which is normed as

∥ψ∥∞ = max(|ψ1|, . . . , |ψN |) = 1

such that its largest element is one at index i with i ∈ {1,2, . . . , N }. From Eq.

(4.2), we derive for each row

µψi =
N∑

j=1
ai , jψ j =

[
N∑

j=1∧ j ̸=i
ai , jψ j

]
+ai ,iψi

and we subtract the i -th component on the right side as

(µ−ai ,i )ψi =
N∑

j=1∧ j ̸=i
ai , jψ j . (4.3)

Next, we consider the absolute value on both sides and see that

|µ−ai ,i ||ψi | = |µ−ai ,i |
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because |ψi | = 1. We apply the triangle inequality on Eq. (4.3) and we note

|µ−ai ,i | ≤
∣∣∣∣∣ N∑

j=1∧ j ̸=i
ai , jψ j

∣∣∣∣∣≤ N∑
j=1∧ j ̸=i

|ai , j ||ψ j | ≤
N∑

j=1∧ j ̸=i
|ai , j |

because |ψ j | ≤ 1 for j ̸= i . We define the radius of the i -th diagonal ele-

ment ai ,i of matrix A as

ri :=
N∑

j=1∧ j ̸=i
|ai , j |

and the related Gershgorin discs as

d(z,r ) := {ξ ∈C : |ξ− z| < r }

which implies |µ− ai ,i | = d(ai ,i ,ri ). Therefore, we find all eigenvalue µn

inside or on the boundary of the union of all Gershgorin discs as

µn ∈
N⋃
i

d(ai ,i ,ri ) for n ∈ {1, . . . , N }.

This result is called Gershgorin circle theorem. We illustrate this concept

with the small example matrix3 3 Example matrix A equals to matrix D1,n
in identity (3.31) for N j = 3.

A =

−1 1 0

1 −2 1

0 1 −1

 ,

which has the Gershgorin discs d1(−1,1) for the first and last row and

d2(−2,2) for the second row. We find the true eigenvalues of A as the roots

of the characteristic polynomial

1

2

-1

-2

-1-2-3-4

µ1 =−3

µ2 =−1

µ3 = 0

Figure 4.1: Gershgorin discs d(−1,1),
d(−2,2) and the true eigenvalues µ ∈
{−3,−1,0} of the example matrix A.

p(µ) = det(µ− A) = (µ+2) (µ+1) µ

as µ ∈ {−3,−1,0}. All eigenvalues are inside the union of the closed Ger-

shgorin discs as µ ∈ d1(−2,2)∪d2(−2,2), and the Gershgorin discs and the

eigenvalues are visualized in Fig. 4.1.

If matrix A ∈RN×N is decomposable as A =∑
n=1 pn Mn with coefficient

pn ∈R and Mn ∈RN×N , then we find the Gershgorin discs

d(ai ,i ,ri ) = d

( ∑
n=1

pnmn,i ,i ,ri

)
with radius

ri =
∑

n=1
pn

∑
j=1∧ j ̸=i

|mn,i , j |

in which mn,i , j denotes the (i , j )-th entry of matrix Mn . In this way, we

apply the Gershgorin circle theorem on each (partial) diffusion matrix D̃1,

D̃2 and D3 as in Eq. (3.31, 3.32, 3.33) separately and we find for each ma-

trix the diagonal entries −1 and −2 and the radius r = 1 and r = 2. Thus,

we note the same Gershgorin discs d(−1,1) and d(−2,2) for each (partial)

diffusion matrix, see also Fig. 4.1 above. In case of a full system matrix

ANd as in Eq. (3.35), we find four scenarios for the diagonal entries and

the corresponding radii, which depend on the index i ∈ S of the temper-

ature cell. If the cell is completely inside the object as i ∈ S̊ , then we note

the diagonal entries and its radius as

aNd ,i ,i =−2
Nd∑
l=1

αl

∆x2
l

and ri = 2
Nd∑

l

αl

∆x2
l

.
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with diffusivity αl = λl
c ρ . If a cell is close to a boundary side, then we note

the index of the corresponding direction as

l̃ :=


1 if i ∈SW ∪SE ,

2 if i ∈SS ∪SN ,

3 if i ∈SU ∪ST .

If a cell is close to one boundary side, then we find diagonal entries and its

radius

aNd ,i ,i =
[
−2

∑
l ̸=l̃

αl

∆x2
l

+ (−1)
αl̃

∆x2
l̃

]
, ri =

[
2

∑
l ̸=l̃

αl

∆x2
l

+ αl̃

∆x2
l̃

]
.

If a cell is close to two boundary sides, then we continue with

aNd ,i ,i =
[
−2

αl

∆x2
l

+ (−1)
∑
l̃ ̸=l

αl̃

∆x2
l̃

]
, ri =

[
2
αl

∆x2
l

+∑
l̃ ̸=l

αl̃

∆x2
l̃

]

and if a cell is close to three boundary sides, then we note

aNd ,i ,i =−
Nd∑
l̃=1

αl̃

∆x2
l̃

and ri =
Nd∑
l̃=1

αl̃

∆x2
l̃

.

We exemplify these findings with a simple three-dim. heat conduction

example. We assume the material properties λn = 1 and c = ρ = 1, and

the spatial discretization ∆xn = 1 for n ∈ {1,2,3}. So, we note the diffusion

matrix

ANd = D1 +D2 +D3

for an arbitrary size of DNc×Nc with Nc ≥ 9. In accordance with the previ-

ous ideas, we derive the Gershgorin discs

d4(−6,6) , d3(−5,5) , d2(−4,4) , d1(−3,3)

and we see that the smallest possible eigenvalue is at µmi n =−12 and the

largest possible eigenvalue is at µmax = 0.

Eigenvalues and Eigenvectors in the One-Dimensional Case

We continue with the exact computation of eigenvalues and eigenvectors

for the one-dim. linear heat equation. We return to our standard notation

of the spatially approximated linear one-dim. heat equation

d

d t



Θ1

Θ2
...

ΘN j −1

ΘN j

= p1



−1 1

1 −2 1
. . .

. . .
. . .

1 −2 1

1 −1


︸ ︷︷ ︸

=:D1



Θ1

Θ2
...

ΘN j −1

ΘN j

 (4.4)

with insulated boundary sides, coefficient p1 := α
∆x2 and initial conditions

Θ(0) = Θ0, see also Def. 3.2. Here, we have diffusion matrix D1 = D̃1 and

we notice that D1 looks almost like a Toeplitz matrix4 4 Described by and named after Otto
Toeplitz (*1881 , †1940) [72].
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

a0 a−1 a−2 . . . a−(N j −1)

a1 a0 a−1 . . . a−(N j −2)
...

. . .
. . .

. . .
...

... a1 a0 a−1

aN j −1 . . . a2 a1 a0


,

which has only non-zero entries a0 on the diagonal, and a−1 on the up-

per and a1 on the lower sub-diagonal. We remark that D1 is only almost

a Toeplitz matrix because a0 in the first and last row differ to the other

diagonal elements. The eigenvalue computation of Toeplitz matrices in

general5 and tridiagonal Toeplitz matrices in particular is well studied in 5 More details about Toeplitz matrices are
noted in [76].the literature, see [73–75]. The eigenvalues of a tridiagonal Toeplitz matrix

A =



b c

a b c
. . .

. . .
. . .

a b c

a b

 (4.5)

are noted as6 6 There exist different ways how to derive
these eigenvalues, see also this blog post
on StackExchange [77].

µ j = b −2
p

ac cos

(
nπ

N j +1

)
for j ∈ {1, . . . , N j }. We choose (a,b,c) = (1,−2,1) to note a matrix which

looks almost like the diffusion matrix D1 in Eq. (3.31) and we find the

eigenvalues

1 2 3 4 5 6 7 8 9 10 11

-1

-2

-3

-4

j

Eigenvalues µ j

Figure 4.2: Continuous version of the
eigenvalue distribution as in Eq. (4.6) for
N = 10. The discrete eigenvalues µ j for
j ∈ {1, . . . ,10} are noted as red dots.

µ j =−2−2cos

(
jπ

N j +1

)
(4.6)

for j ∈ {1, . . . , N j }. The position of the eigenvalues in Eq. (4.6) for N = 10 are

portrayed in Fig. 4.2. However, the eigenvalues in Eq. (4.6) are not exactly

the eigenvalues of diffusion matrix D1 in Eq. (4.4) because matrix D1 is not

exactly a tridiagonal Toeplitz matrix as the first and the last diagonal entry

of D1 are not −2 but −1 due to the Neumann boundary condition.

We take these differences of the diagonal elements into account and we

note the tridiagonal matrix

A =



b −α c

a b c
. . .

. . .
. . .

a b c

a b −β

 . (4.7)

According to article [78], we find the eigenvalues of the tridiagonal matrix

in Eq. (4.7) with α=β=−pac ̸= 07 as 7 Coefficient α is not the diffusivity here.

µ j = b +2
p

ac cos

(
( j −1)π

N j

)
for j ∈ {1, . . . , N j }. The corresponding eigenvectors

ψ j = (ψ j ,1, . . . ,ψ j ,n j , . . . ,ψ j ,N j )⊤
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have the elements

ψ j ,n j = ϱn j −1 cos

(
( j −1)(2n j −1)π

2N j

)
(4.8)

with ϱ=p
a/c, see [78]. We remark that these eigenvectorsψ j are not nor-

malized. This eigenvalue and eigenvector computation is also discussed

and extended in article [79]. Now, we choose again (a,b,c) = (1,−2,1) and

α = β = −1 such that we formulate diffusion matrix D1 as in Eq. (4.4). In

this way, we yield the eigenvalues of the one-dimensional linear system as

µ j =−2+2cos

(
( j −1)π

N j

)
(4.9)

for j ∈ {1, . . . , N j }. An example of the eigenvalue distribution for N = 10

is visualized in Fig. 4.3. We highlight that all eigenvalues are inside the

interval [−4,0] as computed previously with the Gershgorin discs. We note

the eigenvectors elements with Eq. (4.8) as

1 2 3 4 5 6 7 8 9 10 11

-1

-2

-3

-4

j

Eigenvalues µ j

Figure 4.3: Continuous version of the
eigenvalue distribution as in Eq. (4.9) for
N = 10. The discrete eigenvalues of dif-
fusion matrix D1 are µn for j ∈ {1, . . . ,10},
which noted as red dots.

ψ j ,n j = cos

(
( j −1)(2n j −1)π

2N j

)
(4.10)

for j ∈ {1, . . . , N j } because ϱ =
√

a
c = p

1 = 1. We highlight the case of

j = 1, where we have eigenvalue µ1 = 0 and eigenvector ψ1 = (1, . . . ,1)⊤. In

Fig. 4.4, we the visualize the eigenvector elements ψ j ,n j of Eq. (4.10) for

N j = 10 and N j ∈ {2,5,7,10}.

In the original one-dim. linear heat conduction problem in Eq. (4.4),

the diffusion matrix is multiplied with coefficient p1 = α1
∆x2 . Hence, we

need to include p1 in equation (4.9) as

µ j =−2
α

∆x2

[
1−cos

(
( j −1)π

N j

)]
. (4.11)

So, we find all eigenvalues to be inside the interval [−4 α
∆x2 ,0]. This fact

implies that the linear differential equation (4.4) is analytically stable in

the sense of Lyapunov for all choices of α > 0 and ∆x > 0. The single

zero eigenvalue µ1 does not disturb the stability property practically. We

summarize our findings on the computation of eigenvalues and eigenvec-

tors in the subsequent lemma and we prove that they solve the eigenvalue

problem (4.2).

Lemma 4.1

The values µ j in Eq. (4.11) and the vectors ψ j = (ψ j ,1, . . . ,ψ j ,N j )⊤ with

ψ j ,n j in Eq. (4.10) solve the eigenvalue problem

A1ψ j =µ jψ j (4.12)

with matrix A1 from Eq. (3.36) for j ∈ {1, . . . , N j }.
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n j

Eigenvector elements ψ2,n j

(a) j = 2 : cos(0.1πn j −0.05π)

1 2 3 4 5 6 7 8 9 10

-1

-0.5

0

0.5

1

n j

Eigenvector elements ψ5,n j

(b) j = 5 : cos(0.4πn j −0.2π)

1 2 3 4 5 6 7 8 9 10

-1

-0.5

0

0.5

1

n j

Eigenvector elements ψ7,n j

(c) j = 7 : cos(0.6πn j −0.3π)

1 2 3 4 5 6 7 8 9 10

-1

-0.5

0

0.5

1

n j

Eigenvector elements ψ10,n j

(d) j = 10 : cos(0.9πn j −0.45π)

1 2 3 4 5 6 7 8 9 10

-1

-0.5

0

0.5

1

Figure 4.4: Eigenvector elements ψ j ,n j
(green dots) and underlying cosine oscil-
lation as in Eq.(4.10) with N j = 10 for
j ∈ {2,5,7,10}.

Proof. We consider a matrix

A1 = p1



−1 1 0 . . . 0

1 −2 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1 −2 1

0 . . . 0 1 −1


with p1 = α1

∆x2
1

. In this proof, we check that the right-hand side of Eq. (4.12)

coincides with its left-hand side. For this evaluation, we transform expres-

sion µ jψ j via angle sum identities to the left-hand side expression A1ψ j .

In the beginning of this proof, we collect several identities, which help us

to evaluate the term µ jψ j . We use these identities in the next proof again.

We introduce function

f (z,n) := cos([2n −1]z) , (4.13)

which is used to express the eigenvector elements

ψ j ,n j = f (v ,n j ) = cos
(
[2n j −1]v

)
and the eigenvalues

µ j =−2p1[1− f (2v ,1)] =−2p1[1−cos(2v)]

with v = ( j −1) π
2N j

and j ∈ {1, . . . , N j }. We note the cosine angle sum iden-

tities

2cos(v)cos(w) = cos(v +w)+cos(v −w), (4.14)

2sin(v)sin(w) = −cos(v +w)+cos(v −w) (4.15)
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and cos(−v) = cos(v) for v , w ∈ R. We apply Eq. (4.14) on f (z,n) and we

find the identity

2 f (2z,1) f (z,n) = 2cos(2z) cos([2n −1]z)

= cos([2n +1]z)+cos([2n −3]z)

= f (z,n +1)+ f (z,n −1). (4.16)

We evaluate the term f (z,n −1) for n = 1 as

f (z,0) = cos(−z) = cos(z) = f (z,1). (4.17)

We continue with n = N j : we identify z in f (z,n) by v = ( j −1) π
2N j

and we

calculate

− f (v , N j )+ f (v , N j +1) = −cos([2N j −1]v)+cos([2N j +1]v)

Eq. (4.15)= 2sin(2N j v)sin(v)

= 2sin
(
[ j −1]π

)
sin(v) ≡ 0

for all j ∈ {1, . . . , N j }. Hence, we have the terminal condition

f (z, N j +1) = f (z, N j ) (4.18)

Now we have all necessary identities at hand and we check the eigenvalue

equations.

In the first row of the eigenvalue equation (4.12), we calculate

µ jψ j ,1 = −2p1[1− f (2v ,1)] f (v ,1)

= p1[− f (v ,1)− f (v ,1)+2 f (2v ,1) f (v ,1)]

= p1[− f (v ,1)− f (v ,1)+ f (v ,2)+ f (v ,0)︸ ︷︷ ︸
Eq. (4.17)= f (v ,1)

]

= p1[− f (v ,1)+ f (v ,2)]

= p1[−ψ j ,1 +ψ j ,2]

which equals the left-hand side of the first row. In the second row, we

calculate

µ jψ j ,2 = −2p1[1− f (2v ,1)] f (v ,2)

= p1[−2 f (v ,2)+2 f (2v ,1) f (v ,2)]

= p1[−2 f (v ,1)+ f (v ,3)+ f (v ,1)]

= p1[ψ j ,1 −2ψ j ,2 +ψ j ,3]

and in the n-th row with n ∈ {2, . . . , N j −1}, we note analog as above

µ jψ j ,n = −2p1[1− f (2v ,1)] f (v ,n)

= p1[−2 f (v ,n)+2 f (2v ,1) f (v ,n)]

= p1[−2 f (v ,n)+ f (v ,n +1)+ f (v ,n −1)]

= p1[ψ j ,n−1 −2ψ j ,n +ψ j ,n+1].

Finally, we note in the last row, we find

µ jψ j ,N j = −2p1[1− f (2v ,1)] f (v , N j )

= p1[− f (v , N j )− f (v , N j )+2 f (2v ,1) f (v , N j )]

= p1[− f (v , N j )− f (v , N j )+ f (v , N j +1)+ f (v , N j −1)]
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and we apply here Eq. (4.18) to obtain

µ jψ j ,N j = p1[− f (v , N j )+ f (v , N j −1)]

= p1[ψ j ,N j −1 −ψ j ,N j ].

In consequence to these findings, all rows of the right-hand side of Eq.

(4.12) coincide with its left-hand side.

Two-dimensional Heat Conduction

In the one-dim. case we found the eigenvalues and eigenvectors of the

tridiagonal system matrix A1. In the next step, we transfer these ideas to

the two- and three-dim. heat conduction scenarios where A2 and A3 are

block triangular matrices as described in Section 3.4. These system matri-

ces describe a diffusion for each spatial direction and so we take this su-

perposition into account for our subsequent discussions. In accordance

with Definition 3.2, we note the approximated two-dim. heat equation as

d

d t
Θ(t ) =

p1



D̃1

D̃1

. . .

D̃1

D̃1

+p2



−I I

I −2I I
. . .

. . .
. . .

I −2I I

I −I




︸ ︷︷ ︸

=:A2

Θ(t ) (4.19)

with one-dim. diffusion matrix D̃1 as in Eq. (3.31) and the coefficients

p1 := α1

∆x2
1

and p2 := α2

∆x2
2

. System matrix A2 ∈RN j Nm×N j Nm is noted in Defi-

nition 3.2 as block tridiagonal matrix

A2 =



Ã2,0 Ã2,2

Ã2,2 Ã2,1 Ã2,2

. . .
. . .

. . .

Ã2,2 Ã2,1 Ã2,2

Ã2,2 Ã2,0

 ,

which has almost a tridiagonal block Toeplitz shape as

T =



TA TB

TB TA TB

. . .
. . .

. . .

TB TA TB

TB TA

 (4.20)

with matrix blocks

TA =



a0 a1

a1 a0 a1

. . .
. . .

. . .

a1 a0 a1

a1 a0

 and TB =



b0 b1

b1 b0 b1

. . .
. . .

. . .

b1 b0 b1

b1 b0

 .

System matrix A2 differs to T in the first and last block because Ã2,0 ̸=
Ã2,1 = TA , and Ã2,1 is not a Toeplitz matrix like TA because D̃1 is not a
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Toeplitz matrix, see Eq. (3.31). In article [80], the eigenvalues of a tridiag-

onal block Toeplitz matrix T as in Eq. (4.20) are derived as

µ j ,m = a0 +2a1 cos

(
jπ

N j +1

)
+2b0 cos

(
mπ

Nm +1

)
+4b1 cos

(
jπ

N j +1

)
cos

(
mπ

Nm +1

)
(4.21)

with j ∈ {1, . . . , N j } and m ∈ {1, . . . , Nm}. Similar to the one-dim. case we are

now able to find an estimate of the eigenvalues of system matrix A2. We

set a0 =−2p1 −2p2, a1 = p1, b0 = p2 with p1 = α1

∆x2
1

, p2 = α2

∆x2
2

, and we note

the eigenvalue approximation of D2 as

µ j ,m = −2p1

[
1−cos

(
jπ

N j +1

)]
−2p2

[
1−cos

(
mπ

Nm +1

)]
. (4.22)

We compare the eigenvalues of the previous tridiagonal Toeplitz matrix8 8 The tridiagonal Toeplitz matrix in
Eq. (4.5) approximates almost the
one-dimensional diffusion matrix D1.

as in Eq. (4.6) with the eigenvalue estimation as in Eq. (4.22) and so we find

an identical structure. Hence, we may interpret Eq. (4.22) as the two-dim.

version of Eq. (4.6).

We already know that the eigenvalues of the approximated linear one-

dim. heat equation (4.4) is found as in Eq. (4.11) and thus we transfer our

similarity findings from Eq. (4.6) and (4.22) to the approximated two-dim.

heat equation (4.19). Thus, we claim that the eigenvalues of Eq. (4.19) are

noted as

µ j ,m = −2p1

[
1−cos

(
[ j −1]

π

N j

)]
−2p2

[
1−cos

(
[m −1]

π

Nm

)]
(4.23)

with p1 = α1

∆x2
1

and p2 = α2

∆x2
2

and for j ∈ {1, . . . , N j } and m ∈ {1, . . . , Nm}.

The eigenvalues are sorted with the global index i ( j ,m) = j + (m−1)N j as

µ j ,m =µi , see also Eq. (3.8). In accordance with the eigenvector computa-

tion of the one-dim. case, see Eq. (4.10), we formulate the i -th eigenvector

as

ψi := (ψi ,1, . . . ,ψi ,Nc )⊤

with Nc = N j ·Nm and the vector elements

ψ( j ,m),(n j ,nm ) = cos

(
( j −1)(2n j −1)π

2N j

)
cos

(
(m −1)(2nm −1)π

2Nm

)
(4.24)

for n j ∈ {1, . . . , N j } and nm ∈ {1, . . . , Nm}. We find the superposition of the

diffusion as an addition in Eq. (4.23) and as a multiplication in Eq. (4.24).

As in the one-dim. case, we state our ideas in a lemma and we prove the

correctness of the eigenvalue problem (4.2) with the claimed eigenvalues

and eigenvectors. These findings are presented without a proof in article

[37] to derive a time-discrete heat conduction model.

Lemma 4.2

The values µi in Eq. (4.23), the vectors ψi = (ψi ,1, . . . ,ψi ,N j Nm )⊤ with the

elementsψ( j ,m),(n j ,nm ) =ψi ,n in Eq. (4.24) and index i ( j ,m) = j+(m−1)N j

as in Eq. (3.8) solve the eigenvalue problem

A2ψi =µiψi (4.25)
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with system matrix A2 in Eq. (3.37) for ( j ,m) ∈ {1, . . . , N j }× {1, . . . , Nm} and

(n j ,nm) ∈ {1, . . . , N j }× {1, . . . , Nm}.

Proof. We carry out this proof analog to the one of Lemma 4.1. We prove

that the right-hand side of Eq. (4.25) is identical with its left-hand side ex-

pression. However, we need to take the block structure into account here.

Similar to the previous proof, we firstly describe the supportive identities

and evaluate secondly the eigenvalue expressions. We introduce the same

function as in the previous proof

f (z,n) := cos([2n −1]z) ,

which fulfills the identity

2 f (2z,1) f (z,n) = f (z,n +1)+ f (z,n −1)

as shown in Eq. (4.16). We express the eigenvector elements as

ψ( j ,m),(n j ,nm ) = f (v ,n j ) f (w ,nm)

= cos
(
[2n j −1]v

)
cos([2nm −1]w)

with (n j ,nm) ∈ {1, . . . , N j }× {1, . . . , Nm} and the eigenvalues as

µ j = −2p1[1− f (2v ,1)]−2p2[1− f (2w ,1)]

= −2p1[1−cos(2v)]−2p2[1−cos(2w)]

with v = ( j −1) π
2N j

, w = (m −1) π
2Nm

and j ∈ {1, . . . , N j }, m ∈ {1, . . . , Nm}. We

shorten the notation of the eigenvector elements as ψ( j ,m),(n j ,nm ) = ψi ,n

with the global indices

i ( j ,m) = j + (m −1)N j ,

n(n j ,nm) = n j + (nm −1)N j .

Multiplying the i -th eigenvalue with the n-th element of the correspond-

ing eigenvector, we yield

µiψi ,n = (−2p1[1− f (2v ,1)]−2p2[1− f (2w ,1)]
)

f (v ,n j ) f (w ,nm)

= −2[p1 +p2] f (v ,n j ) f (w ,nm)+2p1 f (2v ,1) f (v ,n j ) f (w ,nm)

+2p2 f (v ,n j ) f (2w ,1) f (w ,nm). (4.26)

We further specify the products in Eq. (4.26) as

2 f (2v ,1) f (v ,n j ) f (w ,nm) = [ f (v ,n j −1)+ f (v ,n j +1)] f (w ,nm)

= f (v ,n j −1) f (w ,nm)+ f (v ,n j +1) f (w ,nm)

and

2 f (v ,n j ) f (2w ,1) f (w ,nm) = f (v ,n j )[ f (w ,nm −1)+ f (w ,nm +1)]

= f (v ,n j ) f (w ,nm −1)+ f (v ,n j ) f (w ,nm +1).

For (n j ,nm) ∈ {2, . . . , N j −1}× {2, . . . , Nm −1}, we note

f (v ,n j −1) f (w ,nm) =ψi ,[n j −1+(nm−1)N j ], (4.27a)

f (v ,n j +1) f (w ,nm) =ψi ,[n j +1+(nm−1)N j ], (4.27b)

f (v ,n j ) f (w ,nm −1) =ψi ,[n j +(nm−2)N j ], (4.27c)

f (v ,n j ) f (w ,nm +1) =ψi ,[n j +nm N j ]. (4.27d)
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We find the remaining expressions for the initial values n j = 1, nm = 1

with identity (4.17) as

f (v ,0) f (w ,nm) = f (v ,1) f (w ,nm) = ψi ,[1+(nm−1)N j ], (4.28)

f (v ,n j ) f (w ,0) = f (v ,n j ) f (w ,1) = ψi ,[n j ] (4.29)

and we note with Eq. (4.18) the terminal values for n j = N j , nm = Nm as

f (v , N j +1) f (w ,nm) = f (v , N j ) f (w ,nm) = ψi ,[nm N j ], (4.30)

f (v ,n j ) f (w , Nm +1) = f (v ,n j ) f (w , Nm) = ψi ,[n j +(Nm−1)N j ]. (4.31)

System matrix A2 is a block tridiagonal matrix, see Eq. (3.37), and so

we compute of the eigenvalue problem with two nested iterations: we it-

erate over each row block nm ∈ {1, . . . , Nm} and each row inside the block

n j ∈ {1, . . . , N j }. We remind that each index ( j ,m) and (n j ,nm) corresponds

to a cell in the finite volume grid, see Fig. 3.5 and Fig. 3.7.

1. Block Row: In the first block row, nm = 1, we multiply i -th or ( j ,m)-

th eigenvector with the blocks Ã2,0 and Ã2,2 as

j = 1 j = N j

m = 1

m = Nm

( j ,m) = (1,1)

Neighbors

x1

x2

(a) First line: n j = 1

j = 1 j = N j

m = 1

m = Nm

( j ,m) = (2,1)

Neighbors

x1

x2

(b) Central lines: n j = 2

j = 1 j = N j

m = 1

m = Nm

( j ,m) = (2,1)

Neighbors

x1

x2

(c) Last line: n j = N j

Figure 4.5: The position of the finite vol-
ume cells corresponds to the eigenvalue
equations:
Fig. (a) and Eq.(4.32),
Fig. (b) and Eq. (4.33) for n j = 2,
Fig. (c) and (4.34).
The central point ( j ,m) correspond to the
index of the right-hand side expression
µiψi ,(n j ,nm ).

[Ã2,0, Ã2,2]



ψi ,1
...

ψi ,N j

ψi ,N j +1
...

ψi ,2N j


= Ã2,0


ψi ,1

...

ψi ,N j

+ Ã2,2


ψi ,N j +1

...

ψi ,2N j

=µi


ψi ,1

...

ψi ,N j



with the tridiagonal matrix Ã2,0 = p1D̃1−p2I and the diagonal matrix Ã2,2 =
p2I . The position of the finite volume cells corresponding to the indices of

the eigenvalues and eigenvectors is portrayed in Fig. 4.5. In the first line,

n j = 1, the first eigenvector element has the local indices (n j ,nm) = (1,1)

and so we note eigenvalue equation

−[p1 +p2]ψi ,1 +p1ψi ,2 +p2ψi ,N j +1 =µiψi ,1. (4.32)

We evaluateµiψi ,1 as in Eq. (4.26) with the identities (4.27d, 4.28,4.29) and

we yield

µiψi ,1 = −2[p1 +p2]ψi ,1 +p1[ψi ,1 +ψi ,2]+p2[ψi ,1 +ψi ,N j +1]

= − [p1 +p2]ψi ,1 +p1ψi ,2 +p2ψi ,N j +1. ✓

We mark the evaluation of µiψi ,1 with ✓ to express the correctness of the

eigenvalue equation. In the next rows, n j ∈ {2, . . . , N j −1} and nm = 1, we

formulate the eigenvalue equation

p1ψi ,n j −1 − [2p1 +p2]ψi ,n j +p1ψi ,n j +1 +p2ψi ,N j +n j =µiψi ,n j . (4.33)

We see that Eq. (4.33) is fulfilled because we calculate its right-hand side

with Eq. (4.26) and identities (4.27a, 4.27b, 4.27d,4.29) as

µiψi ,n j = −2[p1 +p2]ψi ,n j +p1[ψi ,n j −1 +ψi ,n j +1]+p2[ψi ,n j +ψi ,N j +n j ]

= p1ψi ,n j −1 − [2p1 +p2]ψi ,n j +p1ψi ,n j +1 +p2ψi ,N j +n j . ✓
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The eigenvalue problem in the last row of the first block, n j = N j and

nm = 1, is given as

p1ψi ,N j −1 − (p1 +p2)ψi ,N j +p2ψi ,2N j =µiψi ,N j . (4.34)

We state the right-hand side of the eigenvalue equation as

µiψi ,N j = −2[p1 +p2] f (v , N j ) f (w ,1)+2p1 f (2v ,1) f (v , N j ) f (w ,1)

+2p2 f (v , N j ) f (2w ,1) f (w ,1)

= −2[p1 +p2] f (v , N j ) f (w ,1)

+p1
[

f (v , N j −1) f (w ,1)+ f (v , N j +1) f (w ,1)
]

+p2
[

f (v , N j ) f (w ,1)+ f (v , N j ) f (w ,2)
]

= p1 f (v , N j −1) f (w ,1)− [p1 +p2] f (v , N j ) f (w ,1)+ f (v , N j ) f (w ,2)

+p1[− f (v , N j )+ f (v , N j +1)] f (w ,1)

and we apply the identity (4.30) to yield

µiψi ,N j = p1 f (v , N j −1) f (w ,1)− [p1 +p2] f (v , N j ) f (w ,1)+ f (v , N j ) f (w ,2)

= p1ψi ,N j −1 − (p1 +p2)ψi ,N j +p2ψi ,2N j . ✓

2. Block Row: In the second block row, nm = 2, we multiply the i -th or

( j ,m)-th eigenvector with the blocks Ã2,1 and Ã2,2 as

[Ã2,2, Ã2,1, Ã2,2]



ψi ,1
...

ψi ,N j

ψi ,N j +1
...

ψi ,2N j

ψi ,2N j +1
...

ψi ,3N j



= Ã2,2


ψi ,1

...

ψi ,N j

+ Ã2,1


ψi ,N j +1

...

ψi ,2N j

+ Ã2,2


ψi ,2N j +1

...

ψi ,3N j

= µi


ψi ,N j +1

...

ψi ,2N j



where we have the tridiagonal matrix Ã2,1 = p1D̃1 −2p2I and the diagonal

matrix Ã2,2 = p2I . This procedure is analog to the previous one but here

we apply Eq. (4.28) only in the first row of the block. In the first row of the

second block row, n j = 1 and nm = 2, the eigenvalue equation is stated as

p2ψi ,1 − [p1 +2p2]ψi ,N j +1 +p1ψi ,N j +2 +p2ψi ,2N j +1 =µiψi ,N j +1. (4.35)

We evaluate µiψi ,N j +1 analog to the previous eigenvalue computations

with Eq. (4.26) and the identities (4.27b, 4.27c, 4.27d) and the initial value

identity (4.28). Thus, we yield

µiψi ,N j +1 = −2[p1 +p2]ψi ,N j +1 +p1[ψi ,N j +1 +ψi ,N j +2]+p2[ψi ,1 +ψi ,2N j +1]

= p2ψi ,1 − [p1 +2p2]ψi ,N j +1 +p1ψi ,N j +2 +p2ψi ,2N j +1. ✓

j = 1 j = N j

m = 1

m = Nm

( j ,m) = (2,1)

Neighbors

x1

x2

Figure 4.6: The finite volume cell at
( j ,m) = (2,2) corresponds to the eigen-
value equation at (n j ,nm ) = (2,2).

In the next rows, n j ∈ {2, . . . , N j − 1} and nm = 2, the central point is

completely inside the grid and all neighboring points and indices exist,

see Fig. 4.6. So, we have the eigenvalue formula with all neighbors as

p2ψi ,n j +p1ψi ,n j −1+N j −2[p1 +p2]ψi ,n j +N j +p1ψi ,n j +1+N j

+p2ψi ,n j +2N j =µiψi ,n j +N j .
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We evaluate expression µiψi ,n j with Eq. (4.26) and consider all identities

(4.27) to find

µiψi ,n j +N j = −2[p1 +p2]ψi ,n j +N j +p1[ψi ,n j −1+N j +ψi ,n j +1+N j ]

+p2[ψi ,n j +ψi ,n j +2N j ]

= p2ψi ,n j +p1ψi ,n j −1+N j −2[p1 +p2]ψi ,n j +N j

+p1ψi ,n j +1+N j +p2ψi ,n j +2N j . ✓

In the last row of the second block row, n j = N j and nm = 2, we note the

eigenvalue equation

p2ψi ,N j +p1ψi ,2N j −1 − [p1 +2p2]ψi ,2N j +p2ψi ,3N j =µiψi ,2N j .

We calculate the term µiψi ,N j similar to Eq. (4.34): we apply the identities

(4.27a, 4.27c, 4.27d) to find

µiψi ,N j = −2[p1 +p2]ψi ,2N j +p1[ψi ,2N j −1 +ψi ,2N j +1]

+p2[ψi ,N j +ψi ,3N j ]

and we replace ψi ,2N j +1 by ψi ,2N j with the terminal value expression

f (v , N j +1) = f (v , N j )

in Eq. (4.30) to obtain the desired eigenvalue equation

µiψi ,N j = p2ψi ,N j +p1ψi ,2N j −1 − [p1 +2p2]ψi ,2N j +p2ψi ,3N j . ✓

The solution of the eigenvalue problem for all further inner block rows

nm ∈ {3, . . . , Nm −1} is analog to the described way. So, we continue with

the last block row.

Nm -th Block Row: In the last block row, nm = Nm , we have a similar

situation as in the first block row as

[Ã2,2, Ã2,0]



ψi ,(Nm−2)N j +1
...

ψi ,(Nm−1)N j

ψi ,(Nm−1)N j +1
...

ψi ,N j Nm


= Ã2,0


ψi ,(Nm−2)N j +1

...

ψi ,(Nm−1)N j

+ Ã2,2


ψi ,(Nm−1)N j +1

...

ψi ,N j Nm

=µi


ψi ,(Nm−2)N j +1

...

ψi ,(Nm−1)N j

 .

In contrast to the previous block rows, we have to apply the identity of the

terminal value (4.31) in each line the last block.

The first eigenvalue equation of the last block, n j = 1 and nm = Nm , is

noted as

p2ψi ,(Nm−2)N j +1−[p1+p2]ψi ,(Nm−1)N j +1+p1ψi ,(Nm−1)N j +2 =µiψi ,(Nm−1)N j +1.

We calculate the eigenvalue expression µiψi ,(Nm−1)N j +1 as

µiψi ,(Nm−1)N j +1 =
(−2p1[1− f (2v ,1)]−2p2[1− f (2w ,1)]

)
f (v ,1) f (w , Nm)

= −2[p1 +p2] f (v ,1) f (w , Nm)+2p1 f (2v ,1) f (v ,1) f (w , Nm)

+2p2 f (v ,1) f (2w ,1) f (w , Nm) (4.36)
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and we yield

f (v ,1) f (2w ,1) f (w , Nm) = f (v ,1) [ f (w , Nm −1)+ f (w , Nm +1)].

Here, we apply the identity (4.31) and so we find

µiψi ,n = p2 f (v ,1) f (w , Nm −1)− [p1 +p2] f (v ,1) f (w , Nm)

+p1 f (v ,2) f (w , Nm)

= p2ψi ,(Nm−2)N j +1 − [p1 +p2]ψi ,(Nm−1)N j +1 +p1ψi ,(Nm−1)N j +2. ✓

We note the eigenvalue equation of the intermediate lines in the last

block, n j ∈ {2, . . . , N j −1} and nm = Nm , as

p2ψi ,(Nm−2)N j +n j +p1ψi ,(Nm−1)N j +n j −1 − [2p1 +p2]ψi ,(Nm−1)N j +n j

+p1ψi ,(Nm−1)N j +n j +1 =µiψi ,(Nm−1)N j +n j .

and we evaluate µiψi ,(Nm−1)N j +n j analog to the previous eigenvalue com-

putations with Eq. (4.26) and the identities (4.27a, 4.27b, 4.27c) and (4.31).

Thus, we yield

µiψi ,(Nm−1)N j +n j = −2[p1 +p2]ψi ,(Nm−1)N j +n j

+p1[ψi ,(Nm−1)N j +n j −1 +ψi ,(Nm−1)N j +n j +1]

+p2[ψi ,(Nm−2)N j +n j +ψi ,(Nm−1)N j +n j ]

= p2ψi ,(Nm−2)N j +n j +p1ψi ,(Nm−1)N j +n j −1

− [2p1 +p2]ψi ,(Nm−1)N j +n j +p1ψi ,(Nm−1)N j +n j +1. ✓

j = 1 j = N j

m = 1

m = Nm

( j ,m) = (2,1)

Neighbors

x1

x2

Figure 4.7: The finite volume cell
at ( j ,m) = (N j , Nm ) corresponds
to the eigenvalue equation at
(n j ,nm ) = (N j , Nm ).

In the very last row, n j = N j and nm = Nm , we formulate the eigenvalue

equation

p2ψi ,(Nm−1)N j +p1ψi ,N j Nm−1 − [p1 +p2]ψi ,N j Nm =µiψi ,N j Nm .

The finite volume cell at index (N j , Nm) is adjacent to two boundary sides,

see Fig. 4.7. Hence, we have to apply the identities of the terminal value

expressions (4.30,4.31) and (4.27a, 4.27c) to evaluate µiψi ,N j Nm as

µiψi ,N j Nm = −2[p1 +p2]ψi ,N j Nm

+p1[ψi ,N j Nm−1 +ψi ,N j Nm+1]

+p2[ψi ,(Nm−2)N j +ψi ,(Nm+1)N j ]

= p2ψi ,(Nm−1)N j +p1ψi ,N j Nm−1 − [p1 +p2]ψi ,N j Nm . ✓

Three-dimensional Heat Conduction

The linear heat equation in three dimensions is noted as

d

d t
Θ(t ) = A3Θ(t )

with the system matrix A3 as in Eq. (3.38). Due to the fact that A3 is a block

tridiagonal matrix like A2, we can apply the same ideas and techniques

from the previous proof. We suggest to compute the eigenvalues of A3 as
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µ j ,m,k = −2p1

[
1−cos

(
[ j −1]

π

N j

)]
−2p2

[
1−cos

(
[m −1]

π

Nm

)]
−2p3

[
1−cos

(
[k −1]

π

Nk

)]
(4.37)

with coefficients p1 = α1

∆x2
1

, p2 = α2

∆x2
2

, p3 = α3

∆x2
3

and for

( j ,m,k) ∈ {1, . . . , N j }× {1, . . . , Nm}× {1, . . . , Nk }.

The eigenvalues are sorted with the global index i ( j ,m,k), see Eq. (3.7), as

µ j ,m,k =µi . We define the function

f (z,n) := cos([2n −1]z)

and formulate the corresponding i -th eigenvector asψi := (ψi ,1, . . . ,ψi ,Nc )⊤,

Nc = N j Nm Nk , with its elements as

ψ( j ,m,k),(n j ,nm ,nk ) = f

(
j −1

2N j
π,n j

)
f

(
m −1

2Nm
π,nm

)
f

(
k −1

2Nk
π,nk

)
(4.38)

for (n j ,nm ,nk ) ∈ {1, . . . , N j } × {1, . . . , Nm} × {1, . . . , Nk }. The correctness of

eigenvalues µi and eigenvectors ψi can be checked via the evaluation of

the eigenvalue problem

A3ψi =µiψi

in an analog way to the previous proof of lemma 4.2.

Summarizing the findings of this section, we are now able to compute

the eigenvalues and eigenvectors of ANd . This fact helps us in the next

sections to gain a deeper understanding of the numerical behavior and

to construct a closed-form solution of the approximated heat equation in

Section 4.3.

4.2 Matrix Properties and Stiffness

In this section, we discuss basic properties of system matrix ANd and its

related linear heat conduction problem in multiple spatial directions as

formulated in Definition 3.2. First of all, we derive a matrix transforma-

tion of ANd to the diagonal matrix ÃNd . For this purpose, we check the

symmetry ANd = A⊤
Nd

and the orthogonality of the eigenvectors of ANd .

Afterward, we discuss and exemplify the numerical accuracy and stiffness

of the approximated linear heat conduction problem.
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Matrix Symmetry and Transformation

In the one-dim. case, we find the symmetry of matrix A1 as

A⊤
1 =



−a1,2 a1,2

a1,2 a1,1 a1,2

. . .
. . .

. . .

a1,2 a1,1 a1,2

a1,2 −a1,2

= A1

because the upper and lower sub-diagonals coincide. The system matrix

of the two-dim. case is a block matrix and so we need to apply the trans-

pose on each matrix block as

A⊤
2 =



Ã⊤
2,0 Ã⊤

2,2

Ã⊤
2,2 Ã⊤

2,1 Ã⊤
2,2

. . .
. . .

. . .

Ã⊤
2,2 Ã⊤

2,1 Ã⊤
2,2

Ã⊤
2,2 Ã⊤

2,0


with the matrix blocks

Ã⊤
2,0 =

(
A1 −p2I

)⊤ = (
A⊤

1 −p2I⊤
)= A1 −p2I = Ã2,0,

Ã⊤
2,1 =

(
A1 −2p2I

)⊤ = (
A⊤

1 −2p2I⊤
)= A1 −2p2I = Ã2,1,

Ã⊤
2,2 = p2I⊤ = Ã2,2.

Accordingly, we yield A⊤
2 = A2. We find the symmetry of A3 analog to the

two-dim. case as

A⊤
3 =



Ã⊤
3,0 Ã⊤

3,2

Ã⊤
3,2 Ã⊤

3,1 Ã⊤
3,2

. . .
. . .

. . .

Ã⊤
3,2 Ã⊤

3,1 Ã⊤
3,2

Ã⊤
3,2 Ã⊤

3,0

= A3

because all block matrices are symmetric as

Ã⊤
3,0 =

(
A2 −p3I

)⊤ = (
A⊤

2 −p3I⊤
)= A2 −p3I = Ã3,0,

Ã⊤
3,1 =

(
A2 −2p3I

)⊤ = (
A⊤

2 −2p3I⊤
)= A2 −2p3I = Ã3,1,

Ã⊤
3,2 = p2I⊤ = Ã3,2.

Now, we have the matrix symmetry at hand and so we show the orthog-

onality of the eigenvectors in the subsequent paragraphs. We define the fi-

nite dimensional scalar product for real-valued vectors 〈·, ·〉 : RN ×RN →R

as

〈v , w〉 :=
N∑

i=1
vi wi = v⊤w

for v , w ∈ RN . If the vectors v and w are not zero vectors and their scalar

product is zero as 〈v , w〉 = 0 then v and w are orthogonal.

A matrix M ∈RN×N is called self-adjoint if for all v , w ∈RN the identity

〈M v , w〉 = 〈v , M w〉
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holds. We know that a real-valued symmetric matrix M ∈ RN×N is self-

adjoint because we find

〈M v , w〉 = 〈v , M w〉 = (M v)⊤w = v⊤M⊤w = v⊤M w = 〈v , M w〉

and this concept holds in particular for ANd as 〈ANd v , w〉 = 〈v , ANd w〉 for

any v , w ∈ RNc with the number of cells Nc . In the next step, we assume

two different eigenvalues µi1 ̸= µi2 and eigenvectors ψi1 ̸=ψi2 for indices

i1 ̸= i2 ∈ {1, . . . , Nc }, which fulfill the eigenvalue equations

ANdψi1 =µi1ψi1 and ANdψi2 =µi2ψi2 .

In consequence, we find with the identities

〈ANdψi1 ,ψi2〉 = 〈ψi1 , ANdψi2〉

and

〈ANdψi1 ,ψi2〉 = 〈µi1ψi1 ,ψi2〉 =µi1〈ψi1 ,ψi2〉,
〈ψi1 , ANdψi2〉 = 〈ψi1 ,µi2ψi2〉 =µi2〈ψi1 ,ψi2〉

that the scalar product 〈ψi1 ,ψi2〉 = 0 because µi1 ̸= µi2 . This fact means

that all eigenvectors ψi are orthogonal and they are a complete basis of

RNc . If the eigenvectors are orthogonal and their vector norm ∥v∥ :=p〈v , v〉
is one, then we call them orthonormal. They are computed as

ψi := ψi

∥ψi∥
for i ∈ {1, . . . , Nc }. Moreover, the orthonormal eigenvectors form an orthog-

onal matrix9 V := [
ψ1, . . . ,ψNc

]
because 9 As the definitions of orthogonal vectors

and matrices differ, we remark that an or-
thogonal matrix must have unit vectors
as rows and columns. In the context
of complex-valued computations, we find
the term unitary matrix.

V
⊤

V = I ⇔V
⊤ =V

−1
.

We apply the identity 〈ψi1 , ANdψi2〉 =µi2〈ψi1
,ψi2〉 for each possible i1, i2 ∈

{1, . . . , Nc } to yield the transformation

V
⊤

ANd V = ÃNd V
⊤

V = ÃNd , (4.39)

which is equivalent to the identity

ANd =V ÃNd V
⊤

(4.40)

with matrix ÃNd consisting of the eigenvalues as

ÃNd :=


µ1

µ2

. . .

µNc

 .

We remark that the symmetry of ANd and the resulting orthogonality of

V are key factors to compute the transformation (4.40) because otherwise

we had to use the inverse V
−1

and its computation might be costly.
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One of the main goals of transformation (4.39) is the evaluation of exp(ANd t )

as part of the solution of the linear heat equation

Θ(t ) = exp(ANd t )Θ(0).

We calculate this matrix exponential as

exp(ANd t ) =
∞∑

n=0

1

n
(ANd t )n =

∞∑
n=0

1

n

(
V ANd t V

−1
)n

=
∞∑

n=0
V

1

n

(
ANd t

)n V
−1

= V exp(ÃNd t ) V
−1 = V exp(ÃNd t ) V

⊤

= V diag(exp(µ1t ), . . . ,exp(µNc t )) V
⊤

. (4.41)

In Section 4.1, we computed the eigenvalues of ANd and we find the first

eigenvalue for each geometry to be zero: µ1 = 0, see Eq. (4.11,4.23,4.37).

This affects the finding of the inverse of ANd , the numerical accuracy and

the stiffness property as we discuss next. We calculate the determinant of

ANd as

det
(

ANd

)= det
(
V ÃNd V

⊤)
= det

(
V

)
det

(
ÃNd

)
det

(
V

⊤)
= det

(
ÃNd

)
because V is unitary with det(V

⊤
V ) = det(I ) = 1. Thus, we find the deter-

minant as the product of eigenvalues

det
(

ÃNd

)= Nc∏
i=1

µi = 0

because µ1 = 0 for all considered geometries.10 This issue implies that 10 A matrix with a zero eigenvalue is also
called singular matrix.we cannot compute the inverse of ANd and ÃNd because the inverse of a

square matrix M ∈RN×N is found with the adjugate adj(·) as

M−1 = adj(M)

det(M)
.

The fact that we are not able to compute the inverse of ANd leads to further

implications. We consider a linear heat conduction problem with constant

non-zero Neumann boundary conditions as

d

d t
Θ(t ) = ANdΘ(t )+φ

with a constant heat flux vector φ ∈ RNc . If we wish to find a steady-state

temperature distributionΘst with

d

d t
Θ(t ) = 0 = ANdΘst +φ

for t →∞, then we are not able computeΘst via

Θst =−A−1
Nd
φ

because the inverse matrix A−1
Nd

does not exist. Instead, we have to solve

an optimization problem

Θ∗
st = argmin

Θst
∥ANdΘst +φ∥

to yield an approximation of the steady-state temperatureΘ∗
st .
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Numerical Accuracy and Stiffness

The right-hand side of the linear heat equation (3.34) is computed several

times during a simulation run and each execution causes small numerical

errors. Thus, we are interested how precisely our approach works. A well

established statement is that a computation is called well-posed if small

variations of the input data lead to small variations of the resulting data,

see [81, page 37]. In the context of matrix vector multiplications as

A w = b

with A ∈RN×N , w , b ∈RN and N ∈N, we call the matrix A well-conditioned

if its related matrix vector multiplication is well-posed. Otherwise, we call

A ill-conditioned. We begin with a general overview and apply the findings

of this analysis afterwards on the linear heat equation.

We consider a mapping f : RN →RN , N ∈N, the true input data w ∈RN

and the disturbed input data w̃ := w +∆w with small variations ∆w ∈RN .

The relative error of the function evaluation f has to be smaller than the

error of the input data as

er el =
∥ f (w̃)− f (w)∥

∥ f (w)∥ ≤ κ ∥w̃ −w∥
∥w∥

with coefficient κ > 0. In case of a linear mapping f (w) := A w with A ∈
RN×N we yield

er el =
∥A(w̃ −w)∥

∥Aw∥ = ∥A∆w∥
∥Aw∥ ≤ κ∥∆w∥

∥w∥ . (4.42)

If we consider a disturbance δ > 0 only at the i -th position as ∆w = δei

with a standard unit vector ei = (0, . . . ,0,1,0, . . . ,0)⊤, i ∈ {1, . . . , N }, then we

find

A∆w = Aeiδ= δ


a1,i

...

aN ,i


and we note Eq. (4.42) as

er el =
∥A∆w∥
∥Aw∥ = |δ|∥Aei∥

∥Aw∥ =
|δ|

√∑N
n=1 a2

n,i

∥Aw∥ ≤ κ |δ|
∥w∥ . (4.43)

We see in Eq. (4.43) that the error depends on the position i ∈ {1, . . . , N }

and if we consider all possible positions then the computation of the er-

ror would be computationally costly. Therefore, we may approximate it

via the right-hand side of Eq. (4.43). The coefficient κ is called condition

number and in case of a symmetric matrix A with full rank, we obtain it as

κ := ∥A∥∥A−1∥ =
max
∥w∥=1

∥Aw∥
min
∥w∥=1

∥Aw∥ = |µmax (A)|
|µmi n(A)| (4.44)

in which |µmax (A)| =
√
µmax (A⊤A) and |µmi n(A)| =

√
µmi n(A⊤A) denote

the absolute maximum and minimum eigenvalue of A.

When we apply these concepts on the right-hand side of the linear heat

equation ANdΘ(t ) for any time t ∈ [0,T f i nal ), then we see the main issue

that the inverse A−1
Nd

and consequently κ do not exist because

µ1 = 0 = |µmi n(ANd )|.
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This means that we cannot estimate the relative error because the upper

bound, the right-hand side of Eqs. (4.42, 4.43) may grow up to infinity.

Hence, we call matrix ANd ill-conditioned.

We find this issue in another property: the stiffness of the differential

equation. A system of differential equations is called stiff if the fastest

component of its solution is significantly faster than the slowest compo-

nent. In case of linear systems11, e.g. d
d t z(t ) = Az(t ) with A ∈ RN×N the 11 This stiffness concept also applies to

nonlinear differential equations and may
be studied via linearization of the nonlin-
ear equations.

differential equation is called stiff, if

|µmax (A)|≫ |µmi n(A)|

and the stiffness ratio is noted as |µmax (A)|
|µmi n (A)| as in Eq. (4.44). We see that

the linear heat equation is stiff because |µmax (A)| = |µNc |≫ |µmi n(A)| = 0.

This stiffness property affects the application of the numerical integration

methods, because common (non-stiff) numerical solvers, like the explicit

Euler method and the explicit Runge-Kutta method may work poorly and

we need stiffness-aware, implicit, numerical solvers to handle this issue.

We discuss this situation in Chapter 5.

Example: Numerical Error of One-dimensional Heat Conduction

We exemplify the relative error er el as in Eq. (4.43) for the one-dim. heat

equation
d

d t
Θ(t ) = A1 Θ(t )

with A1 = p1 D̃1 and p1 = 1, see Eq. (3.31). We demonstrate the error

for an increasing number of cells Nc ∈ {3,4, . . . ,100} and we assume the

normalized temperature vector

ΘNc =
1

∥ΘNc ∥
ΘNc with ΘNc =



1

1+ 1
Nc−1

1+ 2
Nc−1
...

1+ Nc−2
Nc−1

2


.

We only calculate the relative errors, which relate to the first and second

column

er el ,1 = |δ| ∥A1 e1∥
∥A1 ΘNc ∥

and er el ,2 = |δ| ∥A1 e2∥
∥A1 ΘNc ∥

with standard unit vectors

e1 =


1

0
...

0

 and e2 =



0

1

0
...

0


and have the norms

∥A1 e1∥ = =
√

(−1)2 +12 =p
2,

∥A1 e2∥ = =
√

12 + (−2)2 +12 =p
6.
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Nc 3 5 10 20 50 100

er el ,1 5.4 13.8 43.6 130.0 529.6 1512.8

er el ,2 9.3 24.9 75.6 225.2 917.4 2620.2

Table 4.1: Relative numerical error of the
linear heat equation.

All remaining relative errors are equal to the previous ones because the er-

ror of the last column is analog to the first one and the error of the second

column is the same for all central columns as

Number of Cells
3 20 40 60 80 100

R
el
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e 
E
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Figure 4.8: The relative error er el ,1 and
er el ,2 in the simulation of the linear heat
conduction is increasing by the number of
cells Nc ∈ {3,4, . . . ,100}.

∥A1ei∥ =
 ∥A1e1∥ if i = Nc ,

∥A1e2∥ if i ∈ {3, . . . , Nc −1}.

As ∥A1 e2∥ = p
3∥A1 e1∥, we see that er el ,2 = p

3 er el ,1. We set the distur-

bance δ = 1 and evaluate the relative error for Nc = {3, . . . ,100}. The com-

puted relative errors are noted in Table 4.1 and depicted Fig. 4.8. We find a

nonlinear rise of the relative error, which means that finer approximations

are stronger affected by the ill-conditioned matrix ANd than coarse ones.

As we are interested in a precise approximation to simulate the thermal

dynamics exactly, we face the challenge to compute exact temperatures

with a fine spatial sampling while avoiding such numerical inaccuracies.

4.3 Analytical Solution of the Linear Problem

In this section, we derive the analytical solution of the linear heat equation

with non-zero boundary conditions (3.30). We know that an inhomoge-

neous differential equation

d

d t
z(t ) = Az(t )+ f (t ) (4.45)

with system matrix A ∈ RN×N , states z : [0,T f i nal ) → RN and additional

force f : [0,T f i nal ) →RN is solved via “variation of constants” as

z(t ) = exp(At ) z(0)+
∫ t

0
exp(A[t −τ]) f (τ)dτ. (4.46)

We transfer this concept to our linear heat conduction problem with tem-

peratures z(t ) =Θ(t ), system matrix A = ANd , see Eq. (3.35) and heat flux

f (t ) =
Nd∑
l=1

El
φl (t )

∆xl
.

In consequence, we evaluate Eq. (4.41) and we obtain the solution

Θ(t ) = V exp(ÃNd t )V
⊤
Θ(0)+V

∫ t

0
exp(ÃNd [t −τ])V

⊤
[

Nd∑
l=1

El
φl (τ)

∆xl

]
dτ (4.47)

with diagonal matrix exp(ÃNd t ) = diag(exp(µ1t ), . . . ,exp(µNc t )). Hence,

the computation of the eigenvalues and eigenvectors in Section 4.1 en-

ables us here to find an analytical solution (4.47) of the spatially approx-

imated heat equation (3.30). If we start at any time t1 ∈ [0,T f ) and we

integrate until t2 ∈ (0,T f ], t1 < t2, then we solve the linear heat equation

iteratively as
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Θ(t2) = V exp(ÃNd [t2 − t1])V
⊤
Θ(t1)+V

∫ t2

t1

exp(ÃNd [t2 −τ])V
⊤

[
Nd∑
l=1

El
φl (τ)

∆xl

]
dτ (4.48)

for arbitrary time steps in [0,T f ]. If these time steps are sampled equidis-

tantly with sampling time ∆T = t2 − t1 and we assume a constant heat

flux between the samplings then we yield at time t = n∆T with iteration

n ∈ {0,1, . . . ,⌊ T f

∆T ⌋−1} the solution

Θ([n +1]∆T ) = V eÃNd
∆T V

⊤
Θ(n∆T )+V

∫ ∆T

0
eÃNd

[∆T−τ] dτV
⊤

[
Nd∑
l=1

El
φl (n∆T )

∆xl

]
.

In some scenarios, it is useful to consider the transformed tempera-

tures

Θ̃(t ) :=V
−1
Θ(t ) =V

⊤
Θ(t ),

which lead to the differential equation

d

d t
Θ̃(t ) = V

⊤ d

d t
Θ(t )

= V
⊤

ANd V Θ̃(t )+V
⊤

[
Nd∑
l=1

El
φl (t )

∆xl

]

= ÃNd Θ̃(t )+V
⊤

[
Nd∑
l=1

El
φl (t )

∆xl

]
. (4.49)

We find the solution of differential equation (4.49) via “variation of con-

stants” like above as

Θ̃(t ) = exp(ÃNd t )Θ̃(0)+
[∫ t

0
exp(ÃNd [t −τ])V

⊤ Nd∑
l=1

El
φl (τ)

∆xl
dτ

]
. (4.50)

We discuss the relation between the solution of the original and trans-

formed states in Eq. (4.47) and (4.50) in an example in the end of this

section.

Constant Heat Flux

The total heat flux of supplied power and thermal emissions usually varies

in time. Though, this variation impedes the task to analyze the impact of

boundary conditions on the thermal dynamics inside the object. Hence,

we may assume a constant heat flux , e.g. φl (t ) ≡φl = const . In this case,

we are able to calculate the integral in Eq. (4.47) and (4.50) in a closed form

as ∫ t

0
exp(ÃNd [t −τ])V

⊤ Nd∑
l=1

El
φl (τ)

∆xl
dτ

=
∫ t

0
exp(ÃNd [t −τ])dτ V

⊤ Nd∑
l=1

El
φl

∆xl

= M(t ) V
⊤ Nd∑

l=1
El

φl

∆xl
(4.51)

with diagonal matrix

M(t ) := diag

(
t ,

1

|µ2|
[
1−eµ2t ] , . . . ,

1

|µNc |
[
1−eµNc t ]) .
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We find the elements of M(t ) via simple integration for µ1 = 0 as∫ t

0
e0[t−τ] dτ=

∫ t

0
dτ= t

and ∫ t

0
eµi [t−τ] dτ= 1

µi

[
eµi t −1

]= 1

|µi |
[
1−eµi t ]

for i ∈ {2, . . . , Nc } because all µi < 0. Therefore, we note the solution of Eq.

(4.47) and

Θ(t ) = V exp(ÃNd t )V
⊤
Θ(0)+V M(t ) V

⊤ Nd∑
l=1

El
φl

∆xl
(4.52)

and we find the solution of Eq. (4.50) with the transformed temperatures

Θ̃ as

Θ̃(t ) = exp(ÃNd t ) Θ̃(0)+M(t ) V
⊤ Nd∑

l=1
El

φl

∆xl
. (4.53)

Heat Transfer along Boundary Sides

If we assume the thermal emissions φem , as in Definition 2.3, in the inte-

gral of Eq. (4.47) and (4.50), then we obtain a (nonlinear) state feedback

because the temperature values along the boundary sides determine the

emitted heat flux φem . In case of pure linear heat transfer

φl ,i (t ) =−hl ,i
[
Θi (t )−Θamb,l ,i

]
in each boundary cell i ∈ S \ S̊ , see Eq. (3.8) we summarize all φl ,i for

each l ∈ {1, . . . , Nd } and we note the state feedback via thermal emissions

as

φl (t ) =−Hl E⊤
l Θ(t )+Hl Θamb,l . (4.54)

Here, the expression E⊤
l Θ(t ) filters for boundary cells and the heat transfer

coefficients are stored as Hl = diag(hl ,1, . . . ,hl ,N j Nm Nk
) with

H1 ∈R2Nm Nk×2Nm Nk , Θamb,1 ∈R2Nm Nk ,

H2 ∈R2N j Nk×2N j Nk , Θamb,2 ∈R2N j Nk ,

H3 ∈R2N j Nm×2N j Nm , Θamb,3 ∈R2N j Nm .

We identify φl in right-hand side of Eq. (4.49) with the thermal emission

in Eq. (4.54) and so we obtain the differential equation

d

d t
Θ̃(t ) = ÃNd Θ̃(t )+V

⊤
[

Nd∑
l=1

El
φl (τ)

∆xl

]

=
[

ÃNd −V
⊤ Nd∑

l=1

1

∆xl
El Hl E⊤

l

]
︸ ︷︷ ︸

=:AT E

Θ̃(t )+V
⊤

[
Nd∑
l=1

1

∆xl
El Hl Θamb,l

]

in which the new matrix12 AT E = ÃNd −V
⊤∑Nd

l=1
1
∆xl

El Hl E⊤
l is in general 12 It describes a natural feedback through

thermal emissions.not a diagonal (or triangular) matrix. Hence, we lose the approach to for-

mulate the eigenvalues and eigenvectors of AT E in a closed form and so

we may lose the numerical precision of the solution. However, the eigen-

values and eigenvectors of AT E might be computed numerically. These

ideas are limited to the linear heat transfer because in case of nonlinear

heat radiation, we have a nonlinear differential equation.
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Gauss-Legendre Quadrature

The integrals in the Eq. (4.47) and (4.50) are in general difficult to solve

manually for an arbitrary (smooth and integrable) heat flux φl (t ). Thus,

we need to compute the integral numerically. One of the most prominent

approaches is the Gauss-Legendre quadrature, which is stated as∫ 1

−1
f (s)d s =

n∑
i=1

wi f (si )+Rn (4.55)

for an integrable function f : R→Rwith weights wi > 0, quadrature nodes

si ∈ [−1,1], remainder Rn ≥ 0, and the order of quadrature n ∈N>0, see also

the literature [82, p. 40] and [83, p. 887]. The task is to find suitable weights

and quadrature nodes such that the remainder Rn ≈ 0 and∫ 1

−1
f (s)d s ≈

n∑
i=1

wi f (si ).

The quadrature node si is the i -th root of the Legendre polynomial Pn(x),

which is calculated either with the recursion formula

(n +1)Pn+1(s) = (2n +1)s Pn(s)−nPn−1(s)

or with Rodrigues’ formula 13 13 Named after Benjamin Olinde Rodrigues
(*1795, † 1851) [84].

Pn(s) = 1

2nn!
d n

d sn

(
s2 −1

)n
.

We calculate the weights as

wi = 2

(1− s2
i )

[
d

d s Pn(s)|s=si

]2

and we find the remainder as

Rn = 22n+1 [n!]4

(2n +1)[(2n)!]3 f 2n(s)

for s ∈ (−1,1). We are interested in the interval [t1, t2] with 0 ≤ t1 < t2 ≤ T f

instead of [−1,1] and so we need to change the interval in Eq. (4.55) with

ξ 7→ t2−t1
2 s + t1+t2

2 and dξ
d s = t2−t1

2 as∫ t2

t1

f (ξ)dξ =
∫ 1

−1
f

(
t2 − t1

2
s + t1 + t2

2

)
t2 − t1

2
d s

≈ t2 − t1

2

n∑
i=1

wi f

(
t2 − t1

2
si + t1 + t2

2

)
(4.56)

The numerical integration in the subsequent example is implemented

with J U L I A library FastGaussQuadrature.jl. This library provides methods

to compute the weights wi and quadrature nodes si in case of a high order

n ≥ 60 according to the approach in article [85].
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Example: Simulation of One-dimensional Heat Conduction

We exemplify our findings with a simplified one-dim. heat conduction

example with Nc = 3, ∆x = 1, and the coefficients λ = ρ = c = 1. We only

have two boundary sides BW and BE which influence only one cell per side

and so we have the heat flux φ1(t ) =
(
φ1,1(t )

φ1,2(t )

)
. We compute the solution

of the transformed problem (4.50) for two scenarios. Firstly, we assume

a constant heat flux and solve the integral manually; and secondly, the

heat flux varies in time and we solve the integral numerically with Gauss-

Legendre quadrature. We note the differential equation of the spatially

approximated heat conduction as

d

d t
Θ(t ) = A1Θ(t )+E1φ1(t )

=

−1 1 0

1 −2 1

0 1 −1

Θ(t )+

1 0

0 0

0 1

(
φ1,1(t )

φ1,2(t )

)
. (4.57)

We find the eigenvalues µ ∈ {0,−1,−3} and the original and normalized

eigenvectors as

V =

1
p

3
2

1
2

1 0 −1

1 −
p

3
2

1
2

 and V =


1p
3

1p
2

1p
6

1p
3

0 − 2p
6

1p
3

− 1p
2

1p
6


and we transform the original differential equation (4.57) with the eigen-

vectors and the new states Θ̃ into

d

d t
Θ̃(t ) = Ã1Θ̃(t )+V ⊤E1φ1

=

0

−1

−3

Θ̃(t )+


1p
3

1p
3

1p
2

− 1p
2

1p
6

1p
6


(
φ1,1(t )

φ1,2(t )

)
. (4.58)

Scenario 1: Constant Heat Flux

In the first scenario, we consider a constant heat flux φ1(t ) =φ1. We yield

the integral as in Eq. (4.51) with diagonal matrix

M(t ) = diag

(
t ,1−e−t ,

1

3

[
1−e−3t ]) .

and we solve differential equation (4.58) with Eq. (4.53) as

Θ̃1(t ) = Θ̃1(0)+ t
1p
3

[
φ1 +φ2

]
, (4.59a)

Θ̃2(t ) = e−t Θ̃2(0)+ [
1−e−t ] 1p

2

[
φ1 −φ2

]
, (4.59b)

Θ̃3(t ) = e−3t Θ̃3(0)+ 1

3
p

6

[
1−e−3t ][

φ1 +φ2
]

. (4.59c)

We consider the initial temperature values

Θ0 =

 1

2

−1

 ⇒ Θ̃0 =V
⊤
Θ0


2p
3p
2

− 4p
6


and we visualize the solution in Fig. 4.9 for two cases:
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−1

1

2

Time in [s]

Θ̃1 Θ̃2 Θ̃3

(a) Insulation

0.5 1 1.5 2

−1

1

2

Time in [s]

Θ̃1 Θ̃2 Θ̃3

(b) Heating and Cooling

0.5 1 1.5 2

Figure 4.9: Simulation of transformed so-
lution (4.59) with insulated boundaries in
(a) φ1 = (0,0)⊤ and constant heat flux in
(b) φ1 = (2,−1)⊤.

1. insulated boundary sides, φ1 = (0,0)⊤, in Fig. 4.9 (a) and

2. heating on BW and cooling on BE , φ1 = (2,−1)⊤, in Fig. 4.9 (b).

In Fig. 4.9 (a) we find that the states Θ̃2 and Θ̃3 converge towards zeros

and Θ̃1 is constant because they are only affected by the unforced term

eµi t Θ̃i . The states in Fig. 4.9 (b) increase because of the positive heat flux

sum φ1,1 +φ1,2 = 1. In particular, the first state rises linearly because of

linear time in Eq. (4.59a) and the states Θ̃2 and Θ̃3 look like a charging

curve of a capacitor in a RC circuit because of the terms[
1−e−t ] and

[
1−e−3t ]

in Eq. (4.59b, 4.59c).

Scenario 2: Time-varying Heat Flux

Now, we wish to solve the original and transformed differential equations

(4.57, 4.58) with the time-varying heat flux

φ1,1(t ) = 1.2exp

(
−

[
0.7

(
t − T f

3

)]2
)

, φ1,2(t ) = 0. (4.60)

1 2 3 4 5 6 7 8

0.5

1.0

Time t in [s]

Figure 4.10: Time-varying heat flux on
boundary BW as in Eq. (4.60).

This heat flux means that we supply a power density on BW while BE is

insulated. We consider this heat fluxφ1,1(t ) here because we discuss input

signals with such a shape in Chapter 7 for the open-loop control design.

We subdivide the time interval (0,T f ) into parts (tn , tn+1) such that

0 = t0 < t1 < t2 < . . . < tNT = T f .

and we solve the differential equation of the transformed states iteratively

in accordance with Eq. (4.48) as

Θ̃(tn+1) = exp(ÃNd [tn+1 − tn]) Θ̃(tn)

+
∫ tn+1

tn

exp(ÃNd [tn+1 −τ])V
⊤

E1
φ1(τ)

∆x1
dτ

for n ∈ {0, . . . , NT −1}. In particular, we compute the integral numerically

with Gauss-Legendre quadrature as in Eq. (4.56). For the simulation, we

assume a final time T f = 10 seconds, equidistant time steps tn = 0.1n and

initial valuesΘ(0) = Θ̃(0) = (0,0,0)⊤. Finally, we compute the original tem-

peratures asΘ(tn) =V Θ̃(tn).
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Time t in [s]
0 1 2 3 4 5 6 7 8 9 10

0.0

0.5

1.0
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Θ̃1

Θ̃2

Θ̃3

(a) Transformed States

Time t in [s]
0 1 2 3 4 5 6 7 8 9 10

0.0

0.5

1.0

1.5
Θ1

Θ2

Θ3

(b) Original States

Figure 4.11: Simulation of the one-dim.
heat conduction with time-varying heat
flux on BW and insulation on BE . Temper-
ature evolution is visualized of the trans-
formed states Θ̃ in (a) and of the original
statesΘ in (b).

In Fig. 4.11 (a), the state Θ̃1 purely integrates heat fluxφ1,1 while Θ̃2 and

Θ̃3 approach a similar shape likeφ1,1. In contrast to that, the original states

in Fig. 4.11 (b) only show an integrating behavior and all states reach the

same final temperature. This is an important fact to steer a temperature

distribution from an initial value to a desired final value, see Chapter 7.

In this chapter, we derived the eigenvalues and eigenvectors of the lin-

ear heat conduction and we constructed the analytical solution with them.

In Section 4.2 and 4.3, we highlight the influence of the first eigenvalue

µ1 = 0, which causes the ill-conditioning of ANd and the integrating be-

havior of the heat flux in the solution (4.47). The analytical solution of

the linear heat conduction provides a powerful tool to examine the linear

thermal dynamics. However, as we face nonlinear problems in our gen-

eral framework, we describe and utilize numerical solution methods in the

next chapter.
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Numerical Time Integration

In the previous chapters, we approximated the heat conduction problem

in space and we discussed the special case of linear thermal dynamics,

where we can compute eigenvalues and eigenvectors of the linear system

and this enables us to find an analytical solution. However, we had to con-

sider thermally insulated boundaries to yield such a closed-form solution.

As we are able to note such analytical solutions only for certain scenar-

ios, in particular for constant material properties and no heat radiation, it

is necessary to present a numerical solution in time of the approximated

nonlinear heat conduction, see Definition 3.1. For this purpose, we intro-

duce the Euler integration1 in Section 5.1 and the Runge-Kutta methods2 1 According to Leonhard Euler
(∗1707,†1783) [86].
2 According to Carl David Tolmé Runge
(∗1856, †1927) [87] and Martin Wilhelm
Kutta (∗1867,†1944) [88].

in Section 5.2. We apply these methods on the approximated linear heat

equation and we discuss the influence of eigenvalues on the quality of the

numerical results. In Section 5.3, we evaluate and compare the backward

Euler, trapezoidal rule and an implicit Runge-Kutta method for a simple

linear heat equation.

5.1 Euler Integration Methods

First of all, we introduce the Euler methods, which provide the simplest

numerical integration approaches. We do not consider the spatially ap-

proximated quasilinear heat equation (3.27) explicitly because the pre-

sented method may be applied to any linear or nonlinear system and we

can transfer the concept directly to the heat equation. We wish to solve

numerically the differential equation

d

d t
z(t ) = f (z(t ), t ) (5.1)

with states z : [0,T f ) →RN , right-hand side f : RN ×[0,T f ) and initial value

z(0) = z0. We approximate the differential operator by a first order finite

difference approach

d

d t
z(t ) ≈ 1

∆T
[z(t +∆T )− z(t )]

with sampling time ∆T > 0 and we set the right-hand side as

f (z, t ) :=ω f (z, t )+ (1−ω) f (z(t +∆T ), t +∆T )

with decision variable ω ∈ [0,1]. We obtain the time-discrete equation

z(t +∆T ) = z(t )+∆T
[
ω f (z, t )+ (1−ω) f (z(t +∆T ), t +∆T )

]
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and we note the one-step iteration scheme

f (tn )

f (tn+1)

∆T

tn tn+1

Figure 5.1: Sampling of nonlinear differ-
ential equation (5.1) at time steps tn and
tn+1 = tn +∆T .

z(tn+1) = z(tn)+∆T
[
ω f (zn , tn)+ (1−ω) f (zn+1, tn+1)

]
(5.2)

with time steps t = tn = n∆T for n ∈ {0,1, . . . , NT } and states zn = z(tn). We

visualize the sampling of the right-hand side of Eq. (5.1) in Fig. 5.1. Here,

we see that we lose probably necessary information of the continuous dif-

ferential equation with a coarse sampling. We call iteration (5.2) either

forward Euler (ω = 1), backward Euler (ω = 0) or trapezoidal rule (ω = 1
2 )

and we note them as

ω= 1 : z(tn+1) = z(tn)+∆T f (zn , tn), (5.3a)

ω= 0 : z(tn+1) = z(tn)+∆T f (zn , tn+1), (5.3b)

ω= 1

2
: z(tn+1) = z(tn)+ ∆T

2

[
f (zn , tn)+ f (zn , tn+1)

]
. (5.3c)

The forward Euler method (ω = 1) may be applied directly on any differ-

ential equation of the form (5.1). Nevertheless for ω < 1 we need to solve

the nonlinear equations

z(tn+1)− (1−ω)
∆T

2
f (z,n +1) = z(tn)+ω ∆T

2
f (zn+1, tn+1)

which might be computationally expensive for a large number of states.

The trapezoidal rule is also known in the context of partial differential

equations, in particular the heat equation, as Crank-Nicolson method.3 3 The method was developed by John
Crank (∗1916,†2006) [89], and Phyllis
Nicolson (∗1917,†1968) [90].

The one-step methods in Eq. (5.3) provide two parameters: sampling

time ∆T > 0 and decision variable ω ∈ [0,1]. The quality of the numerical

results depends strongly on their choice and so we need to check these

algorithms. For this purpose, we consider the differential equation

f (z, t ) =α z(t )

with α < 0 and initial value z(0) ̸= 0 as test problem. The analytical solu-

tion of this system is known as

z(t ) = exp(αt ) z(0) (5.4)

and the numerical algorithm is derived from the iteration scheme (5.2) as

z(tn+1) = 1+ω α∆T

1− (1−ω) a∆T
z(tn)

=
[

1+ω α∆T

1− (1−ω) a∆T

]n

z(0). (5.5)

The transition from an initial state z(0) to a future state z(tn+1) is described

by the term 1+ω α∆T
1−(1−ω) α∆T . We reformulate this term with the new variable

ζ :=−α∆T as the Euler iterator of the test problem

1 2 3 4

−2

−1

0

1

ζ

ω= 1

ω= 0

ω= 1
2

Figure 5.2: Euler iterator g (ζ,ω) for
forward Euler: ω= 1 (green),
backward Euler: ω= 0 (blue) and
trapezoidal rule: ω= 1

2 (purple).

g (ζ,ω) := 1−ωζ
1+ (1−ω)ζ

(5.6)

and we note the iteration

z(tn+1) = g (ζ,ω) z(tn) = g (ζ,ω)n z(0). (5.7)

The Euler iterator (5.6) is depicted in Fig. 5.2 forω ∈ {
0, 1

2 ,1
}
. We know that

the analytical solution (5.4) converges towards zero because a < 0. Thus,
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the numerical solution has to approach zero in the same way. In fact, the

iteration algorithm (5.7) converges towards zero if we choose (ζ,ω) such

that g (ζ,ω) ∈ (−1,1) because g (ζ,ω)n → 0 for n →∞. Otherwise, we yield

an pure oscillating result for g (ζ,ω) = −1 because g (ζ,ω)n = (−1)n or a

diverging result for g (ζ,ω) <−1 because g (ζ,ω)n →±∞. When we search

for the limit of g as

lim
ζ→∞

g (ζ,ω) = lim
ζ→∞

1−ωζ
1+ (1−ω)ζ

=− ω

1−ω

then we find that g (ζ,ω) ≤−1 for ω≤ 1
2 . This finding means that the back-

ward Euler and trapezoidal rule provide numerical converging algorithms,

which do not depend on the choice of sampling time ∆T . In contrast,

the forward Euler method only converges towards zero if ζ = −α∆T < 2

or equally ∆T < − 2
α . Additionally, we see in Eq. (5.6) that g (ζ,ω) = 0 for

ζ = 1
ω and ω > 0. So, we can reach the final state z(NT ) = 0 in one step in

Eq. (5.7) as

z(t1) = g

(
1

ω
,ω

)
z(0) = 0 and z(t1) = z(t2) = . . . = z(tNT ) = 0

if we choose either the forward Euler or trapezoidal rule.

We compare the numerical results of the one-step iteration algorithms

in Eq. (5.5) with the analytical solution (5.4). We fix parameter α = −1

and initial value z(0) = 1 and we choose sampling time ∆T = 0.5, which

guarantees a converging numerical solution. In Fig. 5.3, we visualize the

analytical solution and the resulting numerical iterations

0.5 1 1.5 2 2.5 3 3.5 4

1
3

2
3

1 ω= 1: forward Euler

ω= 0: backward Euler

ω= 1
2 : trapezoidal rule

Time t in [s]

Figure 5.3: Comparison of the iteration al-
gorithms in Eq. (5.5) with the analytical so-
lution (5.4) (orange line).

z(t ) = exp(−t ) (analytical solution),

z(tn+1) =
(

1

2

)n

(forward Euler),

z(tn+1) =
(

3

5

)n

(backward Euler),

z(tn+1) =
(

2

3

)n

(trapezoidal rule).

We see that the trapezoidal rule approximates the analytical solution bet-

ter than the forward and backward Euler method in this example. This

finding is only a specific result for the mentioned example and can not be

stated in general.

Linear Heat Equation with Insulated Boundaries

We transfer the general concepts of the integration methods to the linear

heat equation with transformed states as in Eq. (4.49) to demonstrate the

applicability. In particular, we consider a system with insulated boundary

conditions as
d

d t
Θ̃(t ) = ÃNd Θ̃(t ) (5.8)

in which Nd ∈ {1,2,3} denotes the number of dimensions and

ÃNd = diag(µ1, . . . ,µNc )



81

with Nc = N j ·Nm ·Nk as the number of temperature cells. We emphasize

that Eq. (5.8) deals as a test system to analyze the numerical integration

methods and the findings of this analysis shall be finally applied on the

original quasilinear heat equation (3.29) with boundary conditions.

We apply the one-step iteration scheme (5.2) on the transformed heat

equation (5.8) and we obtain

Θ̃(tn+1) = M Θ̃(tn) = M n Θ̃(0)

with diagonal matrix

M := (I − (1−ω)∆T ÃNd )−1(I +ω∆T ÃNd )

= diag(m1, . . . ,mNc ) and

M n = diag(mn
1 , . . . ,mN n

c
)

in which the elements are noted as4 4 We find these matrix elements because
of the diagonal structure of ÃNd

, see also
Section 4.2.mi = 1+ω∆Tµi

1− (1−ω)∆Tµi

for i ∈ {1, . . . , Nc }. We note mi ≡ g (−∆Tµi ,ω) and we compare this finding

with the ideas from the previous paragraph, see Fig. 5.2. So, we formulate

mi


> 0 if ω= 0,

∈ (−1,1] if ω ∈ (0, 1
2 ],

∈ (−∞,1] if ω ∈ ( 1
2 ,1].

Increasing the iteration n →∞, we distinguish the four scenarios

mn
i



→ 0 if mi ∈ (−1,0)∪ (0,1),

= 0 if mi = 0,

=±1 if mi =−1,

→±∞ if mi <−1.

(5.9)

If (1+ω∆Tµi ) < 0, then we yield numerical oscillations5 as 5 This does not occur for the backward Eu-
ler method, ω= 0.

mn
i

< 0 if n is odd,

> 0 if n is even.

Hence, we desire all diagonal elements as mi ∈ (−1,1], i ∈ {1, . . . , Nc } such

that all temperature values converge towards zero as Θ̃(tn) → 0. We denote

the iteration algorithm as numerically stable if the states show this conver-

gence. Moreover, if we have (1+ω∆Tµi ) > 0, then mi ∈ (0,1] and we avoid

numerical oscillations.

All eigenvalues µi are sorted in matrix ÃNd as

0 =µ1 >µ2 >µ3 > . . . >µNc ≈−4[p1 +p2 +p3]

with p1 = α1

∆x2
1

, p2 = α2

∆x2
2

and p3 = α3

∆x2
3

in the three-dim. case, see Eq. (4.37).

This sorting also applies to mi and we find m1 = 1 as the largest entry and

mNc =
1+ω∆TµNc

1− (1−ω)∆TµNc

as the smallest entry. If mNc ∈ (−1,1) then all other mi are inside this in-

terval, too. We summarize these concepts in the following definition.
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Definition 5.1 (Numerical Stability of the One-Step Iteration)

The one-step iteration of the transformed linear heat equation (5.8) con-

verges towards zero, Θ̃i (tn) → 0 for i ∈ {2, . . . , Nc }, if

mi = 1+ω∆Tµi

1− (1−ω)∆Tµi
∈ (−1,1) (5.10)

as in Eq. (5.9), and we denote the iteration as numerically stable.

Otherwise, if mi <−1 then the iteration tends to ±∞ and we call it numer-

ically unstable. ⃝

We conclude from the previous ideas and Definition 5.1 the following

statements.

• If condition (5.10) holds for i = Nc , then it holds also for i ∈ {2, . . . , Nc−1}

because m1 > . . . > mNc .

• If we choose ω ∈ [
0, 1

2

]
, e.g. backward Euler or trapezoidal rule, then

condition (5.10) holds for all ∆T > 0.

• If we set ω ∈ ( 1
2 ,1

]
, e.g. forward Euler, then we need to choose the sam-

pling time as

∆T ∈
(
0,

−2

µNc [2ω−1]

)
(5.11)

to guarantee a numerically stable one-step iteration.

In the literature, we find that a numerical integration method is called

A-stable if the iteration converges for any sampling time∆T > 0, this is the

case for the backward Euler method and the trapezoidal rule (or Crank-

Nicolson method). The forward Euler method is not A-stable because the

sampling time has to be ∆T ∈
(
0, −2

µNc

)
to yield a converging iteration. If a

numerical integration is A-stable and the iterator term

mi ≡ g (∆Tµi ,ω) > 0

for any sampling time ∆T > 0 and eigenvalue µi < 0, then the method is

called L-stable. The backward Euler method is L-stable, but not the trape-

zoidal rule. In the literature, we find A-stability in [91] and [92, p. 42], and

L-stability in [92, p. 45] and [93, p. 7].

The forward Euler method is a standard approach to solve differential

equations numerically, because it is very simple to implement. Though,

its performance and the quality of results depend strongly on the choice

of the sampling time ∆T . As heat conduction problems usually operate

slowly, we wish to choose a large∆T , but this may lead to numerical insta-

bilities. On the other hand the backward Euler method and the trapezoidal

rule provide numerically stable approaches to solve our heat conduction

problems. A drawback of these methods is the task to solve an implicit

equation, e.g. via the computation of a matrix inverse, which could be

computationally costly. We finish this section with a numerical evaluation

of the forward Euler method applied on a small heat conduction problem.
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Figure 5.4: Application of the forward Eu-
ler method on linear heat equation (5.12).
The second state converges smoothly to
zero for all sampling times. The third state
operates smoothly only for ∆T ∈ (0, 1

2 ) and

oscillates for ∆T ∈ ( 1
2 , 2

3 ).

Example: Forward Euler Method for One-dimensional Problem

We apply the forward Euler method on a small-scale one-dim. linear equa-

tion d
d tΘ(t ) = A1Θ(t ) with

A1 =

−1 1 0

1 −2 1

0 1 −1


to demonstrate the numerical stability, see also the example in Section 4.3.

We transform the linear differential equation with Θ̃(t ) =VΘ(t ) to

d

d t

Θ̃1(t )

Θ̃2(t )

Θ̃3(t )

=

0

−1

−3


Θ̃1

Θ̃2

Θ̃3


in which V = [ψ1,ψ2,ψ3] denotes the orthonormal eigenvectors, see Sec-

tion 4.2, and we derive with Eq. (5.2) and ω= 1 the forward Euler iteration

formula

Θ̃1(n +1) = m1 Θ̃1(n) = Θ̃1(n), (5.12a)

Θ̃2(n +1) = m2 Θ̃2(n) = [1−∆T ] Θ̃2(n), (5.12b)

Θ̃3(n +1) = m3 Θ̃3(n) = [1−3∆T ] Θ̃3(n). (5.12c)

In accordance with Definition 5.1, we seek for the maximum sampling

time ∆T such that mi ∈ (−1,1) for i ∈ {1,2,3}. The smallest eigenvalue

µ3 = −3 corresponds to m3 = 1−3∆T in Eq. (5.12c). So, we find that for-

ward Euler method is numerically stable, if the sampling time is inside the

interval ∆T ∈ (0, 2
3 ). In Table 5.1, we note m2 and m3 for five sampling
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∆T 1
5

1
3

1
2

2
3 1

m2 = 1−∆T 4
5

2
3

1
2

1
3 0

m3 = 1−3∆T 3
5 0 − 1

2 −1 −2

Table 5.1: Analysis of the sampling time
for the example system (5.12) of the Euler
method.

times and we see for these cases that m2 ≥ 0. Hence, only the last state Θ̃3

does not converge to zero while Θ̃1 and Θ̃2 do so. We portray the states Θ̃2

and Θ̃3 in Fig. 5.4 for the sampling times ∆T ∈ {0.2, 1
3 ,0.5, 2

3 } to emphasize

the numerical stability for ∆T < 2
3 .

5.2 Runge-Kutta Integration Methods

We return to the initial ideas of the one-step methods where we assume

the function z : [0,T f ] →R as the solution of a differential equation d
d t z(t ) =

f (z, t ). We find the solution at time t +∆T with time step ∆T > 0 as

z(t +∆T ) = z(t )+∆T
d

d t
z(t )+O (∆T 2). (5.13)

The term O (∆T 2) summarizes all remaining higher-order terms of the ap-

proximation. Reshaping Eq. (5.13) and considering O (∆T 2)
∆T = O (∆T ) → 0

for ∆T → 0 leads us to the first-order finite difference approximation

d

d t
z(t ) ≈ 1

∆T
[z(tn+1)− z(tn)]

with t = tn := n∆T and we note Eq. (5.13) as the forward Euler method

z(tn+1) = z(tn)+∆T f (z(tn), tn)

as in Eq. (5.2). If we take higher-order derivatives into account as

z(t +∆T ) = z(t )+∆T
d

d t
z(t )+ ∆T 2

2

d 2

d t 2 z(t )+O (∆T 3), (5.14)

then we need to approximate the second-order derivative d 2

d t 2 z(t ) = d
d t f (z, t )

to find the one-step iteration. We approach this second-order derivative

as

d 2

d t 2 z(t ) = d

d t
f (z, t ) ≈ 1

∆T

[
f (z +∆z, t +∆T )− f (z, t )

]
≈ 1

∆T

[
f (z +∆T f (z, t ), t +∆T )− f (z, t )

]
with ∆z ≈ z(t +∆T )− z(t ) ≈∆T f (z, t ) and we reformulate Eq. (5.14) as

z(t +∆T ) ≈ z(t )+∆T f (z, t )

+ ∆T

2

[
f (z +∆T f (z, t ), t +∆T )− f (z, t )

]
= z(t )+ ∆T

2

[
f (z, t )+ f (z +∆T f (z, t ), t +∆T )

]
to obtain the one-step algorithm

zn+1 = zn + ∆T

2

[
f (zn , tn)+ f

(
zn +∆T f (zn , tn) , tn +∆T

)]
. (5.15)
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0

c2 a2,1

c3 a3,1 a3,2

...
...

. . .

cNst aNst ,1 aNst ,2 . . . as,s−1

b1 b2 . . . bs−1 bs

Table 5.2: Butcher tableau of the explicit
Runge-Kutta method, see Eq. (5.16,5.17).

with the states zn = z(tn). In fact, this one-step iteration (5.15) is a Runge-

Kutta method with two stages. Runge-Kutta methods consist of nested

terms of the right-hand side function f and the number of these terms

is called stages. We may note the iteration (5.15) as the general 2-stage

Runge-Kutta approach

z(tn+1) ≈ z(tn)+∆T [b1k1 +b2k2]

with the coefficients

b1 = 1

2
, k1 = f (zn , tn) and

b2 = 1

2
, k2 = f (zn +∆T k1, tn +∆T ).

We note the one-step Runge-Kutta iteration as

z(tn+1) = z(tn)+∆T
Nst∑
s=1

bs ks (5.16)

with the number of stages Nst > 0 and the stages

ks = f

(
zn +∆T

[
s−1∑

m=1
as,mkm

]
, tn + cs∆T

)
. (5.17)

The Runge-Kutta coefficients as,m ,bs ,cs ∈R are usually noted in a Butcher

tableau6, see Table 5.2. The Runge-Kutta iteration (5.16) with stages (5.17) 6 Named after John C. Butcher (∗1933) [94].

form the explicit Runge-Kutta algorithm. In the literature, we find many

Runge-Kutta approaches with various coefficients, which need to fulfill

certain conditions, for example

cs =
∑

m=1
as,m ,

Nst∑
s=1

bs = b1 + . . .+bNst = 1.

The choice of coefficients depend on the desired Runge-Kutta order and

these conditions guarantee a proper working algorithm, see more details

in [95, p. 132, 134]. We apply the differential equation d
d t z(t ) =αz(t ) with

α < 0 and z(0) ̸= 0 on the Runge-Kutta algorithm (5.16) to check the nu-

merical stability as in Section 5.1. We evaluate the nested stages (5.17) in

Eq. (5.16) to yield the one-step iteration

z(tn+1) =
[

1+
Nst∑
s=1

βs [α∆T ]s

]
z(tn) (5.18)
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1
8

(b) 3/8-Rule

Table 5.3: Coefficients of the original
Runge-Kutta method.

with coefficients βs ∈R. We introduce the variable ζ=−α∆T again, define

the iterator

g (ζ) := 1+
Nst∑
s=1

βs (−ζ)s (5.19)

and formulate Eq. (5.18) as

z(tn+1) = g (ζ) z(tn) = g (ζ)n z(0). (5.20)

If the iterator |g (ζ)| < 1 then we see that the iteration (5.18) converges to-

wards zero. Though, the iterator g is a polynomial and we know that for

some ζ̃ ∈ R we find |g (ζ̃)| > 0. Hence, the choice of time step ∆T > 0 de-

pends on the system parameter α < 0, and so the explicit Runge-Kutta

methods are not A-stable.

We exemplify these ideas with the fourth-order Runge-Kutta approach

by Martin Kutta [96], see also [95, p. 137]. The coefficients are noted in

the Butcher tableaux 5.3 and both tableaux lead to the same iteration with

iterator function

g (ζ) = 1−ζ+ 1

2
ζ2 − 1

6
ζ3 + 1

24
ζ. (5.21)

0.5 1 1.5 2 2.5 3

0.5

1.0

1.5

ζ̃ζmi n

ζ

Figure 5.5: Runge-Kutta iterator g (ζ) with
stability limit at ζ ≈ 2.8 and minimum at
ζ≈ 1.6.

The graph of iterator g in Fig. 5.5 does not drop below zero and so the

numerical solution of the test differential equation does not oscillate for

any time step ∆t > 0, but g (ζ̃) > 1 for ζ̃ ≈ 2.8. The exact value of stabil-

ity limit ζ̃ might be found by solving the quartic equation g (ζ̃) = 0 alge-

braically. At the value ζmi n ≈ 1.6 we find the minimum of g (ζ), and so

we yield the fastest convergence of the Runge-Kutta iteration for a time

step ∆T ≈ 1.6
−α . We evaluate iteration (5.20) with g as in Eq. (5.21) for

ζ ∈ {0.6,1.6,2.6} and we notice in Fig. 5.6 that smaller time steps, e.g.

∆T = 0.6, lead to rather accurate numerical results. Summing up the re-

cent findings, we note that the classic fourth-order explicit Runge-Kutta

method has a larger area of stability, and guarantees larger time steps, then

the forward Euler method, but we need for both approaches small time

steps to gain a numerical exact solution.

Implicit Runge-Kutta Methods

Heat conduction phenomena consist of very fast and slow components

because of their wide-ranged eigenvalue distribution, see Chapter 4. Ex-

plicit numerical solvers like the forward Euler or the explicit Runge-Kutta

methods are not practical for this situation because we need to choose a

(very) small time step to guarantee a stable and exact numerical solution.

Hence, we need to apply implicit numerical solvers like the backward Eu-

ler method or implicit Runge-Kutta methods. The latter approach has an
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Figure 5.6: Runge-Kutta iteration (5.20) for
ζ= 0.6, ζ= 1.6 and ζ= 2.6.

c1 a1,1 a1,2 . . . a1,Nst

c2 a2,1 a2,2 . . . a2,Nst

...
...

. . .

cNst aNst ,1 as,2 . . . aNst ,Nst

b1 b2 . . . bNst

Table 5.4: Butcher tableau of fully implicit
Runge-Kutta methods.

iteration (5.16) with the stages

ks = f

(
zn +∆T

[
Nst∑

m=1
as,mkm

]
, tn + cs∆T

)
. (5.22)

In each stage ks of the fully implicit Runge-Kutta method we sum up all

stages, in contrast to the explicit approach where we sum up only s − 1

stages, see Eq. (5.17). So, we yield a large-scale system of implicit (nonlin-

ear) equations. The coefficients of the fully implicit Runge-Kutta method

are stored in the Butcher tableau 5.4. There exist several sub-types of im-

plicit Runge-Kutta methods, see [98, 99]. We list three of them below.

1. Diagonally Implicit Runge–Kutta methods (DIRK): the summation in

stage ks terminates at index s as

ks = f

(
zn +∆T

[ s∑
m=1

as,mkm

]
, tn + cs∆T

)
. (5.23)

So, we have in the Butcher tableau a triangular A coefficient matrix

a1,1

a2,1 a2,2

a3,1 a3,2 a3,3
...

...
. . .

. . .

aNst ,1 aNst ,2 . . . aNst ,Nst

 . (5.24)

2. Singly Diagonally Implicit Runge-Kutta methods (SDIRK):

all diagonal elements of the triangular A matrix are equal as

a1,1 = a2,2 = . . . = aNst ,Nst = γ.

3. Explicit Singly Diagonally Implicit Runge-Kutta methods (ESDIRK): the

first coefficient a1,1 = 0 and all other diagonal elements are equal as

a1,1 = 0 , a2,2 = a3,3 = . . . = aNst ,Nst = γ.
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We implement the numerical simulation with the J U L I A programming

language [100] using the software library DifferentialEquations.jl [101]. Here,

we call the ESDIRK numerical solver KenCarp5, see [102], because it per-

forms well for medium- and large-sized heat conduction problems. In

the subsequent section, we briefly compare the numerical solvers back-

ward Euler, trapezoidal rule and ESDIRK/KenCarp5 to motivate the fur-

ther choice of the latter algorithm.

5.3 Numerical Error of Time Integration Methods

We evaluate the numerical integration methods, backward Euler, trape-

zoidal rule and ESDIRK/KenCarp5 with an one-dim. example. The ana-

lytical solution is derived in Appendix A.1 and provides the true temper-

ature, which is compared with numerical results. We consider the linear

heat equation (A.1) with insulated boundary conditions (A.3) and the sym-

metric initial temperatures (A.2). We have a length L = 0.2 meter, material

properties λ= 50 , ρ = 8000, c = 400 and so we calculate a diffusivity

α= λ

c ρ
= 15.625 ·10−6.

We obtain the true data7 ϑtr ue via an evaluation of Eq. (A.14) with maxi- 7 The true data is still an approximation be-
cause we need to terminate the series in
Eq. (A.14).

mum iteration number k = 100 and we compute the numerical solution θ̂

with sampling time ∆T = 10 seconds. We evaluate the error for 10 cases

with respect to the number of temperature nodes N j ∈ {10,20, . . . ,100},

which imply the spatial sampling

∆x1 = L

N j
∈ {0.02,0.01, . . . ,0.002}.

We obtain the error as the quadratic difference of temperatures along the

rod in

e(t ) =
∫ L

0

[
ϑtr ue (t , x)− θ̂(t , x)

]2
d x

≈
N j∑
i=1

[
ϑtr ue (t , xi )− θ̂(t , xi )

]2
∆x (5.25)

and we sum up the error over the time as

eΣ =
∫ T f

0
e(t )d t ≈

NT∑
n=0

e(tn)∆T (5.26)

with NT =
⌊

T f

∆T

⌋
+1.

We solve the spatially approximated heat equation with the backward

Euler method, trapezoidal rule and ESDIRK/KenCarp5 for T f = 600 sec-

onds and we visualize the results in Fig. 5.8. The analytical solution is

symmetric, see Fig. A.2, and so we depict the true temperature evolution

only at three positions, x ∈ {0.001,0.051,0.101} meter in Fig. 5.8 (a). We

compare the numerical solutions for N j = 100 at the first node in Fig. 5.8

(b) and we find that the backward Euler method and KenCarp5 are very

close to the true data, but the trapezoidal rule drives into numerical oscil-

lations. We portray the numerical error (5.25) of the integration methods
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Figure 5.8: Evaluation of the numerical er-
ror of the backward Euler method, trape-
zoidal rule and ESDIRK/KenCarp5. The
analytical solution in (a) approaches the
steady-state temperature for t > 300 sec-
onds. The backward Euler method and
KenCarp5 coincide with the true tempera-
ture at x ≈ 0 in (b), but the trapezoidal rule
tends to numerical oscillations. The back-
ward Euler method shows in (c) almost the
same numerical error for all cases, where
the error is larger in the beginning until
the temperatures are settled at 500 Kelvin,
for t ∈ [0,300]. The numerical error of the
trapezoidal rule in (d) exhibits even oscil-
lations for N j = 50 and remarkable ones
for N j = 100. KenCarp5 has a small nu-
merical error in (e) for N j ∈ {50,100}, but
we notice a peak at t = 300, where the
thermal behavior transits from diffusion to
steady-state. We note in (f) that the total
error eΣ of the trapezoidal rule increases
for an increasing number of nodes, e.g.
N j > 20, while it drops in case of KenCarp5
for N j > 30.

in Fig. 5.8 (c) to (e) for N j ∈ {10,50,100} in logarithmic scale log10(e(t )).

Here, we notice that all solvers unveil an almost constant and equal error

for N j = 10. The backward Euler method in Fig. 5.8 (c) has a similar nu-

merical error for all N j ∈ {10,50,100}, while the error of KenCarp5 in Fig.

5.8 (e) decreases significantly for finer approximations. The trapezoidal

rule shows an oscillatory numerical error in Fig. 5.8 (d) for N j = {50,100}.

10 20 30 40 50 60 70 80 90 100

mNc

Number of Nodes

Stability Limit
−1

− 3
4

− 1
2

− 1
4

1
4

Figure 5.7: The trapezoidal rule is ap-
proaching the stability limit because the
smallest matrix entry mNc ≈ −1 for an in-
creasing number of nodes N j .

We yield a deeper insight of this numerical error in Fig. 5.8 (f), where

the summed up numerical error (5.26) of the trapezoidal rule has a min-

imum at N j = 20 and increases for a higher number of nodes. This poor

performance is caused by the fact that matrix entry mNc approaches the

stability limit for a high number of nodes, e.g. mNc ≈−1 for N j = 100, see

also Definition 5.1. In Fig. 5.7, we portray the value of mNc and we find

that increasing numerical error in Fig. 5.8 (f) corresponds to value of mNc

close to the stability limit.
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Control System Framework

The thermal dynamics is affected on the boundaries of the considered ge-

ometry as explained in Section 2.4. We recapitulate that cooling is a purely

natural process, which is caused by thermal emissions φem(t , x) as linear

heat transfer and nonlinear heat radiation, see Section 2.5. Thus, it is not

manipulated by a technical operator. In contrast to that, the heating is

driven by heat supply φi n(t , x) via actuators and their input signals are

computed with control units. The control system has two tasks: it has to

increase the measured temperatures from an initial towards a final oper-

ating point with

Pi n(t ) =
∫

Bi n

φi n(t , x)d x >
∫
∂Ω
φem(t , x)d x = Pem(t ) (6.1)

and it has to avoid a temperature drop after reaching the desired operating

temperature with

Pi n(t ) =
∫

Bi n

φi n(t , x)d x =
∫
∂Ω
φem(t , x)d x = Pem(t ). (6.2)

Object

φi n

unknown

φem

unknown

φem

measurable

φem

Figure 6.1: Heat conduction example with
heat supplyφi n on one boundary side and
thermal emissions φem on the other sides.
The emissions on the left and right side
are unknown, it can be “measured” only on
the top.

If the initial temperature is close to the ambient temperature, then the

emissions are quite small and we simply find a proper heat supply to guar-

antee condition (6.1). When the temperature difference between object

and surrounding increases, the computation of a suitable large heat sup-

ply is more difficult. We face two main issues: firstly, the area of actuation

is in many scenarios smaller than the area of thermal emissions; and sec-

ondly, we usually do not measure the temperature on all boundary sides

to determine the complete emitted heat flux.1 As a consequence, the exact 1 We also need the true coefficients of the
heat transfer and heat radiation to com-
pute the emitted heat flux with the mea-
sured temperatures.

amount of emitted power Pem in Ineq. (6.1) and Eq. (6.2) is unknown and

we need to find a good estimate of this quantity to yield a proper working

control system. We exemplify a scenario with one actuator and and one

sensor on the opposite sides in Fig. 6.1, where only a part of the full ther-

mal emissions can be recorded. Moreover, a slow temperature propaga-

tion from the actuators towards the sensors impedes an exact stabilization

of the closed-loop control system at the reached operating temperature.

Therefore, we need an intelligent control architecture, which includes the

extensive heat conduction model and computes proper input signals to

steer and stabilize the heating process.

In this chapter, we state an overview about the control of the thermal

dynamics. In Section 6.1, we specify the actuator and sensor models, and
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we formulate the spatially approximated nonlinear thermal dynamics with

supplied heat and temperature measurements. Afterwards, in Section 6.2,

we introduce the principle of two-degrees-of-freedom control and we dis-

cuss the concepts of open-loop and closed-loop design in the context of

our heat conduction framework.

6.1 Actuation and Temperature Measurement

In our control framework, we assume multiple, spatially distributed, ac-

tuators and sensors, which operate on the boundary sides. In Section

2.4, we defined the actuator boundary Bi n ⊆ ∂Ω, see Definition 2.2, and

in an analogous way we define the sensor setup Bout ⊆ ∂Ω. In the next

paragraphs, we describe the location and the model of actuators and sen-

sors, and we explain how these models are embedded in the heat conduc-

tion framework. These modeling approaches are presented in our arti-

cles [34, 35, 37, 40].

Actuator Setup

We explained in Section 2.4 that the heat is supplied on boundary Bi n ⊆
∂Ω, see Definition 2.2. This heat supply is realized by multiple, spatially

distributed, actuators operating on boundary Bi n and we need to specify

the location of them. We assume in total Nu > 0 actuators on Bi n and we

say that each actuator has its own segment, βn ⊆ Bi n with Bi n =
Nu⋃

n=1
βn .

Segments do not overlap,
Nu⋂

n=1
βn = {}, and the size of all segments is equal

β1 β2 β3

β4 β5 β6

β7 β8 β9

Figure 6.2: Example of a partition with
nine segments on the underside of a
cuboid.

|β1| = |β2| = . . . = |βNu |.
A segment is only part of one boundary side, e.g. BU . If more than one

boundary side is actuated, then each boundary side has its own partition,

for example the boundary sides BU and BE are partitioned as

BU =
Nu,1⋃
n=1

βn and BE =
Nu,2⋃

n=Nu,1+1
βn .

An example partition for a cuboid is portrayed in Fig. 6.1. An actuator

has a spatial characteristics bn : Bi n → [0,1] and it determines how much

power can be supplied in each position x ∈βn . We model this spatial char-

acteristics via the exponential function

bn(x) :=
mn exp

(−∥Mn(x −xc,n)∥2νn
)

for x ∈βn ,

0 for x ∈ Bi n \βn

(6.3)

with scaling m ∈ [0,1], (diagonal) curvature matrix M ∈ RNd×Nd , power

ν ∈ N>0, central point xc,n ∈ βn of the n-th segment, and number of di-

mensions Nd ∈ {1,2,3}. In Eq. (6.3) we consider the Euclidean vector norm

∥v∥2 :=
√√√√ N∑

n=1
v2

n

with vector v ∈ RN and so we have bn as a Gaussian-shaped function. In

Fig. 6.3, we visualize three shapes of bn depending on curvature matrix
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Figure 6.3: Example shapes of spatial char-
acteristics bn as in Eq. (6.3). We have a
standard radial Gaussian with a diagonal
matrix M in (a) and (b). If M has elements
on its sub-diagonal, then we yield a rotated
elliptic shape in (c). If M has only one non-
zero element, then we have striped shape
in (d). We consider ν= 1 and the curvature
matrices

• M =
4 0 0

0 4 0
0 0 0

 in (a) and (b),

• M =
 4 1.5 0

1.5 4 0
0 0 0

 in (c) and

• M =
0 0 0

0 4 0
0 0 0

 in (d)

for an actuation on boundary BU .

M . We remark that one may also choose a different vector norm, e.g. the

maximum norm

∥v∥∞ := max(v1, . . . , vN )

to model a sharp peak or box-shaped characteristics as depicted in Fig.

6.4. However, we only discuss the spatial characteristics with the Euclidean

vector norm ∥v∥2 in the following examples of this thesis.
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(b) Box shape, ν= 10
Figure 6.4: Spatial characteristics with
maximum norm
b(x) = exp

(−∥M(x −xc )∥ν∞
)

with
• ν= 1 for a sharp peak in (a) and
• ν= 10 for a box shape in (b).

If we assume one- and two-dimensional geometries, then we can sim-

plify the formulation of the spatial characteristics in Eq. (6.3). In the one-

dim. case we only need to set a scale m > 0 and in case of a two-dim.

geometry we obtain the simplified exponential function

bn(x) = mn exp
(−|Mn(x −xc,n)|2νn

)
with scalar M > 0 for x ∈βn .

In practice, the design of spatial characteristics bn is not trivial and re-

quires a good knowledge of the actuator’s physical behavior. The modeling

and system identification of thermal actuators is an active field of research

and we find examples in the literature regarding resistive heating [104], in-

ductive heating in [105] and micro-hotplates [106]. In Chapter 1, we stated

two examples of controlled thermal processes: laser beam welding and

post-exposure bake as part of lithography. Here, we find one important

difference of both processes where we have small point-shaped sources

in laser beam welding and wide uniform source like electrical heating el-

ements in the post-exposure bake, see also the commercial product [107].

Hence, we need to care about suitable values of matrix M , norm p and

power ν to specify the heat source properly.
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Once we have the actuator model, we need to compute an input signal

un : [0,T f i nal ) →R≥0

for n ∈ {1, . . . , Nu} to influence the thermal dynamics properly. We sum

up the spatial characteristics and the input signal and we formulate the

supplied heat flux as

φi n(t , x) :=
Nu∑

n=1
bn(x) un(t ). (6.4)

Sensor Setup

We construct an analog concept for the temperature measurement with

Ny > 0 sensors and boundary Bout ⊆ ∂Ω. Bout has a partition with seg-

ments γn ⊆ Bout such that Bout =
Ny⋃

n=1
γn and

Nu⋂
n=1

γn = {}. The sensor seg-

ments γn belong to only one boundary side like the actuator segments βn .

We note the spatial characteristics of the sensors as

gn(x) :=
m̃n exp

(
−∥M̃n(x −xc,n)∥ν̃n

p̃n

)
for x ∈ γn ,

0 for x ∈ Bout \γn

(6.5)

for n ∈ {1, . . . , Ny }, c.f. Eq. (6.3), and define the n-th measurement as

yn(t ) :=
[∫

γn

gn(x)d x

]−1 ∫
γn

gn(x) ϑ(t , x)d x. (6.6)

So, the temperature measurement at the n-th sensor is a weighted mean

with spatial characteristics gn as the weight.

Spatial Approximation of the Actuator and Sensor Setup

We need to approximate the actuator and sensor boundaries to evaluate

the heat supplyφi n and temperature measurement y at the discrete nodes

xi = x j ,m,k . Thus, we store the indices of cells, which have boundaries

being part of an actuator or sensor segment as

Sβ,n := {i = i ( j ,m,k)|βn ⊂ ∂Ω j ,m,k }

for n ∈ {1, . . . , Nu} and

Sγ,n := {i = i ( j ,m,k)|γn ⊂ ∂Ω j ,m,k }

for n ∈ {1, . . . , Ny }. We find the issue that the finite volume approximation

leads to nodes xi inside the geometry and one grid node may have two or

three adjacent boundary sides, e.g. at corners or along edges, see Section

3.3. So, we distinguish the supplied heat flux for each direction l ∈ {1,2,3}

as

φl (t , xi ) =φi n,l (t , xi ) =
Nu∑

n=1
bl ,n(xi ) un(t ).
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Furthermore, we remark that the curvature matrix M has an entry Ml ,l = 0

in function bl ,n(xi ) and the same idea applies for M̃ of the sensor charac-

teristics in Eq. (6.5).

In the following steps, we reformulate the spatially approximated quasi-

linear heat equation (3.29) with the actuator and sensor setup to obtain a

state space formulation of the complete control system. We note the non-

linear diffusion terms as

fD(Θ) = [
fD,1(Θ), . . . , fD,Nc (Θ)

]⊤ (6.7a)

with

fD,i (Θ) =
3∑

l=1
Dl (Θi ,Θi−µ,Θi+µ)/s(Θi ) (6.7b)

and we unify the specific heat capacity and the density as

s(Θi ) := ρ(Θi ) c(Θi ).

In accordance with Eq. (3.28), we note the approximated supplied heat

flux as φi n,l /∆xl and so we find the approximated actuation as

b̃n,i :=
bl ,n(xi )/∆xl if i ∈Sβ,n ,

0 else

where

l =


1 if βn ⊂ BW ∪BE ,

2 if βn ⊂ BS ∪BN and

3 if βn ⊂ BU ∪BT .

The influence of the n-th actuator is noted as

b̃n(Θ) =
[

b̃n,1

s(Θ1)
, . . . ,

b̃n,Nc

s(ΘNc )

]⊤
(6.8a)

and we aggregate all actuators in the temperature-dependent matrix

B(Θ) = [
b̃1(Θ), . . . , b̃Nu (Θ)

]
. (6.8b)

Additionally, we need to formulate the spatially approximated thermal

emissions, see also Eq. (3.26). We introduce the set

S̃i := {l ∈ {1,2,3}|pos(l , i ) ̸= 0}

to define the correspondence between direction l ∈ {1,2,3} and global in-

dex i = i ( j ,m,k). In a similar way, we denote the thermal emission of the

i -th cell as

w̃i (t ,Θi ) :=


1

s(Θi )

∑
l∈S̃i

φem,l (t , xi )/∆xl if i ∈ S \ S̊ ,

0 else.

We aggregate the thermal emissions for all cells as

w(t ,Θ) = [
w̃1(t ,Θ1), . . . , w̃Nc (t ,ΘNc )

]⊤ (6.9)

and we formulate the spatially approximated system dynamics as
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d

d t
Θ(t ) = fD(Θ)+B(Θ) u(t )+w(t ,Θ).

The spatial characteristics of the temperature measurement is approx-

imated by

c̃n,i =
gl ,n(xi ) if i ∈Sγ,n ,

0 else

where

l =


1 if γn ⊂ BW ∪BE ,

2 if γn ⊂ BS ∪BN and

3 if γn ⊂ BU ∪BT .

We collect all entries c̃n,i as vectors

c̃n = [
c̃n,1, . . . , c̃n,Nc

]
(6.10a)

of the n-th sensor with n ∈ {1, . . . , Ny } and we note the output matrix as

C =
[

c̃1, . . . , c̃Ny

]⊤
. (6.10b)

Consequently, we yield the output signal as

y(t ) =C Θ(t ).

Definition 6.1 (Nonlinear and Linear State Space Formulation)

The approximated heat conduction phenomena with actuation and tem-

perature measurement is described by the nonlinear state-space system

d

d t
Θ(t ) = fD(Θ)+B(Θ) u(t )+w(t ,Θ), (6.11a)

y(t ) = C Θ(t ). (6.11b)

The nonlinear system dynamics fD : RNc → RNc is formulated in Eq. (6.7)

with the diffusion term D as in Eq. (3.27). Mapping B : RNc → RNc×Nu is

specified in Eq. (6.8). It connects the n-th input signal un : [0,T ) →R≥0 for

n ∈ {1, . . . , Nu} with the spatial characteristics bn of the n-th partition βn .

The input signals are restricted as un(t ) ≥ 0. The thermal emissions are

stored in function w : [0,T )×RNc → RNc , see Eq. (6.9). The temperature

data of all nodes is mapped to the output signals with matrix C ∈RNy×Nc as

noted in Eq. (6.10).

If we consider constant material properties and no thermal emissions, as

w(t ,Θ) ≡ 0, then we yield the linear system dynamics

d

d t
Θ(t ) = A Θ(t )+B u(t ) (6.12)

with matrices A ∈RNc×Nc and B ∈RNc×Nu , see Definition 3.2. ⃝
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Figure 6.6: Temperature distribution of an
actuation with a narrow and a wide spa-
tial characteristics. The temperatures in
(a) reach a maximum of ca. 370 Kelvin in
a region close to the actuator. The max-
imum values in (b) reach up to ca. 450
Kelvin and a large region has temperatures
above 400 Kelvin.

Example: Actuation of a Rectangular Object

We exemplify the design of the spatial characteristics for a two-dim. model

with length L = 0.1 meter, width W = 0.05 meter and material properties

λ = 50, c = 400, ρ = 8000. We assume one actuator on boundary BS and

thermal insulation on all remaining other sides, φem ≡ 0. Regarding the

spatial characteristics, we fix the scaling, power and central point as m = 1,

ν= 2 and xc = (0.05,0)⊤ and we distinguish a curvature with M = 100 for a

narrow and M = 30 for a wide shape, see also Fig. 6.5.

1
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M = 30

M = 100

Position x in [cm]

b(x)

Figure 6.5: Spatial characteristics for actu-
ation of a rectangular geometry. We distin-
guish a wide (M = 30) and narrow shape
(M = 100).

We apply a constant input signal u(t ) = 2 · 105 and simulate the heat

conduction for T f i nal = 120 seconds. The temperature distribution at the

final time t = T f i nal is visualized in Fig. 6.6. We find that the narrow ac-

tuator shape leads to low temperatures in Fig. 6.6 (a) and we only have a

small hot region close to the actuator. In contrast, the wide shape results in

higher temperatures in Fig. 6.6 (b), where a large region has temperatures

above 400 Kelvin.

6.2 Two-Degrees-of-Freedom Control Design

One of the main goals of this contribution is to find suitable input sig-

nals to heat up the object from an initial to a target temperature and keep

it on this level. In the design of control systems, we deal with the feed-

forward control to steer a system from one operating point to the next

one, and we stabilize the system dynamics at the reached operating point

with a feedback control. Therefore, we construct a feed-forward controller

u f f for the heating-up procedure in the time t ∈ [0,T f f ) and a feedback

controller umpc
2 to prevent a cooling-down during t ∈ [T f f ,T f i nal ) with 2 The naming indices of u f f and umpc re-

fer to “feed-forward” and “model predic-
tive control”.

0 < T f f < T f i nal . We distinguish the controller type by the operation time

as

u(t ) =
u f f (t ) for t ∈ [0,T f f ),

umpc (t ) for t ∈ [T f f ,T f i nal ).
(6.13)

The feed-forward control u f f is computed offline, meaning before the op-

eration; and the feedback control umpc is computed online, during the op-

eration. Hence, we may spend more computational time on finding u f f

than umpc because we wish to achieve an accurate heating-up. In contrast

to that the feedback signals need to be computed quickly3 to guarantee a 3 As the heat conducts slowly from the
actuators to the sensors we may allow a
“long” time to compute the feedback con-
trol. We discuss this in Chapter 8.

stable closed-loop behavior. We portray the two-degrees-of-freedom con-

trol approach in Fig. 6.7.
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Figure 6.7: Scheme of a two degrees-of-
control approach. The trajectory genera-
tor computes a reference signal, which is
has to be followed by temperature mea-
surements. The input signal of the feed-
forward control is computed offline, be-
fore the operation of the heating-up proce-
dure. The input signal from the model pre-
dictive control is computed online, during
the thermal treatment of the object.

Feed-forward Control

The output signals have to follow a predefined transition during the heating-

up phase. This transition is part of a reference function

r : [0,T f i nal ] →R≥,

which need to be tracked by the output signals as y(t ) ≈ r (t ) during the

complete operation time. We allow only positive, non-decreasing, refer-

ence signals because we only discuss heating-up procedures. In the be-

ginning of the transition, the reference and the output signals have to co-

incide approximately as

r (0) ≈ y(0) =CΘ(0).

The reference function has to approach a desired temperature Θd ∈ RNy

withΘd ,i > yi (0) for all i ∈Sy in the end of the transition as

lim
t→T f f

r (t ) ≈Θd .

During the stabilization time t ∈ [T f f ,T f i nal ), we claim that r (t ) ≈Θd . The

transition from the initial output measurements towards the desired tem-

perature is visualized in Fig. 6.8. We wish to find an input signal u f f (t ),

which drives the thermal dynamics properly in order to minimize error

e f f (t ) = r (t )− y(t ) (6.14)

during the heating-up time t ∈ [0,T f f ). If we assume any continuous and

bounded input signal u(t ), then we find for each initial valueΘ(0) a future

temperatureΘ(t ) via integration of differential eq. (6.11a) and we yield the

output measurements y(t ) with Eq. (6.11b). In the opposite way, we spec-

ify the output values with reference signal y(t ) ≡ r (t ) and we search for an

initial temperatures distribution Θ(0) and input signals u(t ), which lead

to these output values. Though, in general we are not able find temper-

atures Θ(t ) from output measurements y(t ) in an analytical way because
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Figure 6.8: Transition from an initial op-
erating temperature towards the desired
temperature. A feed-forward control is ap-
plied to reach the reference tracking and
a feedback control stabilizes the reached
temperatures afterwards.

the mapping in Eq. (6.11b) is not unique. The number of output signals

is less than the number of temperature states and the averaging process

in Eq. (6.6) can not be reversed. Even if we know the temperatures Θ(t ),

then we might still not be able to find (Θ(0),u(t )) analytically because the

diffusion operation is ill-posed, as discussed for the linear case in Section

4.2. We see that solving the forward problem (known input, find output) is

significantly easier than solving the inverse problem (known output, find

input). Solving this inverse problem is not impossible: we firstly introduce

an analytical approach and discuss secondly a numerical technique.

For some specific scenarios we can approximate an analytical input sig-

nal if the system is differentially flat. A finite dimensional nonlinear sys-

tem

ż(t ) = f (z(t ),u(t )) , y(t ) = g (z(t ))

with states z(t ), input u(t ) and output y(t ) is called differentially flat if the

number of input and output signals coincide Nu = Ny and we have a flat

output signal4 y(t ) such that we find the mappings Ψz and Ψu to obtain 4 The flat output signal does not have to be
a real measurement.the states and input signals via the derivatives of y(t ) as

z(t ) =Ψz
(
y(t ), ẏ(t ), . . . , y (n−1)(t )

)
, (6.15a)

u(t ) =Ψu
(
y(t ), ẏ(t ), . . . , y (n)(t )

)
. (6.15b)

The differentiation order n in Eq. (6.15) corresponds to the system di-

mension, z : [0,T f f ] →Rn . This control approach was initially proposed in

[108] and later extended for the heat equation and other partial differential

equations in [46]. In case of PDE, we need (theoretically) an infinite num-

ber of derivatives y (n)(t ) to yield the states and input signals. As it is diffi-

cult to apply the flatness-based control directly on nonlinear PDE, a com-

mon solution is to approximate the nonlinear PDE and apply the flatness-

based control on the large-scale system of nonlinear ordinary differential

equations. This approach is discussed in the articles [109,110,116] and an

detailed analysis is described in the doctoral thesis [111].

A comprehensive study of flatness-based control techniques is presented

in the works [112,113] and for detailed discussions on PDE flatness-based

control, we refer to the books [12], [114, p. 164] and [115, Ch. 6 - 8].

The flatness-based control design is not the only way to find open-

loop input signals. If an analytical approach might not be applicable, e.g.

we have more an unequal number of input and output signals, then the

control input can also be computed numerically with optimization-based

techniques. In the optimal control design, we seek for a proper input sig-
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nal u∗, which minimizes an objective function J as

u∗(t ) = argmin
u

J (e,u).

The main idea of the optimal control approach is to solve the forward and

inverse problem iteratively. In the forward pass we apply the input signals

and we evaluate the objective function to check if the input signals lead to

useful output measurements. In the inverse pass we vary the input signals

depending on the result of the objective function. We need to distinguish

again between the finite (ODE) and infinite dimensional (PDE)5 situation. 5 The optimization with PDE is also called
PDE-constrained optimization.In the finite dimensional case, we sample the system dynamics in time

to yield a set of difference equations and we search iteratively for optimal

input signals with common numerical algorithms. In the infinite dimen-

sional case, we can either initially discretize the PDE to yield a large scale

finite dimensional system, or we optimize in a first step and discretize the

optimal system afterwards. The optimal control of finite dimensional sys-

tems is rather fundamental and may also be carried out by non-experts,

but the PDE-constraint optimization requires strong knowledge in func-

tional analysis, PDE theory and related fields. Furthermore, the formu-

lation of the optimal control problem for PDE is tailored for the specific

problem setup (geometry, boundary conditions, configuration of actua-

tors and sensors, etc.) and changing the problem requires a reformulation

of the optimal control problem. Beside these issues, the standard optimal

control design for ODE and PDE computationally expensive because we

need to discretize the geometry and sample the time domain to gain for

each time step the optimal input value u(tn). In this manner, the number

of parameters depends on the number of actuators Nu multiplied by the

number of time steps. We refer to the book [117, p. 95] for an introduction

to optimal control of the heat equation. An analysis and numerical evalua-

tion of the optimal control design for quasilinear PDE, like the quasilinear

heat equation in Definition 2.1, is described in the doctoral thesis [56]. We

emphasize that this technique has also been implemented successfully in

many research applications, e.g. laser welding with a quasilinear heat con-

duction model in [8].

In Chapter 7, we unify the ideas of flatness-based and optimal control

to derive an optimization-based control approach. Firstly, we design in-

put signals with the flatness-based approach for simplified (linear) mod-

els. Secondly, we approximate the flatness-based input signal by a param-

eterized function u f f (t ; p) and we optimize the parameters for the original

(complex) model. In other words, we create prototype input signals for the

linear heat conduction model with the flatness-based control and adjust

them for real, nonlinear scenarios with optimization techniques. The in-

put signal u f f (t ; p) has only three parameters, and so we have noticeable

reduced computational costs in comparison to a fully sampled input sig-

nal. We improve this optimization-based control additionally by including

thermal energy estimates. Our proposed procedure is illustrated in Fig.

6.9, and these concepts were originally introduced in the articles [39, 40].
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Figure 6.9: Scheme of derivation of the
feed-forward control signal. In step 1 we
compute the flatness-based control u f bc
for the linear system. We approximate
u f bc in the 2. step to construct the pro-
totype ũ f f . We optimize the parameters p
in step 3 and include additional informa-
tion about the estimate of the thermal en-
ergy. Finally, we apply the computed feed-
forward control signal u f f (t ; p).

Feedback Control

After the heating-up phase t > T f f , we activate the feedback control to

keep the measurements y(t ) close to the desired temperatures Θd . We

need to design a closed-loop controller to minimize the error

e f b(t ) =Θd − y(t )

for t ∈ [T f f ,T f i nal ). The most established controller type in the industrial

automation is the PID control. It computes the input signal as

upi d (t ) = Kp e(t )+Ki

∫ t

0
e(τ)dτ+Kd

d

d t
e(t )

with controller coefficients (Kp , Ki , Kd ) ∈ R3, which amplify the propor-

tional, integral and differential error. As we only have these three param-

eters, PID control might be simple to design and implement. Though, it

may not perform well for thermal dynamics because the heat needs some

time to propagate from the actuator to the sensor and the PID controller

can not predict this behavior. Beside this issue the standard PID control

requires the same number of input and output signals as Nu = Ny .

An alternative approach is the model predictive control (MPC) design,

which uses an internal model of the system to predict the future system

behavior. The MPC algorithm solves in each time step an optimal con-

trol problem to minimize the error between the prediction and the refer-

ence. For a general introduction to model predictive control we refer to

the books [119, 120]. In the doctoral thesis [121], the author proposes a

model predictive control design for PDE, like the heat equation and the

wave equation. One remarkable issue of MPC for PDE are the high com-

putational costs. Recent research focuses on the reduction of these costs

with model order reduction, see [122]. In Section 8.2, we design a model

predictive control approach, which is tuned with the knowledge of ther-

mal emissions. Due to a proper choice of control parameters, we are able

to stabilize the measurement values close to the desired temperatures.
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Open-loop Control Design

The main task of the control system is to heat up the object to reach a

desired temperature. In particular, we wish to steer the thermal dynamics

from an initial towards the final uniform temperature distribution along a

specified reference trajectory. We approach this goal in two major steps:

prototyping the input signal with flatness-based control for a simplified

model and transferring the prototype signal to a parametrized function,

which is optimized to fit the specific needs of the full nonlinear system.

First of all, we introduce in Sections 7.1 and 7.2 and the flatness-based

control design, which offers a well established set of mathematical meth-

ods to design open-loop control algorithms for ordinary and partial differ-

ential equations. Here, we assume only constant material properties and

neglect thermal emissions to yield a linear system. We restrict the discus-

sion in Section 7.1 to the one-dim. heat equation because the flatness-

based control design for higher-dimensional geometrical domains leads

to complex formulations, and is out of scope of this thesis, see the book

[115, p. 127, 143] and article [118]. We transfer these ideas to the spatially

approximated heat conduction problems in Section 7.2 and we find simi-

lar results for the one-dim. case as in Section 7.1. Furthermore, we evalu-

ate the flatness-based control for a two-dim. geometry with multiple actu-

ators and sensors, but we face the issue that this control scenario has only

limited relevance for our proposes. In Section 7.1, we explain the choice

and parametrization of the reference function and how it influences the

input signal and the resulting thermal dynamics. The introduced refer-

ence signal is very smooth and fulfills certain criteria, which are necessary

for an analytically correct reference tracking of PDE in general. The disad-

vantage of this reference function is its complexity and finding the deriva-

tives is computationally costly. Hence, we propose in Section 7.3 further

approaches to find simple, suitable and computationally cheap reference

functions.

In the second part of this chapter, in Section 7.4, we introduce a param-

eterized bell-shaped function to approximate the flatness-based signal.

The parameters of this input signal are optimized in subsequent steps to

control the original nonlinear problem properly. Accordingly, we describe

the influence of our input signal parameters and we explain stepwise their

optimization. We extend the optimization-based design with energy con-

siderations in Section 7.5 because the temperatures are only determined
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by the ratio of supplied and emitted thermal energy. This concept of en-

ergy balance simplifies the parameter optimization significantly as we ne-

glect the temporal evolution of the heat dynamics and tune the integral

of our input signal. Finally, in Section 7.6, we wrap up all the presented

ideas of feed-forward control and we exemplify them on a two-dim. heat

conduction model with anisotropic and temperature-dependent thermal

conductivity and nonlinear boundary conditions.

7.1 Flatness-based Control of the Linear Heat Equation

The flatness-based control design for partial differential equations, in par-

ticular the heat equation, was initially described in the article [46] and

gradually extended for further PDE, see [12], and complex scenarios as

in [115, p. 133, 143]. Here, we only assume the simplest applicable version

of the heat conduction phenomena: the linear one-dim. heat equation

without thermal emissions. In accordance with [38,46], we derive an input

signal as a power series with analytical tools. Furthermore, we design the

reference signal and discuss how its derivatives are used to compute the

input signal. For this purpose, we apply the ideas of article [36] to com-

pute the reference derivatives. In the end of this section, we simulate the

one-dim. heat equation with found input signal and we discuss how the

final transition time T f f affects the input signal and in consequence the

heat dynamics. This issue is evaluated for various scenarios in [38].

We return to the continuous formulation of the linear heat equation

d

d t
ϑ(t , x) = α

∂2

∂x2ϑ(t , x) (7.1)

with diffusivity1 α = λ1
c ρ and (t , x) ∈ (0,T f f )× (0,L) as mentioned in Eq. 1 As we only consider the one-dim. case,

we drop the index, α=α1.(2.21). We specify an actuation on the left side (BW ) and a thermal insula-

tion on the right side (BE ) as

u(t ) = −λ ∂

∂x
ϑ(t , x) for x ∈ BW , (7.2a)

0 = λ
∂

∂x
ϑ(t , x) for x ∈ BE (7.2b)

and we measure the temperature on boundary BE as

y(t ) =ϑ(t ,L). (7.3)

This heat conduction model is strongly simplified, but it is the prototype

system for the flatness-based control of PDE, see [46]. According to the

literature [3, p. 232] and [123, p. 111], the solution of ordinary and partial

differential equations may be formulated in terms of a power series.2 In 2 This solution technique is also known
as Frobenius method, see [124]. Fer-
dinand Georg Frobenius (∗1849, †1917)
[125] extended previous ideas by Lazarus
Immanuel Fuchs (∗1833, †1902) [126] and
Karl Weierstraß(∗1815, †1897) [127].

case of the linear heat equation, we define the power series

ϑ̃(t , x) :=
∞∑

i=0
ϑ̂i (t )

(L−x)i

i !
. (7.4)

We find the derivatives of ϑ̃ with respect to position x as

∂

∂x
ϑ̃(t , x) = −

∞∑
i=0

ϑ̂i+1(t )
(L−x)i

i !
and (7.5)

∂2

∂x2 ϑ̃(t , x) =
∞∑

i=0
ϑ̂i+2(t )

(L−x)i

i !
(7.6)
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and we note the derivative in time as

∂

∂t
ϑ̃(t , x) =

∞∑
i=0

∂

∂t
ϑ̂i (t )

(L−x)i

i !
. (7.7)

In the heat equation (7.1), we set ϑ(t , x) ≡ ϑ̃(t , x) and so we yield with Eq.

(7.6,7.7) the identity

∞∑
i=0

d

d t
ϑ̂i (t )

(L−x)i

i !
= α

∞∑
i=0

ϑ̂i+2(t )
(L−x)i

i !
.

We compare the left and right-hand side in the previous equation and we

take out the identity
d

d t
ϑ̂i (t ) =α ϑ̂i+2(t ). (7.8)

In the subsequent steps, we formulate ϑ̂i in terms of the output signal y(t )

and its derivatives to find the mappings Ψx and Ψu , see Eq. (6.15). We

note the output signal in Eq. (7.3) as

y(t ) =ϑ(t ,L) =
∞∑

i=0
ϑ̂i (t )

0i

i !
= ϑ̂0(t )

and we deduce from Eq. (7.8) the identity

d i

d t i
y(t ) = d i

d t i
ϑ̂0(t ) =αi ϑ̂2i (t ) for i > 0.

The boundary condition on BE , Eq. (7.2b), leads us to expression

λ
∂

∂x
ϑ(t ,L) =−λ

∞∑
i=0

ϑ̂i+1(t )
0i

i !
=−λϑ̂1(t ) = 0

and we continue this fact with Eq. (7.8) to yield

d i

d t i
ϑ̂1(t ) =αi ϑ̂2i+1 ≡ 0.

We summarize the previous findings and we split the identity (7.8) into

both sequences

ϑ̂2i (t ) = α−i y (i )(t ) and ϑ̂2i+1(t ) = 0. (7.9)

We reformulate Eq. (7.4) as

ϑ̃(t , x) =
∞∑

i=0


y

(
i
2

)
(t )

α
i
2

[L−x]i

i ! if i is even,

0 if i is odd

and we set i → 2i to derive the output to states mapping in Eq. (6.15a) as

ϑ̃(t , x) =
∞∑

i=0

y (i )(t )

αi

[L−x]2i

2i !
. (7.10)

We formulate the actuation on boundary BW , Eq (7.2a), in terms of

ϑ̂2i (t ) with Eq. (7.5) as

u(t ) = −λ ∂

∂x
ϑ(t ,0) =λ

∞∑
i=0

ϑ̂i+1(t )
Li

i !
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and we yield in an analog way to Eq. (7.10) with i → 2i +1 the output to

input mapping in Eq. (6.15b) as

u(t ) = λ
∞∑

i=0

y (i+1)(t )

αi+1

L2i+1

(2i +1)!
. (7.11)

The mappings in Eq. (7.10) and (7.11) enable us to compute the tem-

perature at any position x ∈ Ω and the input signal if we consider suffi-

ciently enough derivatives of y(t ). Hence, we can find the inverse system

of the heat equation, but we need to estimate the number of necessary

series sequences and this situation is discussed in article [38].

Reference function of Gevrey class

We wish to steer the output of heat equation (7.3) along a predefined ref-

erence trajectory

r (t ) = r0 +∆r ψ(t , p)

with r0 = y(0), ∆r = Θd − r0 > 0 and transition ψ. Hence, we identify the

output y and all of its derivatives d i

d t i y(t ) in Eq. (7.11) by reference func-

tion r (t ) and d i

d t i r (t ). The transition function3 has to be zero at t = 0 and 3 In the subsequent sections, we consider
weaker conditions, e.g. ψ(0, p) ≈ 0 instead
of ψ(0, p) = 0.

one at t = T f f and need to be infinite-times continuously differentiable in

the time because we have theoretically an infinite number of derivatives
d i

d t i r (t ). Additionally, all derivatives of the transition need to be close to

zero, e.g.

lim
t→{0,T f f }

d i

d t i
ψ(t , ·) ≈ 0

for i ∈ N>0. In the initial article on PDE flatness-based control [46], the

authors propose the transitions function

Transition ψ Bump ω

Time t Time t

(a) p = 1.1

(b) p = 2.0

(c) p = 3.0

Figure 7.1: Transition ψ and bump func-
tion ω for parameter p ∈ {1.1,2,3}. An in-
creasing p leads to a steep transition and
sharp bump function.

ψ(t , p) :=



0 if t ≤ 0,

1 if t ≥ T f f ,
t∫

0
ω

(
τ

T f f
,p

)
dτ

T f f∫
0
ω

(
τ

T f f
,p

)
dτ

if t ∈ (0,T f f ),

(7.12)

which contains the integral of the bump function

ω(t , p) :=
0 t ∉ [0,1],

exp
(−[t − t 2]−p

)
t ∈ (0,1).

(7.13)

The steepness of the transition is specified with parameter p, which need

to be set such that condition 1+ 1
p < 2 or equally p > 1 holds. The smooth

transition and bump function goes over to a sharp behavior if we increase

parameter p as visualized in Fig. 7.1. Transition ψ and bump function ω

are functions of the Gevrey class,4 we refer for a detailed analysis to article 4 The Gevrey class is introduced by Mau-
rice Gevrey in [128], and further informa-
tion is provided online [129].

[46]. We need to differentiate the reference signal r (t ) and likewise also

transition ψ(t , p) to compute the input u(t ). We find the derivatives of

ψ(t , p) with the scaled bump function as

d

d t
ψ(t , p) = ω(t , p)

ω̂(p)
and

d i

d t i
ψ(t , p) =

d i

d t i ω(t , p)

ω̂(p)
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0
τ

0
τ

0
τ

0
τ

Bump function 1. Derivative ω̇

2. Derivative ω̈ 3. Derivative
...
ω

1 10

-10

128

-256

5632

-5632

Figure 7.2: Bump function ω(t , p) and its
first derivatives for p = 2. The maximum
value of the derivatives increase dramati-
cally by the order of differentiation.

with integral ω̂(p) =
T f f∫
0
ω

(
τ

T f f
, p

)
dτ. So, the i -th derivative of transition

ψ(t , p) corresponds to the (i −1)-th derivative ofω(t , p). Bump functionω

in Eq. (7.13) is a function composition as

ω(t , p) = exp
(

f (g (t ), p)
)

with (7.14a)

f (z, p) = − z−p and (7.14b)

g (t ) = t − t 2. (7.14c)

We evaluate the derivatives of Eq. (7.14a) via the chain rule and we obtain

an expression

d i

d t i
ω(t , p) =

Nnum∑
n=0

bn t n

Nden∑
n=0

an t n

exp( f (t , p))

with coefficients an ,bn ∈ R and the order of the numerator polynomial is

smaller than the denominator, Nnum < Nden . The order of both polyno-

mials increase by the order of differentiation. We evaluate the derivative
d i

d t i ω(t , p) for t ∈ (0,1) and so we yield large values because of the ratio-

nal function term. In Fig. 7.2, we portray the first derivatives of the bump

function for p = 2 and we see that the maximum value increases signifi-

cantly by the order of differentiation. This fact is a problem for the com-

putation of the input signal because the sequence elements shall not in-

crease to infinity and we need to terminate the power series in Eq. (7.11)

to yield a suitable approximation

uNi ter (t ) :=λ
Ni ter∑
i=0

r (i+1)(t )

αi+1

L2i+1

(2i +1)!
(7.15)

with ∥uNi ter (t )−u(t )∥ < ε for a small ε > 0. We see in Eq. (7.15) that

the series elements contain the diffusivity α and the choice of the control

parameters, time T f f and steepness factor p. In article [38], the authors

discuss the impact of the material parameters and control parameters on

the resulting input signal.
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Computation of the Derivatives

We need to compute several, possibly a large number of derivatives of

bump function ω(t , p) to find an exact approximation of input u(t ) as in

Eq. (7.15). However, the computation of derivatives of ω(t , p) is not trivial

because it is very smooth and it is a function composition, see Eq. (7.14).

A numerical evaluation is not applicable because high-order derivatives

tend to strongly oscillating behavior, see also Fig. 7.2, and a manual calcu-

lation is too error prone. Hence, a symbolic computation, e.g. as in [130]

with MATL AB, or an algorithmic approach with recursion formulas as

in [131] may solve this task. However, these approaches are tailored for the

bump functionω(t , p) as noted in Eq. (7.13). As an alternative, the authors

present in article [36] a method to compute derivatives for generic func-

tion compositions as f ◦g (t ) with g : R→R and f : R→R. For this purpose,

the function composition is evaluated with Faà di Bruno’s formula and Bell

polynomials. In this thesis, we compute the derivatives with Faà di Bruno’s

formula, which is implemented in the J U L I A library BellBruno.jl, see [45].

Example: PDE Flatness-based Control

We demonstrate the flatness-based control for the linear heat equation

without thermal emissions. We consider a one-dim. model of a rod with

length L = 0.1 and material properties λ = 50, ρ = 8000 and c = 400. The

measured temperature y(t ) =ϑ(t ,L) shall follow the reference signal

r (t ) = 300+100 ψ(t , p) (7.16)

with steepness parameter p = 2, see Fig. 7.1 (b). The input signal in Eq.

(7.15) contains coefficients related to the geometrical object and the refer-

ence derivatives as

uNi ter (t ) =
Ni ter∑
i=0

ηi
d i+1

d t i+1
r (t )

with sequence elements

0 5 10 15 20

5

7.5

10

12.5

Index i

lo
g 1

0
(η

i)

Figure 7.3: Logarithmic scaling of se-
quence elements ηi , which amplify the
reference derivatives in the PDE flatness-
based control.

ηi := λ L2i+1

αi+1 (2i +1)!
.

Here, we compute the input signal for Ni ter = 20 iterations, we evaluate

the sequence ηi numerically and so we yield very high values, e.g.

max
i∈{0,1,...,Ni ter }

ηi ≈ 1.95 ·1012.

The data of sequence ηi in Fig. 7.3 is displayed in semi-logarithmic scale

and we see that ηi reaches its maximum for index i = 12 and stays on a

high level afterwards. Thus, we need to choose suitable control parame-

ters (steepness p and time T f f ) to yield small higher-order reference deriva-

tives and to avoid (strong) oscillations, as in Fig. 7.2, in the computed in-

put signal. As we already fixed the steepness p = 2, we vary the final time of

the feed-forward control T f f ∈ {400,1200,3000} seconds and we evaluate

whether the input signal and resulting temperature evolution suffice our

constraints. We remark that the input shall not drop below zero because

we only control the heating and not the cooling. Moreover, the tempera-

tures shall not drop below its initial value.
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(a) T f f = 400 s
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(b) T f f = 1200 s

Time t in [s]
0 750 1500 2250 3000

In
p
u
t 

×
1
04

0.0

2.5

5.0

7.5

Time t in [s]
0 750 1500 2250 3000

T
em

pe
ra

tu
re

 in
 [K

]

300

350

400
Left
Center
Right

(c) T f f = 3000 s

Figure 7.4: Computation of the flatness-
based input signal and the resulting tem-
perature evolution. The graphs on the
right side show the temperatures of the rod
on the left side: x = 0 m,
in the center: x = L

2 = 0.05 m and
on the right side: x = L = 0.1 m. The
temperature on the right side is the out-
put and it follows the predefined reference
trajectory. Though, the input signal for
T f f ∈ {400,1200} seconds is not admissi-
ble because it drops below zero and pro-
duces temperatures below the initial tem-
perature in (a).

We visualize the results of our simulations in Fig. 7.4; see also article

[38] for similar results. In the first case, we set T f f = 400 seconds and we

yield an input signal in Fig. 7.4 (a) with strong oscillations and a very high

magnitude

max
t∈(0,T f f )

u(t ) ≈ 1.5 ·106.

This intensive input signal causes very high and low temperatures, e.g.

more than 1000 Kelvin and almost 200 Kelvin, on the left side of the rod,

x = 0. This situation might be physically realizable but is not practical for

ordinary industrial applications. Hence, we have to exclude this parame-

ter setup for further applications.

In the second scenario, T f f = 1200 seconds, the input signal reaches

small negative values (after t ≈ 600 seconds) in Fig. 7.4 (b), but all tem-

peratures are above the initial temperature. As we only have small neg-

ative input values, we might apply a limitation of the input signal with

ũ(t ) = max(u(t ),0) and still yield a reasonable temperature evolution.

Finally, for T f f = 3000 seconds, we compute an almost Gaussian-shaped

input function, which produces a suitable temperature evolution because

the overshoot is much smaller compared to the other scenarios. So, the

first derivative d
d t ψ has the main impact here on the shape of the input

signal, see Fig. 7.2. In Section 7.4, we approximate this flatness-based in-

put signal with a parameterized function.
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7.2 Flatness-based Control of the Approximated System

The flatness-based control design was initially proposed for finite dimen-

sional nonlinear systems in the article [108]. The main idea to find the

input signal u is the differentiation of the output signal y . We firstly ex-

plain how to find the input signal in general and afterwards we distinguish

between the one- and the multi-dimensional scenario. We consider the

approximated linear heat conduction problem

d

d t
Θ(t ) = A Θ(t )+B u(t )

y(t ) = C Θ(t )

with matrices A ∈ RNc×Nc , B ∈ RNc×Nu and C ∈ RNy×Nc , see Definition 6.1.

We differentiate the output y for Nc times to find the mappings in Eq.

(6.15) and so we obtain

d i

d t i
y(t ) = C Ai x(t )+C Ai−1B u(t ) (7.17)

for i ∈ {1, . . . , Nc }. If the term C Ai−1B vanishes for i ∈ {1, . . . , Nc − 1}, then

we can note the state mapping ψx . In this case, we summarize y and its

Nc −1 derivatives as

z(t ) :=


y(t )

ẏ(t )
...

y (Nc−1)(t )

=


C

C A
...

C ANc−1

Θ(t ) = Ty Θ(t )

with transformation matrix Ty := [
C ,C A, . . . ,C ANc−1

]⊤
and we find the

state mapping ψx as

Θ(t ) = T −1
y z(t ) =ψx (y , ẏ , . . . , y (Nc−1)). (7.18)

As matrix Ty needs to be invertible the number of its rows and columns

must coincide. In the second part of this section, we discuss this situation

for systems with multiple input and output signals where we have more

rows than columns and we need to decrease the size of Ty . We find the

highest-order derivative of the output as

d Nc

d t n y(t ) = C ANcΘ(t )+C ANc−1Bu(t )

with C ANc−1B ̸= 0. Accordingly, we yield the input signal as

u(t ) = [
C ANc−1B

]−1
(

d n

d t n y(t )−C ANcΘ(t )

)
. (7.19)

We identify Θ in Eq. (7.19) by the right-hand side of Eq. (7.18) and we

obtain the input mapping

u(t ) = [
C ANc−1B

]−1
(

d Nc

d t Nc
y(t )−C ANc T −1

y z(t )

)

= Mu


y(t )

ẏ(t )
...

y (Nc )(t )

=ψu(y , ẏ , . . . , y (n)) (7.20)
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with matrix

Mu := [
C ANc−1B

]−1
[
−C ANc T −1

y |INy

]
. (7.21)

INy denotes the identity matrix of size Ny ×Ny . As we wish to compute

an input signal depending on the reference signal, we need to identify the

output y(t ) by the reference signal r (t ) in Eq. (7.20) and we note

u(t ) = Mu


r (t )

ṙ (t )
...

r (Nc )(t )

 . (7.22)

Subsequently, we discuss the peculiarities of flatness-based control for

the one- and two-/three-dimensional case.

One-dimensional Scenario

If we assume the one-dimensional rod as geometric object then we have

one actuator and one sensor on opposite sides. We set the actuation on

boundary BW and temperature measurement on BE . These positions cor-

respond to the first x1 (actuation) and last grid node xNc = xN j (measure-

ment). Thus, we note the input and output vectors as

x1 xN

(a) 1st Diff.

(b) 2nd Diff.

(c) (Nc -1)-th Diff.

u y

u y

u y

Figure 7.5: Differentiation of the output y
for the one-dim. rod. The i -th derivative
of y(t ) relates to the temperature node of
index Nc − i .

B =
[

b

∆x1 cρ
,0, . . . ,0

]⊤
and C = [0, . . . ,0, c̃]

with b ∈ [0,1] and c̃ ∈ [0,1]. We differentiate output y and we build iter-

atively a relation between the output and all of its states, as depicted in

Fig. 7.5. We have system matrix A = α1

∆x2
1

D1 with diffusivity α1 = λ1
c ρ and

diffusion matrix D1, see Eq. (3.36). We calculate Mu in Eq. (7.21) with the

Nc -th power of A, but this matrix contains floating point values because

A = α1

∆x2
1

D1. Hence, we face numerical inaccuracies in the finding of Ai

and this issue may have a crucial impact on the computation of T −1
y , see

Eq. (7.18). We solve this problem as we split floating point and integer

values as

Ai =
[
α1

∆x2
1

]i

D i
1 and C Ai =

[
α1

∆x2
1

]i

C D i
1.

Accordingly, we split the transformation matrix as

Ty = diag

(
1,

α1

∆x2
1

, . . . ,

[
α1

∆x2
1

][Nc−1])


C

C D1
...

C DNc−1
1

=: Ty ,1 Ty ,2.
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We see that Ty ,1 is a diagonal matrix and hence we simply calculate the

inverse of Ty as

T −1
y = [

Ty ,1 Ty ,2
]−1 = T −1

y ,2 T −1
y ,1

=


C

C D1
...

C DNc−1
1


−1

diag

(
1,
∆x2

1

α1
, . . . ,

[
∆x2

1

α1

][Nc−1])
(7.23)

In case of the computation of C ANc−1B , we know that vectors C and B

relate to the last and first grid node, respectively. Diffusion matrix D1 has

almost a Toeplitz form and so find the i -th power of D1 with a vector of

ones on the (i +1)-th subdiagonal, for example

D2 =



∗ ∗ 1

∗ ∗ ∗ 1

1 ∗ ∗ ∗ 1

1 ∗ ∗ ∗ 1

1 ∗ ∗ ∗
1 ∗ ∗


and D [Nc−1] =



∗ ∗ . . . ∗ 1

∗ ∗ ∗ ∗
... ∗ . . . ∗ ...

∗ ∗ ∗ ∗
1 ∗ . . . ∗ ∗

 .

Hence, we calculate

(0, . . . ,0,1) D [Nc−1]
1


1

0
...

0

= 1.

We continue this idea to obtain C DNc−1
1 B = b c̃

∆x1 cρ and we compute in a

next step

C ANc−1B =
[
α1

∆x2
1

][Nc−1]

C DNc−1
1 B

=
[
α1

∆x2
1

][Nc−1]
b c̃

∆x1 cρ
. (7.24)

Finally, we wish to note row vector Mu as in Eq. (7.21) explicitly including

the previous considerations. For the first Nc − 1 entries, we consider the

identity

C ANc =
[
α1

∆x2
1

]Nc

C DNc
1

to derive the expression

[
C ANc−1B

]−1
C ANc =

[
∆x2

1

α1

][Nc−1]
∆x1 cρ

b c̃

[
α1

∆x2
1

]Nc

C DNc
1

= λ1

∆x b c̃
C DNc

1 .
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Figure 7.7: Computation of the flatness-
based input signal and the resulting tem-
perature evolution for the approximated
one-dimensional heat equation. The data
coincides with the results of the PDE
flatness-based control in Fig. 7.4.

For the last entry of Mu , we have [C ANc−1B ]−1 by inverting the right-hand

side of Eq. (7.24). We summarize all the previous findings and we note

Mu =
[
−[

C ANc−1B
]−1

C ANc T −1
y |[C ANc−1B

]−1
]

=
[
− λ1

∆x b c̃
C DNc

1 T −1
y ,2T −1

y ,1

∣∣∣∣
[
∆x2

1

α1

][Nc−1]
∆x1 cρ

b c̃

]
. (7.25)

Additionally, we remark that the first entry of Mu has to be equally zero

as Mu (1,0, . . . ,0)⊤ = 0 because the input signal shall consist of the refer-

ence derivatives d i

d t i r (t ) only and not of the reference r (t ). We find the

same situation in PDE flatness-based control in Eq. (7.11,7.15). This fact is

based on the integrating behavior of the heat equation with non-insulated

boundary conditions. We discussed this scenario in the example of Sec-

tion 4.3, see also Eq. (4.60).

Example: Flatness-based Control in one Dimension

We consider the same heat conduction example from Section 7.1. We de-

sign an input signal for the same reference signal, see Eq. (7.16), with

steepness p = 2 and final feed-forward time T f f = 3000 seconds. We spa-

tially approximate the rod with Nc = 20 grid nodes and we compute the

input signal as in Eq. (7.22) with Mu as in Eq.(7.25). As we know that the

first entry of Mu is zero as Mu = [0,m̃1,m̃2, . . . ,m̃Nc ], we compute the input

signal as

5 10 15 20

5

7.5

10

12.5

Index i

lo
g 1

0
(m̃

i)

Figure 7.6: Logarithmic scaling of vector
elements m̃i , which amplify the reference
derivatives for the flatness-based control
of the one-dim. approximated heat equa-
tion.

u(t ) =
Nc∑
i=1

m̃i
d i

d t i
r (t ).

The values of m̃i describe the scaling of each reference derivative and they

reach very large numbers, e.g. max
i∈{1,...Nc }

m̃i ≈ 2.5 · 1013. We portray these

values m̃i in Fig. 7.6 in semi-logarithmic scale. We compare m̃i with the

sequence elements ηi from the example in Section 7.1, see Fig. 7.3, and

we find similar values for the first indices, which correspond to the low or-

der derivatives. We apply the input on our approximated heat conduction

model and we visualize the input signal and the resulting temperatures in

Fig. 7.7. Here, we notice that the similar values of m̃i and ηi correspond

to similar input signals and thermal dynamics, see Fig. 7.4 (c).
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Multiple Actuators and Sensors for Two and Three Dimensions

In the multi-dimensional scenario we consider multiple actuators and sen-

sors, Nu > 1 and Ny > 1. The matrices B and C need to fulfill certain crite-

ria to find the state and input mapping, ψx and ψu , with Eq. (7.17).

We know that the transformation matrix has to have full rank Ty ∈RNc×Nc

to be invertible. However, we have Ny sensors and output matrix C ∈
RNy×Nc , and so we find the matrix

C

C A
...

C ANc−1

 ∈RNy Nc×Nc

with more rows than columns. Thus, we need to reduce the number rows

either by removing linear dependent ones or we consider only the first Ñ

matrix blocks as

Ty =


C

C A
...

C AÑ−1

 (7.26)

with Ñ = Nc
Ny

. In the latter case, we need to prove whether Ty still has full

rank. This is the fact, if we have a bijective mapping between a subset

of the temperature nodes and the output signals y . In an example, we

assume

y(t ) =C Θ(t )

with matrix

C =
[

0Ny×Nc−Ny ,diag
(
c̃1, . . . , c̃Ny

)]
(7.27)

and we obtain the bijective mapping

y1 = c̃1 ΘNc−Ny+1,

y2 = c̃2 ΘNc−Ny+2,

...

yNy = c̃Ny ΘNc .

Due to the block matrix structure of A in the two- and three-dimensional

case, we compute a suitable transformation matrix Ty with C in Eq. (7.27).

The second term of the right-hand side in Eq. (7.17) has the dimension[
C Ai−1B

]
∈RNy×Nu

and we know that it needs to be invertible for i = Ñ . Thus, the number of

input and output signals must be equal: Nu = Ny . Furthermore, to guaran-

tee C Ai−1B = 0Nu×Nu for i ∈ {1, . . . , Ñ −1}, we require that the temperature

cells, which are affected by the actuation and temperature measurement

must be completely separated. This means, they have to be on opposite

boundary sides. In other words, the intersection of the index sets of the

actuation and sensing must be empty as( ⋃
n∈{1,...,Nu }

Sβ,n

)
∩

( ⋃
n∈{1,...,Nu }

Sγ,n

)
= {}.
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If we consider output matrix C as in Eq. (7.27), then we have to choose the

input matrix as

B =
(

diag
(
b1, . . . ,bNu

)
0Nc−Nu×Nu

)
. (7.28)

The design constraints for matrices B and C does not match well with our

concepts of input and output partitions, as introduced in Section 6.1, be-

cause one partition usually consists of several cells. In case of the actu-

ation, we may solve this issue as we define one cell per partition and we

specify several input signals with the same reference function. However,

we are not able to transfer this idea to the output partitions because we

have here multiple cells to find an average temperature, see Eq. (6.6). We

may solve this issue by introducing a control design with two stages:

1. Low resolution approximation of object Ω where the number of input

and output segments coincide with the number of input and output

signals. We consider this approximation to compute the flatness-based

input signal.

2. High resolution approximation of object Ω with smaller segments and

accurate spatial characteristics. We apply the found flatness-based in-

put signals on this precise model to check the open-loop dynamics.

Example: Simulation with three Actuators and Sensors

We exemplify the previous ideas on a rectangle example with length L = 0.1

m, width W = 0.05 m, and number of grid cells N j = 3 along direction x1,

and Nm = 5 along x2. We consider the actuation on BS = (0,L)× {0} and

the measurement on BN = (0,L)× {W } with Nu = Ny = 3 input and output

signals

u1

y1

u2

y2

u3

y3

m = 1

m = Nm

(N
m

−1
)-

th
D

if
f.

1s
tD

if
f.

Figure 7.8: Example of flatness-based con-
trol for a rectangle with three actuators on
boundary BS and three sensors on BN .

u(t ) = (u1(t ),u2(t ),u3(t ))⊤ and y(t ) = (
y1(t ), y2(t ), y3(t )

)⊤ .

The input signals affect the cells with index i ∈ {1,2,3} and the output sig-

nals measure temperatures of the cells with index i ∈ {Nc −2, Nc −1, Nc }.

This setup is visualized in Fig. 7.8. We consider two setups for input ma-

trix B as in Eq. (7.28) with bi = b̃
∆x2cρ and output matrix C as in Eq. (7.27).

In the first case, the actuator coefficients b̃i are different while c̃i are equal

and in the second case it is vice versa, see Table 7.1.

Table 7.1: Simulation Scenarios.

Setup (b̃1, b̃2, b̃3) (c̃1, c̃2, c̃3)

(a) (1,0.9,0.8) (1,1,1)

(b) (1,1,1) (1,0.9,0.8)
We assume an initial value of Θ(0) = 0Nc (not in Kelvin) and so we have

the initial output signal as y(0) =CΘ(0) = (0,0,0)⊤. All three output signals

shall be along the same reference function r (t ) = 100 ψ(t , p) with a transi-

tion as in Eq. (7.12) and steepness parameter p = 2. We compute the input

as u(t ) = Mu r̃ (t ) with matrix

Mu :=
[
C AÑ−1B

]−1 [
−C AÑ T −1

y |INy

]
,

transformation matrix Ty as in Eq. (7.26) and

Ñ = Nc

Ny
= N j Nm

N j
= 5.



116

Time t in [s]
0 300 600 900 1200

In
p
u
t 

×
10

4

0

2

4

6

8

10

Time t in [s]
0 300 600 900 1200

T
em

pe
ra

tu
re

0

25

50

75

100Input 1
Input 2
Input 3

i = Nc − 2
i = Nc − 1
i = Nc

(a) Variation of Actuator Coefficients

Time t in [s]
0 300 600 900 1200

In
p
u
t 

×
10

4

−2
0
2
4
6
8

10
12

Time t in [s]
0 300 600 900 1200

T
em

pe
ra

tu
re

0

25

50

75

100

125Input 1
Input 2
Input 3

i = Nc − 2
i = Nc − 1
i = Nc

(b) Variation of Sensor Coefficients

Figure 7.9: Flatness-based control of the
2-dimensional heat conduction with three
input and output signals. The input signal
and the resulting temperature evolution is
computed for two scenarios with B and C
as in Table 7.1. The temperature values of
the grid nodes with index
i ∈ {Nc − 2, Nc − 1, Nc }, which are related
to boundary BN , are scaled in Scenario (b)
because of the choice of matrix C .

We emphasize again that the computation of Ai and its further usage might

be numerically sensitive for a “large” value of power i because of the float-

ing point values in A = α1

∆x2
1

D1 + α2

∆x2
2

D2. The computed input signal and

our resulting temperature evolution of Θi (t ) for i ∈ {Nc − 2, Nc − 1, Nc } is

portrayed in Fig. 7.9. In case of setup (a), the input signals u2(t ) and u3(t )

are amplified to compensate the scaling of input matrix elements b̃2 and

b̃3. The temperature on boundary BN behaves as desired and follows the

reference trajectory. In case of setup (b), the computed input signals show

an almost Gaussian-like shape but their values do not approach zero after

reaching its peak value. We find that u3 stays at ca. 4 · 104 while u1 and

u2 drop to negative values. These input values lead to the nonuniform fi-

nal temperature distribution on boundary BN where ΘNc−2(T f f ) ≈ 100,

ΘNc−1(T f f ) ≈ 110 and ΘNc (T f f ) ≈ 125. This situation is caused by the

choice of (c̃1, c̃2, c̃3) and so we yield for the output values

y1(T f f ) = c̃1 ΘNc−2(T f f ) ≈ 100,

y2(T f f ) = c̃2 ΘNc−1(T f f ) ≈ 100,

y3(T f f ) = c̃3 ΘNc (T f f ) ≈ 100.

In this example, we see the influence of matrices B and C on the compu-

tation of the input signals and the resulting thermal dynamics. The input

signals in Fig. 7.9 (a) are symmetric and Gaussian-shaped like in the one-

dim. examples in Fig. 7.4 (c) and Fig. 7.7. In particular, if all reference

signals and the coefficients b̃i and c̃i are equal, then we yield identical in-

put signals and we can consider a one-dim. scenario for the computation

of the flatness-based input signal instead of the multi-dim. geometry.

We take up the ideas of setup (a) in our optimization-based feed-forward

control to design the symmetric and Gaussian-shaped input signals, see

Section 7.4. In contrast to that, we do not further discuss a scenario as in

setup (b) with flatness-based control because it shows an undesired input

signal.
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7.3 Reference Generation

The flatness-based control approach in Section 7.1 and 7.2 depends strongly

on the design of reference signal r (t ) and its derivatives. In Section 7.1, we

constructed the reference with a very smooth transition function of the

Gevrey class, which is required for the control design of infinite-dim. sys-

tems. Here, we face the problem that computing the transition and its

derivatives is not trivial and could be costly, see [36]. In practice, we need

to approximate the input signal and the infinite-dim. system to imple-

ment it in simulations and control algorithms for industrial controllers.

Hence, we know the number of necessary reference derivatives from the

number of grid nodes in the spatial approximation. If we fix the number

of reference derivatives accordingly, then we can propose a transition with

a finite number of smooth derivatives. Subsequently, we discuss three de-

sign approaches of transition ψ for the flatness-based control of finite-

dim. systems and we explain how to compute its derivatives. These ap-

proaches have in common that the computation of transition derivatives

is less challenging than in case of Gevrey functions.

In case, we do not require derivatives of the reference function, e.g. in a

pure numerical control design as in article [40], then we may even assume

very simple transitions like

ψ(t ) = 1

2

[
1− cos

(
π

t

T f f

)]
.

Standard Polynomial Approach

First of all, we present a polynomial approach

ψ(t , N ) =
2N+1∑
n=1

cn

[
t

T f f

]n

(7.29)

with coefficients cn ∈R and N > 0 to model the transition. Here, the num-

ber N > 0 represents the order of the highest reference derivative. We drop

the dependency of order N inψ(t , N ) below to improve the readability. We

require that the transition starts at zero and reaches one as

ψ(0)
!= 0 , ψ(T f f )

!= 1 (7.30a)

and the derivatives at the initial and final time must vanish as

d n

d t n ψ(t )

∣∣∣∣
t=0

= d n

d t n ψ(t )

∣∣∣∣
t=T f f

!= 0 (7.30b)

for n ∈ {1, . . . , N }. We find the coefficients cn of transition ψ(t ) with an

evaluation of the constraints in Eq. (7.30). In particular, we evaluate Eq.

(7.30a) at t = T f f as

ψ(T f f ) =
2N+1∑
n=1

cn = 1. (7.31)

We continue with i -th derivative at the initial time t = 0 as in Eq. (7.30b),

where the i -th coefficient ci must be zero for i ∈ {1, . . . , N } because of

d i

d t i
ψ(t )

∣∣∣∣
t=0

= T −i
f f i ! ci = 0. (7.32)
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We calculate the derivative at the final time t = T f f as

d i

d t i
ψ(t )

∣∣∣∣
t=T f f

= T −i
f f

2N+1∑
n=i

n!
(n − i )!

cn = 0.

As we know from Eq. (7.32) that ci = 0 for i ∈ {1, . . . , N } , we start the sum-

mation at index i = N and we yield

2N+1∑
n=N+1

n!
(n − i )!

cn = 0. (7.33)

We collect the previous findings from Eq. (7.31, 7.33) and we solve the

linear equations

1 1 . . . 1
(N+1)!
(N−1)!

(N+2)!
N ! . . . (2N+1)!

(2N )!
(N+1)!
(N−2)!

(N+2)!
(N−1)! . . . (2N+1)!

(2N−1)!

...
...

...

(N+1)!
1!

(N+1)!
2! . . . (2N+1)!

(N+1)!




cN+1

cN+2
...

c2N+1

 =


1

0
...

0

 (7.34)

for the coefficients ci . Transition ψ(t , N ) and its first derivative d
d t ψ(t , N )

are portrayed in Fig. 7.10 for N ∈ {2,5,10} and we note that a higher or-

der N leads to a steeper transition. In summary, the polynomial approach

(7.29) has in total N series elements ci , which we find by solving Eq. (7.34),

and the highest order term has the exponent 2N +1.

Transition ψ Derivative d
d t ψ

Time t Time t

(a) N = 2

(b) N = 5

(c) N = 10

Figure 7.10: Transition ψ and derivative
d

d t ψ for order N ∈ {2,5,10} as in Eq. (7.29).
An increasing order N leads to a steep
transition.

Integration of Bump Functions

In Section 7.1 we described how to compute the transition by integrating

the bump functionω(t , p) in Eq. (7.12). Now, we transfer these concepts to

transition functions with finite order. So, we consider the bump function

ω(t , N ) = [
t − t 2]N =

N∑
n=0

(
N

n

)
(−1)n t N+n

and we integrate it as

ψ(t , N ) =
∫ t

0 ω
(

τ
T f f

, N
)

dτ∫ T f f

0 ω
(

τ
T f f

, N
)

dτ
(7.35)

to yield a transition ψ as in Eq. (7.29). We solve the integral in the numer-

ator of Eq. (7.35) as∫ t

0
ω

(
τ

T f f
, N

)
dτ= T f f

N∑
n=0

(
N

n

)
(−1)n [N +n]−1

[
t

T f f

]N+n+1

(7.36)

with the binomial coefficient(
N

i

)
= N !

i !(N − i )!
.

We find the denominator in Eq. (7.35) by evaluating the right-hand side of

Eq. (7.36) at t = T f f as∫ T f f

0
ω

(
τ

T f f
, N

)
dτ= T f f

N∑
n=0

(
N

i

)
(−1)n [N +n]−1
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and we yield the polynomial transition in Eq. (7.29) as

ψ(t , N ) =

N∑
n=0

(
N

n

)
(−1)n [N +n]−1

[
t

T f f

]N+n+1

N∑
n=0

(
N

n

)
(−1)n [N +n]−1

.

Beside a polynomial, we can also consider other bump functions. If we

assume a sine function asω(t , N ) = [sin(πt )]2N , then we find the transition

ψsi n(t , N ) =

t∫
0

[
sin

(
τ π
T f f

)]2N

T f f∫
0

[
sin

(
τ π
T f f

)]2N
. (7.37)

In Eq. (7.37), we may apply trigonometric identities like

sin(z)2 ≡ 1

2
(1−cos(2z))

to compute the integrals in closed form.

Hyperbolic Tangent

Additionally to the transition functions, which are based on a polynomial

in Eq. (7.29) or on a sine in Eq. (7.37), we propose the simple, but inexact,

transition

ψ(t , p) = 1

2

[
1+ tanh

(
p

[
t

T f f
− 1

2

])]
. (7.38)

In case of this transition, we do not need to compute several coefficients

or solve integrals as above, and we can simply specify the steepness with

parameter p > 1. Though, the constraints at the initial and final time do

not match exactly as

ψ(0, p) ̸= 0 and ψ(T f f , p) ̸= 1

for any parameter choice p > 1. We evaluate identity

tanh(z) = 1− 2

exp(2z +1)

in Eq. (7.38) and find at the initial and final time

ψ(0, p) = 1− exp(p)

exp(p)+1
, (7.39a)

ψ(T f f , p) = 1− 1

exp(p)+1
. (7.39b)

If parameter p increases, then the transition approaches the desired val-

ues as

lim
p→∞

(
ψ(0, p),ψ(T f f , p)

)= (0,1).

If we fix a certain initial value, e.g. ψ(0, p) = ψ0, then we compute the

necessary value of the steepness with Eq. (7.39a) as

Table 7.2: Steepness and initial value as in
Eq. (7.40).

ψ0 10−1 10−2 10−3 10−4

p 2.2 4.6 6.9 9.2

p = ln

(
1

ψ0
−1

)
. (7.40)
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In Table 7.2, we list four example relations of Eq. (7.40). The reference

tracking shall also perform well and robustly, if the initial reference value

and the corresponding output signal do not match exactly, r (0)− y(0) > 0.

For our simulations, we require p ≥ 7 or ψ0 ≤ 10−3 because we yield the

initial reference as

r (0) = r0 +∆r ψ(0, p)︸ ︷︷ ︸
<1

≈ r0

with e.g. ∆r = 100 Kelvin. We visualize the transition and its first derivative

in Fig. 7.11 and we remark the offset for p ∈ {3,5} at the initial and final

time, t = 0 and t = T f f . In case of p = 7, we notice almost no offset in the

transition and its derivative.

Transition ψ Derivative d
d t ψ

Time t Time t

(a) p = 3

(b) p = 5

(c) p = 7

Figure 7.11: Transition ψ and derivative
d

d t ψ for p ∈ {3,5,7} as in Eq. (7.38).

We differentiate the transition in Eq. (7.38) and obtain

d

d t
ψ(t , p) = p

[
1− tanh

(
t

p

T f f
− p

2

)2]
= p

2T f f

[
ψ(t , p)−ψ(t , p)2] , (7.41)

which is in form of the Riccati differential equation

d

d z
f (z) = c0 + c1 f (z)+ c2 f (z)2

with coefficients c0 = 0, c1 = p
2T f f

c2 =− p
2T f f

. According to article [135], we

find the n-th order derivative of ψ as

d n

d t n ψ(t , p) =
[

p

2T f f

]n n−1∑
i=0

〈
n

i

〉(
ψ(t , p)−1

)i+1
ψ(t , p)n−i

with the Eulerian number〈
n

i

〉
=

i∑
j=0

(−1) j

(
n +1

j

)
(i +1− j )n . (7.42)

For further information on Eulerian numbers we to the book [136, p. 242].

As for the transition, the constraints for the derivatives at the initial and

final time do not match as

d n

d t n ψ(t , p)

∣∣∣∣
t=0

̸= 0 and
d n

d t n ψ(t , p)

∣∣∣∣
t=T f f

̸= 0.

We solve this issue with a proper choice of the steepness, e.g. p > 7, see

Fig. 7.11.

In conclusion, we are able to compute reference transitions for differ-

ential equations with a high number of states either exactly, e.g. with a

polynomial approach as in Eq. (7.29) and (7.35), or approximately with

the hyperbolic tangent in Eq. (7.38). The steepness of the polynomial ap-

proach can only be specified for a discrete order of the polynomial, while

the steepness of the tanh approach can be set continuously. In Section 7.6,

we exemplify the reference design with the tanh approach.
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7.4 Optimization-based Feed-forward Control

In the previous sections, we discussed the design of a reference function

and the computation of an input signal with flatness-based control. In

case of the one-dim. heat conduction, the input signal tends to a bell-

shaped function if the final time T f f is long enough, see Fig. 7.4. We re-

mind that this shape corresponds to the first derivative of reference r (t )

and the influence of higher order derivatives need to be minimized by

choosing a suitable T f f and steepness to guarantee only positive input

values. As flatness-based control is rather limited to linear heat conduc-

tion problems5 for our scenarios, we extend the feed-forward control de- 5 The flatness-based control design for a
specific type of quasilinear parabolic PDE
is described in the doctoral thesis [111].

sign with numerical optimization approaches to handle our original non-

linear scenario. Therefore, we treat flatness-based control as a prototyping

stage for the optimization-based control design, which is capable to han-

dle the full heat conduction setup with thermal emissions, temperature-

dependent material coefficients and spatial characteristics for actuators

and sensors. This concept is described in our article [39]. We approximate

bell-shaped flatness-based input signal by the Gaussian function

uoc (t , p) := exp

(
p1 −p2

3

[
t

T f f
− 1

p2

]2)
(7.43)

with signal gain p1 ≥ 0, time shift p2 > 0 relative to final time T f f and

width or kurtosis of the bell shape p3 ≥ 0. An increasing value of p2 shifts

the center of uoc closer to the origin, and an increasing value of p3 de-

creases the shape width. The optimization-based input signal (7.43) is vi-

sualized with its parameters in Fig. 7.12. We find the first derivative in time

as Time t

In
p

u
tu

o
c

p3 p1

p2
increasing decreasing

Figure 7.12: The optimization-based in-
put signal is designed as a Gaussian func-
tion with parameters p1 as gain, p2 as time
shift and p3 as width of the bell shape.

d

d t
uoc (t ; p) =−2

p2
3

T f f

[
t

T f f
− 1

p2

]
uoc (t ; p)

and this derivative vanishes, d
d t uoc (t ; p) = 0, at the peak value of uoc (t , p),

d
d t uoc (t ; p) = 0 at t = T f f

p2
. At this time, we yield the maximum value as

max
t∈[0,T f f ]

uoc (t , p) = uoc

(
T f f

p2
, p

)
= exp(p1). (7.44)

In our subsequent examples, we have this peak value close to
T f f

2 or equally

p2 ≈ 2. The input signal is positive for all t ∈ [0,T f f ] and does not start at

zero as

uoc (0; p) = exp

(
p1 −

[
p3

p2

]2)
̸= 0

for any parameter choice p = (p1, p2, p3). Thus, we specify a very small

initial value uoc (0; p) = u0 > 0 and we determine the parameters such that

equation

exp

(
p1 −

[
p3

p2

]2)
≡ u0

holds. In the function approximation of the flatness-based input signal we

easily derive the parameters p1 and p2 via the maximum value, but finding
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a suitable p3 needs more effort. Hence, we may determine p3 via the initial

value as

p3 = p2

√
p1 − ln(u0). (7.45)

If we choose a small u0, then yield a large kurtosis p3 and a narrow bell

shape. In Fig. 7.13 (a), we find for u0 = 10−6 the kurtosis p3 ≈ 7.4 and we

yield the green input signal in Fig. 7.13 (b).

The parameter optimization of uoc with gradient-based techniques in

the next paragraphs and so we calculate the parameter gradient as

2

4

6

8

−1 −2 −3 −4 −5 −6 −7 −8
log10(u0)

p3

(a) Determining p3

u0 = 10−2

u0 = 10−4

u0 = 10−61
2
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T f f /2 T f f

Time t

In
p

u
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o
c

(b) Width of bell shape

Figure 7.13: Determining parameter p3 for
a given initial value as in Eq. (7.45) with
p1 = 0 and p2 = 2 in (a). The shape width is
shrinking for a decreasing initial value u0
in (b).

∇p uoc (t ; p) =


1

−2
[

p3
p2

]2 [
t

T f f
− 1

p2

]
−2 p3

[
t

T f f
− 1

p2

]2

uoc (t ; p).

Approximation of Flatness-based Input Signal

In the next steps, we approximate the flatness-based input signal with uoc

and optimize the parameters of uoc such that it fits to a heat conduction

model with nonlinear terms. To exemplify these steps, we assume a one-

dim. heat conduction model with boundary conditions

−λ d

d x1
ϑ(t , x)

∣∣∣∣
x1=0

= u(t )+φem(t ,0), (7.46a)

λ
d

d x1
ϑ(t , x)

∣∣∣∣
x1=L

= φem(t ,L) (7.46b)

and thermal emissions as in Eq. (2.33). We assume the same material

properties as in the example of Section 7.1, see also Table 7.3.

Table 7.3: Example coefficients.

L λ ρ c

0.1 50 8000 400We sample the heat conduction in space and we design a flatness-based

control for the simplified model as described in Section 7.2, where we drop

the thermal emissions as φem ≡ 0. We set the final time T f f = 3000 sec-

onds and we specify reference signal r (t ) with the Gevrey-type transition

as explained in Section 7.1. We yield the input signal u f bc as in Fig. 7.7

and we restrict it to positive values only as

û f bc (t ) := max
(
u f bc (t ),0

)
.

The main idea of this first step is to find suitable parameters p = (p1, p2, p3)

to minimize the error between the flatness-based and optimization-based

input signal as

mine f bc (t , p) with e f bc (t , p) := û f bc (t )−uoc (t , p). (7.47)

We derive gain p1 and time shift p2 directly from the data of û f bc , but we

need to approach the width p3 via a numerical optimizer. This procedure

is visualized in Fig. 7.14. The found parameters of this step are treated as

initial values for the optimization routines of the subsequent steps. The

flatness-based input signal û f bc reaches its peak value at t = tmax and we

obtain with Eq. (7.44) the identity

max
t∈(0,T )

û f bc (t ) = û f bc (tmax )

= uoc (tmax , p) = max
t∈(0,T f f )

uoc (t , p)

= exp(p1).
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Figure 7.15: Objective function and its
gradient for the norms L1, L2 and L∞.
The minimum costs (purple crosses) reach
circa 12.3 for L1 and L2, and 12.4 for L∞,
see also Table 7.4. The objective function
for L∞ is not continuous at its minimum
and so its gradient shows a jump.

Thus, we derive the parameters Trajectory

Generation

Flatness-b.

Control

Optim.-based

Control

Numerical
Optimizer

r, ṙ
. . .

r(n)

(p
1

,p
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) ûfbc

uoc

efbc-

p3

Figure 7.14: Scheme to approximate the
flatness-based input signal. Parameters p1
and p2 are derived directly from û f bc , and
p3 is found numerically via the minimiza-
tion of the error between flatness-based
and optimization-based input function.

p1 = ln(û f bc (tmax )) and p2 =
T f f

tmax
.

We find tmax = 1401 seconds and û f bc (tmax ) ≈ 74.8 · 103 and so we yield

the parameters of uoc (t , p) as

p1 ≈ 11.22 and p2 ≈ 2.14.

In a similar way, we can pick an arbitrary time point t̃ ∈ (0,T f f ) \ {tmax } to

find parameter p3 by solving the equation û f bc (t̃ ) = uoc (t̃ , p) as

p3 =
∣∣∣∣ t̃

T f f
− 1

p2

∣∣∣∣−1 √
p1 − ln

(
û f bc (t̃ )

)
.

Though, we may find for each time t̃ a different parameter p3 because the

flatness-based and optimization-based input signal do not fit perfectly.

We wish to avoid such a sensitivity and design an unconstrained optimiza-

tion problem, which fits the parameter robustly as

p∗
3 = arg min

p3∈(0,∞)
J (p3). (7.48)

We consider the quadratic objective function

J (p3) = ∥û f bc (t )−uoc (t , p)∥2

∥û f bc (t )∥2 (7.49)

where we distinguish three norms as

∥ f (t )∥L1 :=
∫ T f f

0
| f (t )|d t ,

∥ f (t )∥L2 :=
√∫ T f f

0
f (t )2d t ,

∥ f (t )∥L∞ := max
t∈(0,T f f )

| f (t )|.
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Figure 7.16: Match between the flatness-
based and optimization-based input sig-
nal with p3 as in Table 7.4. The start and
end time, t ∈ [0,500] and t ∈ [2500,3000],
is cut to improve the readability. Two re-
markable errors occur during the ramp-up
and ramp-down phase of the bell function,
circa at t = 1200 and t = 1800 seconds.

We solve the optimization problem (7.48) numerically with a Conjugate

Gradient optimizer for these three norms and we yield three different op-

timal values p∗
3 . In Fig. 7.15 we depict function (7.49) and its gradient for

each norm. The optimal values of p∗
3 are marked as purple crosses and its

approximate values are listed in Table 7.4. The objective functions start at

high values for L1 and L2, they approach zero and continue on low values

for p3 > 10. The objective function of L∞ has a discontinuity at its mini-

mum value, which leads to a jump in the gradient.

Table 7.4: Found Parameter p3.

L1 L2 L∞

12.26 12.32 12.44We visualize uoc (t , p) for the three p3 values in Fig. 7.16 (a) with data

samples as markers and the original û f bc as a line, and we notice that

the optimization-based input signal uoc (t , p) fits the flatness-based in-

put û f bc quite precisely. Error e f bc , as in Eq. (7.47), shows in Fig. 7.16

(b) two significant peaks during the start-up and shutdown phase, e.g.

t ∈ (1000,1300) and t ∈ (1600,2000).

In the subsequent optimization routines, we assume the L2 norm to

evaluate the error.

Parameter Fitting for Reference Tracking

Here, we design the optimization-based input signal for the full, original,

heat conduction scenario and we visualize this approach in Fig. 7.17. In-

put signal uoc (t , p) shall steer the temperature measurements y(t ) of the

nonlinear thermal dynamics, see Definition 6.1, along a predefined refer-

ence trajectory r (t ). The numerical optimizer shall find suitable parame-

ters for uoc (t , p) to minimize the error between the reference and the tem-

perature measurement as

Trajectory

Generation

Heat

Conduction

Optim.-based

Control

Numerical
Optimizer

r

y

er,oc

uoc

-

(p1, p2)

Figure 7.17: Scheme to fit the parameters
for reference tracking. The optimization-
based input uoc steers the heat conduc-
tion. The measured temperature y is com-
pared with the reference r and their dif-
ference shall be minimized by the numer-
ical optimizer to find optimal parameters
p1 and p2.

er ,oc (t , p) := r (t )− y(t , p).

The temperature measurement depends on parameter set p because each

variation of p changes the thermal dynamics and consequently the mea-

surement y as

y(t , p) =C Θ(t , p) =C

[∫ t

0
fD(Θ)+B(Θ) u(τ, p)+w(τ,Θ)dτ

]
This means, we do not approximate the input signal uoc via a candidate

function as in the previous step. Instead, we need to integrate the thermal

dynamics in an intermediate step and compare the resulting output tem-

perature with the reference signal. Here, we adapt only gain p1 and time

shift p2 while we fix kurtosis p3 with the value of the previous step. We find
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Figure 7.19: Adjusted input signal and re-
sulting temperature measurement for ref-
erence tracking. The larger adjusted input
signal in (a) improves the reference track-
ing as it leads to higher measured temper-
atures in the end of the heating-up phase
in (b). The thermal emissions forces a no-
table temperature drop of output signals.

the parameters via minimizing the quadratic optimization problem

(p∗
1 , p∗

2 ) = arg min
(p1,p2)

1

T

∥∥er ,oc (t , p)
∥∥2

L2
(7.50)

with subject to the nonlinear thermal dynamics as in Eq. (6.11). Now,

we consider thermal emissions in the boundary conditions again, see Eq.

(7.46). The emissive heat flux φem disturbs the desired thermal dynam-

ics because it forces a cooling on both sides of the rod. Thus, the original

input signal in Fig. 7.16 (a) must be amplified to compensate the temper-

ature drop caused by the thermal emissions. Gain p1
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T
im

e 
sh
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t 

p 2
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Figure 7.18: Convex objective function
J (p1, p2) of reference tracking prob-
lem (7.50). The dotted line shows the
path of optimization routine, starting
at (p1, p2) ≈ (11.22,2.14) and reaching
the optimal value (p∗

1 , p∗
2 ) ≈ (11.31,2.12)

(purple cross).

We initialize the optimization problem in Eq. (7.50) with p1 ≈ 11.22 and

p2 ≈ 2.14 from the previous step and we fix p3 = 12.32, see Table 7.4. The

numerical optimizer finds the minimum value at p∗
1 ≈ 11.31, p∗

2 ≈ 2.12.

The objective function J (p1, p2) := 1
T

∥∥er ,oc (t , p)
∥∥2

L2
is convex in a region

around the minimum value as depicted in Fig. 7.18. So, the optimizer finds

the local optimal value and even the global optimum, if J (p1, p2) is con-

vex for all p1, p2. We compute the input signal uoc (t , p) with p∗
1 , p∗

2 and

we apply it on the heat conduction problem, see Fig. 7.19. The adjusted

input signal in Fig. 7.19 (a) is slightly larger than the initial one and con-

sequently, we have higher temperatures of the output signal for t > 1750

seconds in Fig. 7.19 (b). The thermal emission are partially compensated,

but the adjusted input signal is not able to prevent the temperature drop.

We face this situation because uoc has a significant impact only during the

time t ∈ [1000,2000] seconds while the thermal emissions operate inten-

sively after reaching the desired temperature, e.g. t > 2000 seconds. We

address this issue in Chapter 8 where we design a feedback controller to

stabilize the measured temperature at the desired value.

Numerical Optimization Methods

We implement the numerical optimization routines with the Julia libraries

Optimization.jl [139], Optim.jl [140] and ForwardDiff.jl [141]. The library

Optim.jl provides a Conjugate Gradient method, which is implemented

with concepts from the articles [142,143], see also the documentation [144].

For an introduction to the Conjugate Gradient method, we refer to the ar-

ticle [145] and to the books [146, p. 121] and [147, p. 70] . This optimization

technique requires the specification of a gradient of the objective function,

which is neither computed analytically nor numerically here. Instead, we

compute the gradients with Algorithmic Differentiation6 in forward accu- 6 Also known as Automatic Differentiation.

mulation mode, which is implemented in the library [141]. Algorithmic
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differentiation applies gradients via the chain rule on source code, we re-

fer to the literature [147, p. 27] and [148, 149] for further information.

7.5 Energy-based Feed-forward Control

The main concept to heat up the considered object is to supply thermal

energy via distributed actuators on the boundary sides. In the previous

sections, we derived the input signals from a pure “equation-based” point

of view without an intense consideration of the physical model. Now, we

include the amount of thermal energy to heat up the object and we ex-

tend these ideas in Chapter 8 to stabilize the reached operating temper-

ature. This energy-based control design is also explained in article [40].

The energy-based formulation is described by the first law of thermody-

namics in Eq. (2.8) and we know that the supplied and emitted power P (t )

changes the internal energy U (t ) as described by

d

d t
U (t ) = d

d t
Q(t )+P (t ) (7.51)

with the rate of heat flow d
d t Q(t ), see Eq. (2.19). The variation of the inter-

nal energy d
d t U (t ) is solemnly driven by the supplied and emitted power

P (t ) because the rate of heat flow d
d t Q(t ) describes the spatial temperature

variation and does not generate energy. This fact leads to

d

d t
Q(t ) =

∫
Ω

div[λ(ϑ(t , x)) ∇ϑ(t , x)]d x ≡ 0 (7.52)

for all t ≥ 0. At the initial time t = 0 we consider a uniform temperature dis-

tribution ϑ(0, x) = r (0) with reference signal r (t ). So, we have a vanishing

temperature gradient ∇ϑ(t , x) ≡ 0, and we have an initial internal energy

U (0) =U0 and power P (0) = 0. As we supply power P (t ) > 0 for t > 0, the

internal energy and the temperature increase and we have a temperature

gradient ∇ϑ(t , x) ̸= 0. We desire to reach a constant temperature and in-

ternal energy level at t = T f f , which requires again a uniform temperature

distribution ϑ(T f f , x) = r (T f f ) with ∇ϑ(t , x) ≡ 0 and P (T f f ) = 0. In Sec-

tion 2.4, we introduced the supplied and emitted power, Pi n and Pem , as

the integral of their corresponding heat fluxes. In accordance with these

ideas, we note the overall sum of both parts as

P (t ) =
∫
∂Ω
φ(t , x)d x

=
∫

Bi n

φi n(t , x)+φem(t , x)d x +
∫
∂Ω\Bi n

φem(t , x)d x

=
∫

Bi n

φi n(t , x)d x︸ ︷︷ ︸
=Pi n (t ) (heating)

+
∫
∂Ω
φem(t , x)d x︸ ︷︷ ︸

=Pem (t ) (cooling)

in which the right-hand side is split into the heating up and cooling down

phenomena, see Eq. (2.24, 2.25). We continue these ideas for the energy

and we integrate Eq. (7.51) in time to find the change of internal energy as

∆U =
∫ T f f

0

d

d t
U (t )d t =

∫ T f f

0

d

d t
Q(t )d t︸ ︷︷ ︸

=0

+
∫ T f f

0
P (t )d t

= Ei n +Eem (7.53)
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with the supplied thermal energy

Ei n :=
∫ T f f

0
Pi n(t )d t =

∫ T f f

0

[∫
Bi n

φi n(t , x)d x

]
d t (7.54)

and the emitted thermal energy

Eem :=
∫ T f f

0
Pem(t )d t =

∫ T f f

0

[∫
∂Ω
φem(t , x)d x

]
d t . (7.55)

In the beginning of Chapter 6 we already discussed that we are in gen-

eral not able to capture the total emitted heat flux in case of convective and

radiative boundary conditions. So, we cannot find a suitable φi n to reach

P (t ) = Pi n(t )+Pem(t ) = 0. In this section, we discuss in three steps how

to design the optimization-based input signal uoc via quantifying the sup-

plied and emitted thermal energy. Firstly, we assume to know the emitted

thermal energy Eem and we derive a parameter fitting problem to compute

an appropriate supplied energy Ei n(p) such that identity (7.53) is guaran-

teed. Secondly, we estimate the emitted energy Eem during the heating-

up phase using the reference signal as an assumption of the temperature

prediction. Finally, we discuss further applications of the energy consid-

erations to fine-tune the found parameters.

We calculate the change of internal energy in energy balance (7.53) as

∆U =
∫ T f f

0

∫
Ω3

cρϑ̇(t , x)d xd t = c ρ |Ω3| ∆r (7.56)

with ∆r = r (T f f ) − r (0) and volume |Ω3| = L ·W · H for a cuboid.7 We 7 For the one-dim. and two-dim. problem
we have |Ω1| = L and |Ω2| = L ·W .assume a constant density ρ and specific heat capacity c in Eq. (7.56).

If these material properties are temperature-dependent, then we need to

approximate ∆U in a similar way as the thermal emissions, see Eq. (7.62).

We formulate the supplied energy Ei n in Eq. (7.54) with the spatial char-

acteristics of boundary actuation b(x) in Eq. (6.4) as

Ei n =
∫ T f f

0

∫
∂Ω
φi n(t , x)d xd t

=
Nu∑

n=1

(∫
Bi n

bn(x)d x

)(∫ T f f

0
un(t )d t

)
. (7.57)

We define the signal energy of the n-th input signal un(t ) = uoc,n(t , p),

see Eq. (7.43), as
Eoc

Time t
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u
tu

o
c

Figure 7.20: Energy of the optimization-
based input signal Eoc as in Eq. (7.58).

Eoc,n(p) :=
∫ T f f

0
uoc,n(t )d t

= exp(p1)

p
π T f f

2 p3

[
erf

(
p3 − p3

p2

)
−erf

(
−p3

p2

)]
(7.58)

with error function erf(z) = 2
π

∫ z
0 exp(−τ2)dτ, see also Fig. 7.20. A brief

discussion of the error function unveils how the parameters influence the
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signal energy. The error function behaves similar like a hyperbolic tangent

and approaches

lim
z→±∞erf(z) =±1.

If we consider a time shift as p2 ≈ 2, then we find

erf

(
p3 − p3

p2

)
−erf

(
−p3

p2

)
≈ 2erf

(
p3

p2

)
and depending on the precision we have erf

( z
2

)≈ 1 for z > 4. If the kurtosis

parameter as p3 is large enough8, then we can approach the signal energy 8 In Section 7.4 we found p3 ≈ 12.3 > 4, see
Table 7.4.as

Eoc,n(p) ≈ exp(p1)

p
π T f f

p3
. (7.59)

Thus, the signal energy can be amplified by increasing gain parameter p1

or reducing kurtosis parameter p3.

We wish to find optimal parameters to compute a suitable supplied en-

ergy Ei n(p) such that the energy balance (7.53) holds. In general, we have

Nu actuators with 3 parameters per input signal and so we need to vary

3Nu values to find a suitable supplied energy. We simplify this situation as

we assume the same parameter set p = (p1, p2, p3)⊤ for all actuators and

we obtain the supplied energy as

Ei n(p) = Eoc (p)

[
Nu∑

n=1

(∫
Bi n

bn(x)d x

)]
Consequently, the distance

∆U −Eem −Ei n(p) =∆U −Eem −Eoc (p)

[
Nu∑

n=1

(∫
Bi n

bn(x)d x

)]
(7.60)

shall be minimized. We may minimize the distance (7.60) numerically as

we formulate a quadratic objective function

J (p) = [
∆U −Eem −Ei n(p)

]2

and we search for the minimum with a Conjugate Gradient optimizer. As

an alternative way, we may add further conditions to reduce the number of

free parameters and to formulate a system of nonlinear equations, which

are solved with root-finding algorithms. The latter procedure is described

in the end of this section.

Approximation of Emitted Energy

In the previous paragraph, we assumed to know the emitted energy Eem

in the energy balance ∆U = Ei n +Eem . In some scenarios, we can even

neglect Eem if its amount is much smaller than the supplied energy. How-

ever, it is relevant when we reach the desired temperature r (T f f ) = Θdes

because the cooling effect leads to a measurable temperature drop, see

also Fig.7.19. We determine the amount of emitted thermal energy as

Eem :=
∫ T f f

0

∫
∂Ω
φem(t , x)d xd t

=
∫
∂Ω

∫ T f f

0
φem(t , x)d td x

=
∫
∂Ω

∫ T f f

0
−h(x) [ϑ(t , x)−ϑamb(x)]−σ ε(x) ϑ(t , x)4d td x (7.61)
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with the heat transfer and radiation coefficients h and ε as described in

Definition 2.3. We compute the feed-forward control before the operation

of the heating-up process and so we do not know the temperatures along

the boundary sides ∂Ω. If we assume small temperature gradients ∇ϑ then

we may have small variations of the temperatures on boundary ∂Ω. We

concentrate the temperatures of the entire object as

ϑ̃(t ) ≈ 1

|Ω|
∫
Ω
ϑ(t , x)d x

and we note the approximated emitted energy as

Ẽem := −
∫
∂Ω

h(x)

[∫ T f f

0
ϑ̃(t )d t −T f f ϑamb(x)

]
d x

−σ
∫
∂Ω
ε(x)d x

∫ T f f

0
ϑ̃(t )4d t .

The measured temperature y has to follow the reference signal r and hence

we identify ϑ̃(t ) = r (t ) to compute the energy

Ẽem = −
∫
∂Ω

h(x)

[∫ T f f

0
r (t )d t −T f f ϑamb(x)

]
d x

−σ
∫
∂Ω
ε(x)d x

∫ T f f

0
r (t )4d t . (7.62)

We remark that the integrals
∫ T f f

0 r (t )d t and
∫ T f f

0 r (t )4d t can be found

symbolically for reference signals with transitions, which are described by

polynomials as in Eq. (7.29) or a hyperbolic tangent in Eq. (7.38).

Algebraic Parametrization and Fine-Tuning

We can simplify the parameter search when we include further assump-

tions. In Section 7.4, we state that the input at the initial time uoc (t , p) ̸= 0

and we can assume a small value, e.g. u0 ≪ 1, to specify the kurtosis, see

Eq. (7.45). Here, we approximate the signal energy in Eq. (7.59) by assum-

ing p3 sufficiently large, e.g. p3 > 4. We sum up both ideas and note the

nonlinear equations

exp

(
p1 −

[
p3

p2

]2)
= u0, (7.63a)

exp(p1)

p
π T f f

p3
Iβ =∆U −Eem (7.63b)

with integral

Iβ :=
Nu∑

n=1

∫
Bi n

bn(x).

If we fix time shift parameter p2 then we can reformulate the implicit Eq.

(7.63) to separate p1 and p3 as

p1 −exp(2p1)

[ p
π T f f Iβ

p2 [∆U −Eem]

]2

− ln(u0) = 0, (7.64a)

u0 Iβ
p
π T f f exp

([
p3

p2

]2)
−p3 [∆U −Eem] = 0. (7.64b)

We do not have a trivial solution of Eq. (7.64) at hand and so we need

to apply root-finding algorithms to find parameters p1 and p3. However,



130

the algebraic parametrization is sensitive with respect to numerical errors

because the right-hand side of (7.63a) is much smaller than (7.63b) and we

usually do not find exact parameters such that Eq. (7.63) holds. Instead,

we have

exp

(
p1 −

[
p3

p2

]2)
−u0 = ϵ1,

exp(p1)

p
π T f f

p3
Iβ− [∆U −Eem] = ϵ2

with small errors ϵ1,ϵ2 ̸= 0 and we reformulate these equations in an im-

plicit form as

p1 −exp(2p1)

[ p
π T f f Iβ

p2 [∆U −Eem −ϵ2]

]2

− ln(|u0 −ϵ1|) = 0, (7.65a)

[u0 −ϵ1] Iβ
p
π T f f exp

([
p3

p2

]2)
−p3 [∆U −Eem −ϵ2] = 0. (7.65b)

Numerical issues occur in Eq. (7.65) if |ϵ1| ≈ u0 or |ϵ1| > u0 because the

natural logarithm in Eq. (7.65a) is very sensitive with respect to ϵ1 as∣∣∣∣ d

dϵ1
ln(|u0 −ϵ1|)

∣∣∣∣= ∣∣∣∣ −1

|u0 −ϵ1|
∣∣∣∣≫ 1

for |ϵ1| < 1. Additionally, error ϵ1 occurs in Eq. (7.65b) as a linear offset.

The other error ϵ2 has a much smaller impact in Eq. (7.65) because

|ϵ2|≪U −Eem .

Hence, solving the algebraic equations Eq. (7.63) or (7.64) might be a sim-

ple and fast procedure to compute parameters p1 and p3, but we need to

consider the mentioned numerical issues, in particular for Eq. (7.64).

In the end of a parameter optimization we may fine-tune the values to

adapt them for specific needs, for example reducing the peak value of an

input signal uoc . In this case the signal energy has be constant

Eoc, f i x = Eoc (p) = exp(p1)

p
π T f f

p3

and we adapt the kurtosis parameter p3 as

p3 = exp(p1)

p
π T f f

Eoc, f i x
.

In this manner we can reduce p1 and increase the bell shape width. How-

ever, p3 still has to be sufficiently large to guarantee the correctness of ap-

proximation (7.59).

Example: Energy-based Control
Table 7.5: Example coefficients.

L λ ρ c

0.1 50 8000 400
We apply the presented concepts on the same one-dim. heat conduction

example as in the previous sections, see Table 7.5. We assume two sce-

narios of the thermal emissions for the input design: firstly, a completely

insulated rod and secondly, heat transfer and radiation on both boundary

sides. The found input signal is finally applied on the original model with
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Figure 7.21: Evaluation of implicit function
(7.64) with the found parameters (p∗

1 , p∗
3 )

(purple cross). The error denotes the left
hand side of function (7.64a) in (a) and
(7.64b) in (b).
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Figure 7.22: Energy-based input design
with and without thermal emissions in (a)
and resulting output measurement y(t ) =
θ(t ,L) for a one-dim. model rod in (b).
The input signal in (a) for Eem = 0 does
not steer the output to the desired tem-
perature Θdes = 400 Kelvin, but in case of
Eem = Ẽem ̸= 0 the output almost reaches
Θdes .

thermal emissions on both sides. The coefficients of the thermal emis-

sions are h = 10,Θamb = 300 Kelvin and ε= 0.2.

We wish to change the operating temperature for ∆r = 100 Kelvin and

so we evaluate Eq. (7.56) with |Ω1| = L to find the change of internal en-

ergy as ∆U = 32 ·106 Joule. The parameter fitting problem for uoc (t , p) is

simplified by fixing p2 = 2 and the initial input value uoc (0, p) = u0 = 10−4.

Accordingly, we find the optimal values p1 and p3 by solving the implicit

functions (7.64). In the first case, we have Eem = 0 and we find the param-

eters as listed in the first row of Table 7.6. In the second case, we consider

the thermal emissions on both boundaries BW and BE and we approxi-

mate the emitted energy Eem = Ẽem as described in Eq. (7.62). For this

purpose we consider the reference signal

Table 7.6: Parameter Fitting.

Scenario p1 p2 p3

Insulation 10.896 2 8.968

Emissions 11.020 2 8.996
r (t ) = 300+50

[
1+ tanh

(
10

[
t

T f f
− 1

2

])]
as introduced in Section 7.3, see Eq. (7.38). We find the approximated

emitted energy Ẽem ≈ 4.12 ·106 Joule and we compute the parameters as

noted in the second row of Table 7.6. We notice that the input design with

thermal emissions shows an increasing value of p1 while p3 is almost on

the same level. Hence, increasing the gain is more important here than a

wide kurtosis. In Fig. 7.21, we present the value of the left-hand side of

function (7.64), which we call “error” here. This error is on a magnitude of

108 larger for variations of p3 than p1 in a small interval close to the best

values. We compute the input signal for both parameter sets of Table 7.6

and apply them on the original model with thermal emissions.

The input signal for Eem = 0 in Fig. 7.19 (a) is significantly smaller than

for Eem = Ẽem ̸= 0 and leads to output temperatures in Fig. 7.19 (b), which

do not reach the desired operating temperature Θdes = 400 Kelvin in (b).

The input signal for Eem = Ẽem ̸= 0 results in almost proper output tem-

peratures reaching the desired temperature.
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Temperature

Direction 300 350 400 450 500

x1: λ1 40 44 50 52 52.5

x2: λ2 40 55 60 65 68

Table 7.7: Anisotropic and temperature-
dependent thermal conductivity.

7.6 Simulation of the Feed-forward Controlled System

In this section, we demonstrate the full procedure of the control design

from modeling to parameter optimization. First of all, we create a full non-

linear heat conduction model including thermal emissions, and spatial

characteristics of actuators and sensors. In the second step, we design a

prototype input signal with flatness-based control for a simplified version

of the original complex model. This simplified model does not contain

thermal emissions and temperature-dependent material coefficients. We

continue with an approximation of the prototype input using a parameter-

ized Gaussian function uoc (t , p). Here, we return to the original full model

and improve the input signal with energy-based considerations and a final

parameter optimization.
40

50

60

70

300 350 400 450 500

λ1
λ2

Temperature θ

Figure 7.23: Anisotropic and temperature-
dependent thermal conductivity
λ(θ) = diag(λ1(θ),λ2(θ)).
The circles mark the data from Table 7.7.

We consider a flat rectangleΩ2 with length L = 0.3, width W = 0.05. The

density and specific heat capacity are assumed to be constant as

ρ = 8000
kg

m3 and c = 400
J

kg K
,

and the thermal conductivity is considered to be anisotropic and temperature-

dependent as λ(θ) = diag(λ1(θ),λ2(θ)). We approximate two nonlinear

functions of fifth order with the data in Table 7.7 as

λ1(θ) ≈ 1465−14.8θ+56.3 ·10−3θ2 −93 ·10−6θ3 +56.7 ·10−9θ4 and

λ2(θ) ≈ −2332+23θ−83 ·10−3θ2 +133.3 ·10−6θ3 −80 ·10−9θ4

and we visualize them in Fig. 7.23. The rectangle has four boundary sides

where BS is insulated with respect to thermal emissions and the other

sides - BW , BE and BN - are open to emit thermal energy. We specify the

emitted heat flux as 0

1
2

1

0 2.5 5

xc

7.5 10
Position x1 in [cm]

Figure 7.24: Spatial characteristics of first
actuator b1(x) as in Eq. (7.67).

φem(t , x) = 10 [ϑ(t , x)−ϑamb]−0.1 σ ϑ(t , x)4 (7.66)

with Stefan-Boltzmann constant σ ≈ 5.67 ·10−8 W
m2 K 4 , see Definition 2.3.

We supply energy via three actuators on boundary BS , which have the spa-

tial characteristics

bn(x) = exp
(
−[

30(x −xc,n)
]4

)
(7.67)

as defined in Eq. (6.3) with central points xc,n = L
2

[
n − 1

2

]
and n ∈ {1,2,3},

see Fig. 7.24. The temperature is measured on BN with three ideal sensors,

gn(x) = 1, and we note the n-th output signal as u1

y1

u2

y2

u3

y3

φem φem

φem φem

W
id

th

Length

Figure 7.25: Rectangle with three actuators
on boundary BS and three sensors on BN .
Thermal emissions occur on boundaries
BW , BE and BN . Boundary BS is thermally
insulated.

yn(t ) = 3

L

∫
γn

ϑ(t , x)d x

with γn = ( L
3 [n −1] , L

3 n
)× {W }. The model setup with actuators, sensors

and emitted heat flux is visualized in Fig. 7.25
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Flatness-based Reference Tracking

The measured temperatures shall be steered from the initial temperature

ϑ(0, x) = r (0) = 300 Kelvin

Kelvin towards the desired final temperature

Θdes = r (T f f ) = 50 Kelvin.

We design one reference signal

Θdes

300

400

500

Te
m

p.
in

[K
]

0 1
4

1
2

3
4

1

T f f

Normalized Time t
T f f

Figure 7.26: Reference signal with hyper-
bolic tangent as in Eq. (7.68).

r (t , ps ) = 300+200 ψ(t , ps ) = 300+100

[
1+ tanh

(
ps

[
t

T f f
− 1

2

])]
= 400+100 tanh

(
ps

[
t

T f f
− 1

2

])
(7.68)

for all actuator / sensor pairs, see Fig. 7.26, and we fix steepness parameter

ps = 10 and final time T f f = 1200 seconds. For the flatness-based control,

we simplify the original model twice. Firstly, we set the thermal conduc-

tivity to a constant value, and neglect the thermal emissions. Secondly,

we reduce the two-dim. geometry to one dimension along coordinate

x2 (width) because all spatial characteristics of actuators and sensors are

identical, b1(x) ≡ b2(x) ≡ b3(x), and we only have one reference signal for

all actuator / sensor pairs. The resulting one-dim. rod is spatially approxi-

mated with five nodes, Nc = 5, and the thermal conductivity is considered

as λ̃= 60 W
mK . We follow the ideas of flatness-based control design in Sec-

tion 7.2 for the one-dim. scenario and we compute input signal u f bc as in

Eq. (7.22) with Mu as in Eq. (7.25). For this purpose, we note the reference

derivatives as
d n

d t n r (t , ps ) = 100
d n

d t n f (t , ps )

with f (t , ps ) := tanh
(
ps

[
t

T f f
− 1

2

])
and its required five derivatives as

ḟ (t , ps ) = p
[
1− f (t , ps )2] ,

f̈ (t , ps ) = 2p2 [− f (t , ps )+ f (t , ps )3] ,

f (3)(t , ps ) = 2p3 [−1+4 f (t , ps )2 −3 f (t , ps )4] ,

f (4)(t , ps ) = 8p4 [−2 f (t , ps )−5 f (t , ps )3 +3 f (t , ps )5] ,

f (5)(t , ps ) = 8p5 [
2−17 f (t , ps )2 +30 f (t , ps )4 −15 f (t , ps )6] .
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Figure 7.27: Objective function J (p3) for
the norms L2 norm with its minimum
(purple crosses) at p3 ≈ 9.21.

We need to restrict the obtained input signal as û f bc (t ) = max(u f bc (t ),0)

and we approximate it with the parametrized Gaussian function uoc (t , p)

as in Eq. (7.43). We find that û f bc (t ) reaches its maximum at t = tmax =
579.6 seconds and we have

p1 = ln(û f bc (tmax )) ≈ 11.82 and p2 =
T f f

tmax
≈ 2.07.

We search for the remaining parameter p3 by minimizing the objective

function (7.49) numerically with the L2 norm. We depict the objective

function in Fig. 7.27 and we find its minimum with a Conjugate Gradi-

ent optimizer for parameter p3 ≈ 9.21. We assemble the bell-shaped input
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Figure 7.28: Approximation of the flatness-
based input signal with the Gaussian func-
tion uoc in (a). The resulting output mea-
surement y(t ) follows the reference, but it
does not reach the desired final tempera-
tureΘdes = 500 Kelvin in (b).

signal uoc (t , p) with parameters p = (p1, p2, p3), apply it on the one-dim.

model and we portray the results in Fig. 7.28. Input uoc (t , p) imitates the

flatness-based signal in Fig. 7.28 (a) and so the output y(t ) tracks the ref-

erence signal in Fig. 7.28 (b) properly, but output y(t ) does not reach the

desired final temperatureΘdes = 500 Kelvin.

The computed parameters of the approximated flatness-based control

are treated as initial values for the next optimization step. The parameters

of all three steps are listed in Table 7.8 in the end of this section.

Energy Supply

We consider again the original full model. In the previous paragraph we

found that the amount of supplied thermal energy is too less to reach the

desired temperature of 500 Kelvin. This situation is here even worse be-

cause the two-dim. model is equipped with non-ideal actuators, see the

spatial characteristics in Eq. (7.67), and thermal emissions. To gain an

overview about the energetic situation, we list and compare the internal,

supplied and emitted energy. We wish to heat up the two-dim. geome-

try with area |Ω2| = L ·W = 0.015 m2 for ∆r = 200 Kelvin. So, the internal

energy shall increase by

∆U = c ρ|Ω2|∆r = 9.6 ·106 Joule

as described in Eq. (7.56). The initial parameter set p ≈ (12.2,2.07,7.88)

leads to the input signal energy for each actuator of

Eoc (p) =
∫ T f f

0
uoc (t , p)d t ≈ 31.24 ·106

as noted in Eq. (7.58). This amount is multiplied with the integral of the

spatial characteristics

3∑
n=1

(∫
βn

bn(x)d x

)
≈ 181.24 ·10−3

to compute the supplied energy with Eq. (7.57) as

Ei n = Eoc (p)
3∑

n=1

(∫
βn

bn(x)d x

)
≈ 5.66 ·106 Joule.

Additionally, we estimate the emitted heat flux with Eq. (7.66) and we ap-

proach the emitted energy, see Eq. (7.62), as

Ẽem =−571.33 ·103 Joule.
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Figure 7.29: Parameter values of p1 and
p3 per iteration in the optimization of the
supplied energy. The gain parameter p1
increases in (a) while the kurtosis param-
eter p3 decreases in (b).
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Figure 7.30: Loss per iteration in logarith-
mic scale log10(J (p1, p3)) and objective
function J (p1, p3). The loss approaches
zero from the fifth iteration onward in (a).
The objective function in (b) has a signifi-
cant gradient for p1 in contrast to p3. The
dotted line shows the path of computed
parameters reaching the optimal values
(p∗

1 , p∗
3 ) ≈ (12.39,9.19) (purple cross).

We find that the supplied energy Ei n for the initial parameters offers only
Ei n

∆U−Ẽem
≈ 55.7 percent of the necessary energy amount to heat up the ob-

ject properly. Hence, we minimize the distance between the supplied Ei n

and necessary energy∆U+Ẽem . For this purpose, we fix parameter p2 and

we search with objective function

J (p1, p3) :=
[
∆U − Ẽem −Eoc (p)

3∑
n=1

(∫
βn

bn(x)d x

)]2

for the best parameters p∗
1 (gain) or decrease p∗

3 (kurtosis) by solving the

optimization problem

(p∗
1 , p∗

3 ) = arg min
(p1,p3)

J (p1, p3). (7.69)

We know that gain p1 need to be increased and kurtosis p3 must be de-

creased to raise the supplied energy Ei n . We visualize in ig. 7.29 the inter-

mediate parameters of the numerical optimization and we notice that the

optimization behaves as expected. Furthermore, the optimizer finds a lo-

cal minimum after four iterations and in Fig. 7.30 (a), we see how the loss

is driven towards zero from the fifth iteration on. The objective function

in Fig. 7.30 (b) looks like a valley because it is significantly steeper in di-

rection p1 in contrast to p3. Hence, we see larger variations for p1 than p3

in the parameter path approaching the best values (p∗
1 , p∗

3 ) ≈ (12.39,9.19).

We design all three input signals uoc,n(t , p) with the found parameters and

we simulate the heat conduction problem, see Fig. 7.31. The output sig-

nals in Fig. 7.31 (b) do not match the reference signal in the second part

of the heating-up phase, e.g. t > 600, because we supply more power than

necessary for a reference tracking during this time. On the other side, the

output signals reach the desired temperature at t = T f f = 1200 seconds

with this additional power.
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Figure 7.31: Input and output signals of the
first and second actuator and sensor of the
energy-based parameter search. The input
signal in (a) is applied on all three actua-
tors. The output signals in (b) are higher
than the reference signal for t > 600 sec-
onds, but they match almost the desired fi-
nal temperatureΘdes = 500 Kelvin.

Optimization-based Reference Tracking

The energy-based input design is a simple and fast tool to fit proper pa-

rameters, but it neglects the dynamical behavior of the heat conduction

phenomena and the output tracking with reference signal r (t ). We reca-

pitulate the nonlinear heat conduction problem (6.11) with material prop-

erties and spatial characteristics as described in the beginning of this sec-

tion. We notice that the first and third actuator, u1 and u3, face the same

physical situation, because

• the boundary conditions on BW and BE ,

• the spatial characteristics of actuators bn(x) and sensors gn(x), and

• the reference signals rn

are equal. Due to this symmetry, we consider the same set of parameters

p1 := (p1,1, p1,2, p1,3) for uoc,1 and uoc,3, while the central actuator uoc,2 has

a different set of parameters p2 := (p2,1, p2,2, p2,3). This means, we apply

the input signals

u(t ) :=

uoc,1(t , p1)

uoc,2(t , p2)

uoc,3(t , p1)


to steer the output signals yn along the specified reference signal r (t ) in

Eq. (7.68) with steepness ps = 10. So, we wish to reduce the distance be-

tween reference and output

en(t , p) = r (t )− yn(t , p)

for n ∈ {1,2,3} by a suitable choice of parameter sets p1 and p2. As we have

uoc,1 ≡ uoc,3, we know that y1 ≡ y3 and we only need to consider the errors

e1 and e2. In order to find suitable parameter sets for u(t ), we solve the

optimization problem

(p∗
1 , p∗

2 ) = arg min
(p1,p2)

1

T

∥∥2µ1 e1(t , p)+µ2 e2(t , p)
∥∥2

L2

with hyper-parameters µ1 = µ2 = 1. The parameter search is computed

numerically with a Conjugate Gradient optimizer for 21 iterations and the

resulting parameters are listed in Table 7.8. We notice in Fig. 7.32 that

the loss is halved in first iteration of Fig. 7.32 (a) by separating the gain

and time shift parameters, p1 and p2, for the inner and outer actuators.

The loss decreases further and reaches a local minimum where all three

parameters show a noticeable separation between uoc,1 = uoc,13 and uoc,2.
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Figure 7.32: Loss and parameters in each
optimization iteration of Eq. (7.6). The
loss is mainly reduced via separation of in-
ner versus outer actuator parameters. The
found gain parameter p1 in (b) is larger for
the first (and third) actuator uoc,1 = uoc,3
to counteract the cooling on boundaries
BW and BE . In the same way, a smaller
kurtosis parameter of uoc,1 = uoc,3 in (c)
leads to a wider bell shape of the input sig-
nals. The time shift parameter is close to 2
for both parameter sets in (b). The time of
the peak input value of inner versus outer

actuators differ for
T f f
p1,2

− T f f
p2,2

≈ 8 seconds.
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Figure 7.33: Input and output signals of the
first and second actuator and sensor. The
input signal of the outer actuators uoc,1 =
uoc,3 shows a higher peak value and a
wider kurtosis in (a). The output signals
in (b) track the reference function well un-
til they reach the desired temperature and
drop below this value afterwards.

The input signals of the outer actuators have a higher peak value, their

peak times are later and their shape kurtosis is wider in comparison to

the inner actuator. This means, the actuators close to the boundary sides

need to supply more energy than the central actuator to reduce the impact

of thermal emissions.

In Fig. 7.33, we portray the computed input and resulting output sig-

nals of the first and second actuator and sensor. We find the higher peak

value and wider bell shape of input signal uoc,1 = uoc,3 in Fig. 7.33 (a). The

output signals in Fig. 7.33 (b) follow the specified reference well in the first

part of the heating-up phase. However, the thermal emissions on bound-

aries BW , BE and BN cause a temperature drop for t > 900 seconds and the

output signals do not reach the desired temperature at the final time T f f .

In Fig. 7.34, we present the evolution of the thermal dynamics via snap-

shots of a temperature distribution in the rectangle. In particular in Fig.

7.34 (a) and (b) we remark the influence of the actuators’ spatial charac-

teristics and the higher conductivity λ2 along the x2-axis on the temper-

ature distribution. In Fig. 7.34 (c), we find higher temperatures close to

the boundary sides BW and BE , which are caused by a higher energy sup-

ply with uoc,1 and uoc,3. As the heating stops after t = 900 seconds the

temperatures close to the boundaries drop due to cooling, and we yield

temperatures below the reference value in Fig. 7.34 (d).
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(b) Time t = 600 seconds
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Figure 7.34: Snapshots of the temperature
distribution during the heating process.
The warm areas in (b) and (c) illustrate the
actuators’ spatial characteristics. The re-
gions close to boundary BW and BE are
warmer than the central part in (c) because
of a higher amount of supplied energy with
the corresponding actuators. The thermal
emissions force a cooling-down along the
boundary sides BW , BE and BN in the end
of the heating-up phase, t > 900 seconds.
The warmest region in (d) is close to the
center of BS because of the thermal insu-
lation along this boundary side.
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Figure 7.35: Temperature distribution
along boundary BN during the heating-up
phase. All temperatures are close to the
initial value of 300 Kelvin until t = 400 sec-
onds and increase notable in the time span
t ∈ (400,800) seconds. The regions close
to BW and BE reach the desired temper-
ature Θdes = 500 Kelvin in (b) during t ∈
(800,1000) seconds.

The output signals in Fig. 7.33 only present a mean value of the true

temperature on boundary BN . Hence, we visualize the temperature dis-

tribution on BN in Fig. 7.35. In contrast to the temperature distribution

of the whole rectangle in Fig. 7.34, we find in Fig. 7.35 an almost uni-

form temperature transition on BN . In the second part of the heating-up

phase in Fig. 7.35 (b), we notice small temperature variations in space for

t ∈ (600,800) and temperature peaks in a region close to BW and BE for t ∈
(800,1000). These peak values reach the desired temperature Θdes = 500

Kelvin and decrease for t > 1000 seconds because of the non-insulated

boundary sides.

In this example, we showcased the complete feed-forward control de-

sign for the heating-up procedure. In the beginning, we simplified the

thermal dynamics to a linear one-dim. model without thermal emissions

and we designed a flatness-based control, which steers the output along

a predefined reference signal. This flatness-based input is approximated

by a bell-shaped parametrized function uoc . These initial parameter val-

ues do not lead to sufficient reference tracking for the simplified model,

see Fig. 7.28. Thus, we improve these parameters by approaching the sup-

plied and emitted thermal energy, while we ignore the nonlinear thermal

dynamics and the reference tracking. These considerations of the energy

balance lead to a well temperature transition and the final output values
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Scenario Parameters

p1 p2 p3

Approximation of FBC 11.815 2.070 9.212

Energy Supply 12.394 2.070 9.149

Optimization-based Design

Actuator 1 & 3 (outer) 12.318 2.056 8.195

Actuator 2 (inner) 12.191 2.090 8.717

Table 7.8: Input Parameters of Feed-
forward Control Example.

almost match the desired temperature Θdes = 500, see Fig. 7.31. As the

reference tracking is not included in the energy-based design, we return

in the last step to the original thermal model and solve an optimization

problem to include the reference tracking again. In this step, we find indi-

vidual parameter sets p1 and p2 for the inner and outer actuators. In this

example, we assumed a simple actuator and sensor setup and we obtained

remarkable differences between the inner and outer actuator, see Fig. 7.32

and 7.34. In scenarios with more complex actuator and sensor setups, this

last step of optimization-based reference tracking may be even more cru-

cial for a well temperature transition. As we face thermal emissions, which

force a cooling of the rectangle, we need to apply a feedback control to

counteract this cooling and to stabilize the measured temperatures at the

desired temperature. This concept is introduced in the next chapter.
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Closed-Loop Control Design

In the previous chapter, we described the feed-forward control design to

heat up the object and steer the measured temperatures along a prede-

fined reference. After this heating-up procedure, we wish to stabilize the

measured temperatures at the reached and desired value. Here, we need

to counteract the cooling, which is driven by thermal emissions and forces

the measured temperature to depart from the reference value. Hence, we

return to the elementary physical situation and consider the balance of

supplied versus emitted power as noted for the energy in Section 7.5. In

particular, we seek for a control law that guarantees the equilibrium of

supplied and emitted power as

0 = Pi n(t )+Pem(t ) for t > T f f .

We know that the actuators need to supply the same amount of thermal

power, which is emitted along the boundary sides as

Pem(t ) =
∫
∂Ω
φem(t , x)d x

=
∫
∂Ω

−h(x) [ϑ(t , x)−ϑamb(x)]−σ ε(x) ϑ(t , x)4d x (8.1)

to hold the average temperature of the object on a constant level. As we

are usually not able to measure temperatures on the entire surface, we are

not able to determine the actual value of the emitted power Pem . We solve

this issue with the same “approximation trick” as in Section 7.5: we replace

the actual temperature ϑ(t , x) by the desired temperatureΘdes to yield the

approximated emitted power

P̃em =
∫
∂Ω

−h(x) [Θdes −ϑamb(x)]−σ ε(x)Θ4
des d x. (8.2)

In the long run our feedback control shall drive the object’s temperatures

inside and on the boundary towards the desired value Θdes such that the

actual emitted power is leveling off and Pem approaches P̃em . We find the

necessary power supply according to Section 7.5 as

Pi n(t ) =
∫
∂Ω
φi n(t , x)d x =

Nu∑
n=1

(∫
Bi n

bn(x)d x

)
un(t ).

When the supplied and emitted power is in balance, then we have a con-

stant power supply

P i n =
Nu∑

n=1

(∫
Bi n

bn(x)d x

)
un , (8.3)
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with constant input signals lim
t→∞un(t ) = un .

In this chapter, we realize the feedback control design with two com-

mon approaches. First of all, we introduce in Section 8.1 a state feed-

back with the linear-quadratic regulator (LQR) design and we show that

the found static feedback law leads after some time to a balanced sum of

supplied and emitted power with constant input signals as in Eq. (8.3).

The LQR design provides a static state feedback and it is tailored for lin-

ear dynamical systems, but we desire a control with output feedback for

our nonlinear heat conduction model as noted in Definition (6.1). Hence,

we present in Section 8.2 an output feedback via model predictive con-

trol (MPC), which computes iteratively a new feedback law depending on

the previous measurements. Accordingly, we find that this MPC approach

stabilizes the thermal dynamics at the desired steady state.

8.1 Linear-Quadratic Regulator

The linear-quadratic regulator is a control design for linear dynamical sys-

tems with multiple input and output signals. On one hand, we obtain

a common matrix-vector multiplication as feedback law with this tech-

nique. On the other hand, we need to solve an algebraic Riccati equa-

tion1 numerically to yield this static feedback law and the complexity of 1 Jacopo Francesco Riccati (∗1676, †1754)
studied this type of equations, see [150].this numerical solution scales with the system dimension. Moreover, this

approach requires access to all system states, here temperatures, which

are usually available with additional tools like state observers or Kalman

filters.2 The books [152, p. 7-28] and [153, p. 99, 211] present an introduc- 2 This filter is named after Rudolf Emil
Kálmán (∗1930, †2016), see [151].tion to LQR design and an extension for large-scale systems and partial

differential equations is described in the book [154, p. 103, 107]. Further-

more, the LQR design for a two-dim. heat conduction in a time-discrete

form is noted in the article [37].

In this section, we design the LQR control for the time-continuous lin-

ear heat conduction problem

d

d t
Θ(t ) = A Θ(t )+B u(t )

as described in Definition 6.1. The aim of a LQR design is to determine

a feedback matrix K ∈ RNu×Nc , which is used in a full-state feedback to

compute the input signals as

u(t ) =−K Θ(t ).

We derive the closed-loop system when we identify input u(t ) in the linear

heat conduction problem by the feedback law as

d

d t
Θ(t ) = A Θ(t )−B KΘ(t )

= [A−B K ]︸ ︷︷ ︸
=:Acl

Θ(t ) = Acl Θ(t ).

The resulting system matrix of the closed-loop Acl does not have the pre-

vious banded or Toeplitz-like shape of A, and all eigenvalues are smaller

than zero. Hence, the closed-loop system approaches a steady-state as

Acl Θ(t ) → 0 and Θ(t ) → 0.



142

As we wish to drive the temperatures towards a desired valueΘdes and not

to zero, we consider the state feedback with offset as

u(t ) =−K [Θ(t )−Θdes ] . (8.4)

We visualize the procedure of the state feedback control for the heat con-

duction problem in Fig. 8.1.

Desired Temp.

Input

Te
m

p
er

at
u

re
s

Measurements

State
Controller

Heat
Conduction

Figure 8.1: Scheme of state feedback con-
trol.

The LQR design exists for time-discrete and time-continuous systems,

where the final optimal state shall be reached either on a finite or infinite

time horizon. We choose the infinite horizon because this simplifies the

computation of feedback matrix K . In this control technique, we wish to

solve the optimization problem

min

{
J (u) =

∫ ∞

0
Θ(t )⊤QΘ(t )+u(t )⊤Ru(t )d t

}
(8.5)

with subject to the linear heat conduction problem (6.12) in a closed form.

The matrices Q ∈ RNc×Nc and R ∈ RNu×Nu in Eq. (8.5) weigh the influence

of states versus input signals in the resulting feedback law. These matrices

must be positive definite and they are usually designed as diagonal matri-

ces. A matrix M ∈RN×N with N > 0 is called positive definite if the inequal-

ity v⊤M v > 0 holds for all vectors v ∈CN . The speed of the closed-loop op-

eration depends on choice of the matrix values: if Q ≫ R (element-wise),

then we yield a fast operation and otherwise a slow or energy-efficient ex-

ecution.

The closed-form solution of the optimal control problem (8.5) provides

the feedback matrix as

K = R−1B⊤ P (8.6)

with matrix P ∈ RNc×Nc , which has to be found numerically by solving the

algebraic Riccati equation for time-continuous dynamical systems

0 =Q +P A+ A⊤ P −P B R−1 B⊤P . (8.7)

In Appendix A.2 we derive the feedback law (8.6) and the Riccati equa-

tion (8.7) from the optimal control problem (8.5). Mathematical software

like the M AT L A B functions lqr [155] for the LQR design and icare [156]

to solve the the time-continuous algebraic Riccati equation offer well es-

tablished tools to treat the LQR design. In the subsequent example, we

find the solution of the algebraic Riccati equation with the J U L I A library

MatrixEquations.jl [157].

Example: Linear-Quadratic Regulation of 2-Dim. Heat Conduction

We return to the example in Section 7.6, where we consider a rectangle

with length L = 0.3, width W = 0.05, density ρ = 8000 and specific heat

capacity c = 400, and three actuators along boundary BS . Here, we as-

sume constant anisotropic thermal conductivity (λ1,λ2) = (40,60) W
mK . We

approximate the heat conduction problem in space and we yield a linear

system as in Eq. (6.12). We do not include the thermal emissions (7.66) ex-

plicitly in our heat conduction model, instead we treat it as an (unknown)

external disturbance here. Furthermore, we consider three ideal sensors

as in Section 7.6 to evaluate temperatures on boundary BN . We remind
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Figure 8.2: Simulation results of the LQR
design. The input signals in (a) and the re-
sulting temperature measurements in (b)
settle after 200 seconds, because the sup-
plied power compensate the emissions,
see (c). The emitted power in (c) is noted
as absolute values, |Pem |. The temper-
ature distribution in (d) unveils a maxi-
mum variation of 6 Kelvin between actu-
ators and the upper left and right corners.

that we do not include the sensors in the control design because the LQR

technique is a state space approach and treats all temperatures. We build

the state space system with A, B and we adjust the weighing matrices as

Q = 108 INc and R = I3

because we wish to reach the steady state quickly. The initial temperatures

are set to 500 Kelvin because we are only interested in the stabilization at

the desired valueΘdes = 500 Kelvin. We compute the feedback matrix K by

solving the algebraic Riccati equation (8.7) numerically, and we compute

the input signals as in Eq. (8.4). We simulate the close-loop system for

600 seconds and we visualize our results in Fig. 8.2. The input signals in

Fig. 8.2 (a) and temperature measurements in (b) converge in 200 seconds

because the supplied power is able to compensate the thermal emissions

for t > 0, see Fig. 8.2 (c). At the initial temperatures, we find the emit-

ted power with Eq. (8.2) as Pem(0) ≈−942 Watt. These thermal emissions

cause a temperature drop, see Fig. 8.2 (b), and consequently, the emitted

power decreases to ca. Pem(600) ≈ −933 Watt. Hence, we need to sup-

ply even a bit more energy in the balanced situation to reach the desired

temperaturesΘdes = 500 Kelvin exactly.
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8.2 Model Predictive Control

In the previous section we designed a state feedback for the linear heat

conduction. However, we do not have access to all states in general be-

cause we cannot measure temperatures inside the object. Hence, we de-

sign an output feedback in this section, which is also able to treat non-

linear systems. Model predictive control (MPC) is a well-established feed-

back approach and it is described in detail in several books, see e.g. [119,

120]. Moreover, we find examples of MPC approaches applied on the heat

equation in the articles3 [132–134], in the doctoral thesis [121, p. 51] and in 3 Due to the wide range of heat conduction
and diffusion models, e.g. with Dirichlet
or Neumann boundary conditions, we find
several different MPC approaches.

our contribution [40]. Here, we consider in general the nonlinear spatially

approximated heat conduction system as noted in Definition 6.1. The

MPC approach is usually designed for sampled systems and so we convert

the time-continuous state space (6.11) to a time-discrete one. We sample

the remaining time interval (T f f ,T f i nal ] with Nt ∈ N>0 equidistant time

steps

tn = n∆T + t0 with ∆T = 1

Nt

[
T f i nal −T f f

]
and for n = 0 we define t0 := T f f . The input signal is kept constantly from

one step to the next one as u(τ) = u(tn) for τ ∈ [tn , tn+1). We apply an one-

step integration method as described in Chapter 5 on Eq. (6.11) and we

yield the time-discrete state space

Θ(tn+1) = f̃ (Θ(tn),u(tn), w(tn ,Θ(tn))) , (8.8a)

y(tn) = CΘ(tn) (8.8b)

in which f̃ describes the sampled right-hand side of Eq. (6.11a) including

the sampling time ∆T .

The MPC routine is described in two nested iterations. The outer iter-

ation describes a temporal behavior of the real system dynamics in each

step n ∈ {0,1, . . . , Nt −1}. The inner iteration contains a simulation of the

system dynamics and an optimization routine to compute suitable con-

stant input signals. The controller applies the found input signals on the

simulation to predict the future states and it checks, whether the system

dynamics behaves as desired. If suitable input signals are found, then the

first input value, u(tn), is applied on the real system in the outer loop. The

real system reacts on this input signal and we measure the output in the

next step y(tn+1), which is fed back to our controller to compute the in-

put signal for the next iteration. This procedure is visualized in Fig. 8.2.

Here, we remark that we need a state observer in real world experiments

to update the states in the simulation with data from the measurement of

the real system. In our examples, we assume that the simulation and the

real system work identically. Inside the inner loop, we calculate the error

between the desired temperature and the measurements as
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Figure 8.3: Scheme of model predictive
control.

e(tn) :=Θdes − y(tn)

and the difference between subsequent input signals

∆u(tn) := u(tn+1)−u(tn)
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for Nmpc ∈N>0 iterations, this number is also called control horizon. Here,

we consider the state space (8.8) for both: the internal simulation and the

real system. In practice both systems differ because we are not able to

create an ideal model of the real process. The input signals of Nmpc inner

iterations are found by solving the optimization problem

u∗(tn), . . . ,u∗(t[n+Nmpc−1]) = argmin
u

Nmpc−1∑
l=n

e(tl )⊤Q e(tl )+
Nmpc−2∑

l=n
∆u(tl )⊤R ∆u(tl ) (8.9)

subject to Eq. (8.8) as the internal simulation model.

In Eq. (8.9) we consider the weighing matrices Q ∈RNy×Ny and R ∈RNu×Nu

like for the linear-quadratic regulator design. We solve the optimization

problem (8.9) and we apply the first input signal u∗(tn) on the real model

(8.8). The remaining input values u∗(tn+1), . . . ,u∗(t[n+Nmpc−1]) are treated

as initial values for the next MPC iteration step.

Adjusting the Sampling Time

In the MPC design, we face the task to choose a suitable sampling time∆T .

We know that heat conduction is a slow process and thermal energy needs

some time to conduct from the actuators to sensors. This is an advantage

here because the computation of input signals takes some time: we need

to simulate and optimize a large scale system several times during one

time step. However, we face in practice unknown external disturbances,

which need to be rejected quickly. So, the sampling time should not be

too long in accordance to receive quickly fresh measurements.

In Chapter 5, we discussed the numerical stability of integration meth-

ods and we found that explicit solvers like the forward Euler method re-

quire an upper limit of sampling time ∆T , while implicit solvers do not

so. In Section 5.2, we stated that we implement our simulations with the

implicit Runge-Kutta solver KenCarp5.

In the next step, we discuss the step and impulse response of the linear

heat conduction to gain an idea of a suitable choice of ∆T . In Section 4.3,

we note the solution of the linear system with a constant heat flux in Eq.

(4.52). If we consider a one-dim. heat conduction with one actuator on

BW (left) and one sensor on BE (right), then we note the output as

y(t ) =CΘ(t ) =CV
⊤

exp(Ã1t )VΘ(0)+CV
⊤

M(t )V E1
Φ1

∆x1

with we have C = (0, . . . ,0,1) and a constant heat flux Φ1 as the step input.

Furthermore, we yield the first derivative of the output as
Time in [s]

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0
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1.0
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Derivative d

dty

Figure 8.4: Step and impulse response of
a one-dimensional linear heat conduction
problem. The output y(t ) integrates the
supplied heat flux Φ1 = 1. The integration
has a time lag of ca. 0.2 seconds.

d

d t
y(t ) =CV

⊤
Ã1 exp(Ã1t )VΘ(0)+CV

⊤
exp(Ã1t )V E1

Φ1

∆x1

where we have d
d t M(t ) = exp(Ã1t ). We evaluate the step response y(t )

and impulse response d
d t y(t ) with λ= c = ρ = 1, ∆x1 = 10−2 and N j = 100

nodes and we visualize the results in Fig. 8.4. As this heat conduction

problem has no thermal emissions, we gain a pure temperature integra-

tion. In the beginning of the heating process, we obtain a small time lag
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until ca. 0.2 seconds, where the integration is significantly below the ratio

of one Kelvin per second. The reason of this time lag is the slow heat con-

duction from actuator to sensor. We can apply this finding on the choice

of sampling time ∆T when we evaluate a step response.

We find a similar concept in the fundamentals of thermodynamics re-

garding the Fourier number

Fo(t ) := α

L 2 t

with diffusivity α, time t ≥ 0 and characteristic length L ≥ 0, see also

[49, p. 129]. The definition of the characteristic length depends on the ge-

ometry and the physical process, see also [137]. The dimensionless Fourier

number qualifies in a heat conduction process as described above, whether

enough time has passed to sense a noticeable temperature change or not,

see [138, p. 69]. In case of very small Fourier numbers as Fo(t ) ≪ 1, we do

not notice any temperature change and for Fo(t ) ≥ 1, we definitely yield

significant values. In the previous example, see Fig. 8.4, we have α = 1
m2

s and a characteristic length L = L = N j∆x1 = 1 meter and so we have

Fo(τ) = τ. Hence, a sampling time ∆T = 1 may guarantee a proper step

response, but we can even admit lower values as long as∆T > 0.2 seconds.

In this context, we see that Fo < 0.2 ≪ 1.

Example: Model Predictive Control of 2-Dim. Heat Conduction

We consider the two-dim. example from Section 8.1 with three actua-

tors on BS , three ideal sensors on BN and an initial temperature Θ(T f f ) =
Θdes = 500 Kelvin. We apply a step response with u1(t ) = u3(t ) = 6000

and u2(t ) = 3000 and we depict the simulation results in Fig. 8.5. We see

that a sampling time ∆T = 30 seconds provides a sufficient temperature

change to compensate small thermal emissions. We set the number of it-

erations Nt = 10 and the control horizon Nmpc = 3. We emphasize that

the choice of the control horizon may have a crucial impact on the closed-

loop performance, this issue is analyzed in the doctoral thesis [121, p. 35].

Regarding the weighing matrices of errors Q and input signals R in the

optimization problem (8.9), we have small errors compared to large input

signals, e.g. en1 ∈ (0,10) and ∆un2 ∈ (103,104) for the n1-th sensor and n2-

th actuator. Thus, we specify the weighing matrices as
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Figure 8.5: Step response of two-dim. heat
conduction with u1(t ) = u3(t ) = 6000 and
u2 = 3000.

Q = INy and R = 10−7

Nu [Nmpc −1]
INu

to yield almost similar values for both: sensor and actuator weighing. Fi-

nally, we need to set an initial guess of the input signals u(t0) to start the

optimization (8.9). We calculate the emitted power for the initial tempera-

ture Θ(0) = 500 Kelvin with Eq. (8.2) as Pem(0) ≈−942 Watt. So in the long

run, we need to supply the same positive value to yield a proper balance

of emitted and supplied power. We consider the same initial guess for all

three input signals and so we reformulate Eq. (8.3) to yield

u = P i n∑Nu
n=1

(∫
Bi n

bn(x)d x
) = P̃em(0)∑Nu

n=1

(∫
Bi n

bn(x)d x
) ≈ 5197.
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Figure 8.6: Simulation results of the MPC
design. The input signals in (a) and the re-
sulting temperature measurements in (b)
settle after 200 seconds, because the sup-
plied power compensate the emissions,
see (c). The emitted power in (c) is noted
as absolute values, |Pem |. The temper-
ature distribution in (d) unveils a maxi-
mum variation of 6 Kelvin between actu-
ators and the upper left and right corners.

We implement the MPC routine with internal simulation and the external

real system simulation as specified above, and we visualize the numerical

results in Fig. 8.6. The input signal in Fig. 8.6 (a) starts with high values

and converges in only five steps to u1 = u3 ≈ 6472 and u2 = 2584. This

high initial input value is necessary to compensate the temperature drop

in the first 60 seconds as depicted in Fig. 8.6 (b), and the measurement

temperatures settle afterwards close toΘdes . In Fig. 8.6 (c), we see that the

supplied power compensates the emitted power after four steps precisely.

We compare the temperature distribution in Fig. 8.6 (d) and in Fig. 8.2 (d)

and we notice higher temperatures overall in case of the MPC design.

We summarize the findings of LQR and MPC design and we note that

both approaches stabilize the measurements close to desired tempera-

ture. The linear-quadratic approach is easier to design and implement

because we compute the static feedback matrix offline, but the perfor-

mance close to the desired temperature is weak due to the static propor-

tional gain. The model predictive approach requires more detailed work

to specify the necessary control parameters, but it provides a good perfor-

mance due to its prediction. Furthermore, we can apply the MPC design

directly on our nonlinear heat conduction model as described in the next

section. We find one drawback of model predictive control in case of real

world applications. In such a case, we require all temperatures from the

real system, e.g. with a state observer, to update the initial temperatures

in the internal simulation after each step of the outer iteration, see Fig.8.2.

A state observer design for a rapid thermal processing system is described

in article [158].
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Figure 8.7: Model of a cuboid with four
actuators on the underside BU and four
sensors on the topside BT . The actuators
and sensors are placed in a (2×2) checker-
board pattern. The boundary sides BW ,
BN (gray) and BU are insulated for thermal
emissions.

8.3 Simulation and Control of Heat Conduction in a Cuboid

We demonstrate the feed-forward and model predictive control design for

a cuboid in this section. We portray the three-dim. model with actuators

and sensors in Fig. 8.7. We consider the dimensions L = W = 0.2 meter,

H = 0.05 meter and the material properties

ρ = 8000
kg

m3 , c = 400
J

kg K

and λ(θ) = diag(λ1(θ),λ1(θ),λ2(θ)) with
BE

BT

BW

BU

Length L

H
ei

gh
t

H

Thermal Emissions φem

φem

Figure 8.8: Side view of cuboid on bound-
ary BS with thermal emissions on bound-
ary sides BE and BT .

λ1(θ) ≈ 1465−14.8θ+56.3 ·10−3θ2 −93 ·10−6θ3 +56.7 ·10−9θ4 and

λ2(θ) ≈ −2332+23θ−83 ·10−3θ2 +133.3 ·10−6θ3 −80 ·10−9θ4

as formulated in Section 7.6. The cuboid has six boundary sides and three

of them are insulated for thermal emissions: BW , BN and BU . The remain-

ing boundaries,BE , BS and BT , are open and we specify the thermal emis-

sions as in Eq. (7.66). In Fig. 8.8 we depict the side view on boundary

BS . We assume four actuators on boundary BU and four sensors on BT ,

which are placed in a (2×2) checkerboard pattern. We specify the spatial

characteristics of the actuators as

bn(x) = exp

((
30

30

)[
x −xc,n

]4

)
(8.10)

with central points

xc,n ∈
{( L

4

W
4

)
,

( 3L
4

W
4

)
,

( L
4

3W
4

)
,

( 3L
4

3W
4

)}
and the sensors as

yn(t ) = 4

L W

∫
γn

ϑ(t , x)d x

with sensor partitions

γ1 =
(
0,

L

2

)
×

(
0,

W

2

)
× {H } , γ2 =

(
L

2
,L

)
×

(
0,

W

2

)
× {H },

γ3 =
(
0,

L

2

)
×

(
W

2
,W

)
× {H } and γ4 =

(
L

2
,L

)
×

(
W

2
,W

)
× {H }.
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Scenario Parameters

p1 p2 p3

Energy-based Optimization 13.065 2.070 9.076

Optimization-based Design

Actuator 1 & 4 12.895 2.055 7.682

Actuator 2 12.967 2.054 8.301

Actuator 3 12.944 2.066 8.459

Table 8.1: Input Parameters for the
Feed-Forward Control of the Three-
Dimensional Example.

In the subsequent paragraphs, we apply concepts of feed-forward and feed-

back control design on the cuboid model.

Feed-forward Control

In the initial step, we apply the flatness-based control approach on the

one-dim. model and we approximate the found input signal. We consider

the same reference signal (7.68) and heat-up time T f f = 1200 seconds as

in Section 7.6. As we have the same reduced one-dim. model, we take the

results from Section 7.6 as noted for the approximated input signal in the

first row of Table 7.8. We continue with the energy-based optimization and

we search for parameters p1 (gain) and p3 (kurtosis) such that the supplied

energy Ei n leads to a proper temperature transition. We wish to increase

the temperature by 200 Kelvin and so we have a change of internal energy

as

∆U = ρ c |Ω3|∆r = 1.28 ·106 Joule

with volume |Ω3| = L W H = 2 ·10−3 m3. The emitted thermal energy on

boundaries BE , BS and BT is approximated according to Eq. (7.62) as

Ẽem ≈−85.70 ·103 Joule.

Summing up both quantities, we formulate and solve the optimization

problem (7.69) with objective function

J (p1, p3) :=
[
∆U − Ẽem −Eoc (p)

4∑
n=1

(∫
βn

bn(x)d x

)]2

and parameterized input energy Eoc as in Eq. (7.58). The computed pa-

rameters p1 and p3 are listed in Table 8.1. We demonstrate the forced tem-

perature transition with the found input parameters in Fig. 8.9. Here, we

find in Fig. 8.9 (b) that the measured temperatures are noticeable above

the reference values and we need to reduce these temperatures to match

the desired reference.

We continue with the optimization-based reference tracking to decrease

the distance between measured temperatures y(t ) and reference function

r (t ). In the specification of the actuator positions, we find a symmetry for

the actuation in segment β1 and β4, see Fig. 8.7. Hence, we reduce the

parameter finding problem of originally four parameter sets to three and
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Figure 8.9: Energy-based optimization of
input signals uoc,n for a cuboid exam-
ple. The measured temperatures increase
to the desired value Θdes = 500 Kelvin in
(a), but they overshoot 500 Kelvin in (b) by
more than 5 Kelvin.
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Figure 8.10: Optimization-based control
for reference tracking applied on a cuboid
example. The measured temperatures fol-
low the reference values in (a) and the
overshoot in (b) is reduced. However, the
thermal losses lead to a temperature drop
and the temperatures do not match exactly
the reference.

we have the input signals

u(t ) =


uoc,1(t , p1)

uoc,2(t , p2)

uoc,3(t , p3)

uoc,4(t , p1)


with pn = (pn,1, pn,2, pn,3)⊤. We consider the error e(t ) between reference

r (t ) and output y(t ) and we solve the minimization problem

(p∗
1 , p∗

2 , p∗
3 ) = arg min

(p1,p2,p3)

1

T

∥∥∥∥∥ 4∑
n=1

µn en(t , p)

∥∥∥∥∥
2

L2

in which we assume e1(t , p) ≡ e4(t , p) and we set µn = 1. We note the com-

puted parameters in Table 8.1 and we visualize the simulation results in

Fig. 8.10. In Fig. 8.10 (b), we remark that the distance between the mea-

sured temperatures and the reference is reduced but the thermal losses

force a temperature drop, which shall be compensated by a model predic-

tive control approach in the next paragraph.

Feedback Control

The feedback control shall stabilize the measured temperatures at the de-

sired value Θdes = 500 Kelvin. We consider a model predictive control as

feedback approach because it can be applied on nonlinear systems with-

out the need of linearization. We choose a sampling time∆T = 30 seconds

because it leads to proper temperature change for this scenario, see also

Fig. 8.5. As the initial temperature of the feedback control is below the de-

sired value, e.g. yn(T f f ) ≈ 495 Kelvin for n ∈ {1,2,3,4}, we need to consider

the emitted power to stabilize the output value and an additional power

to push the output temperatures closer to the reference value. We assume

that entire cuboid has a temperature of 495 Kelvin and we find the change
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Figure 8.11: Model predictive control de-
sign for cuboid example. Actuator 2 has
the highest input values in (a) because it is
adjacent to boundaries BE and BS , where
we have thermal emissions. Actuator 3 has
the lowest input values because it is adja-
cent to the insulated boundaries BW and
BN . Actuator 1 and 4 have almost equal
values because their situation is symmet-
ric. The measured temperatures increase
in (b) to approx. 497.5 Kelvin and stay
at this value. The supplied power in (c)
starts at a high value to compensate the
temperature error of five Kelvin and it ap-
proaches the amount of the absolute emit-
ted power after few iterations. The temper-
ature distributions at t = T f i nal in (d), (e),
(f) show the impact of spatial characteris-
tics on the forced temperature evolution.
The region of the highest temperatures is
close to boundaries BE and BS .

of internal energy as

∆U = ρ c |Ω3|(500−495) = 32 ·103 Joule.

We wish that this energy shall be supplied in the first iteration and accord-

ingly, we find the additional power as Padd = ∆U
∆T ≈ 1066.67 Watt. We re-

mark that this additional power is just an approximated value because the

temperatures are not at 495 Kelvin in the whole cuboid. To stabilize the

output measurements at the desired temperature, we need to compensate

the thermal emission and we find the emitted power forΘdes = 500 Kelvin

as

P̃em =
L H︸︷︷︸

BS

+W H︸ ︷︷ ︸
BE

+L W︸︷︷︸
BT

 [−h(x) [Θdes −ϑamb]−σ εΘ4
des

]
≈ −141 Watt.

Hence, we need to apply input signals in the beginning of the MPC run

with an average value of

u = Padd +|P̃em |∑Nu
n=1

(∫
Bi n

bn(x)d x
) ≈ 98 ·103
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and later this value shall converge towards the average value of

u = |P̃em |∑Nu
n=1

(∫
Bi n

bn(x)d x
) ≈ 11.5 ·103

We set the initial guess of the input values for the MPC optimization rou-

tine (8.9) in accordance with these ideas: in the first iteration we need to

set a high input value un = 98 ·103 and in the remaining iterations we have

low input values, un = 11.5 ·103. We design the objective function in the

optimization routine (8.9) with the weighing matrices

Q = 1

Ny [Nmpc +1]
INy and R = 10−8

Nu [Nmpc −1]
INu

to yield similar parts for the impact of measurement errors e(tn) and the

input differences ∆u(tn). We run the MPC routine for Nt = 10 iterations

and we visualize our results in Fig. 8.11.

The input signals in Fig. 8.11 (a) start at a high level and approach after

a couple of iterations almost constant values close to the expected aver-

age value u = 11.5·103. The supplied power acts analog to the input values

and approaches the absolute value of the emitted power |P̃em | ≈ 141 Watt

in Fig. 8.11 (c) in the long run. The temperature measurements in Fig.

8.11 (b) rise and they are stabilized but they do not reach the desired value

Θdes = 500 Kelvin. So, we need to supply a higher power value to minimize

this steady-state error. The temperature distributions in Fig. 8.11 (d), (e),

(f) are snapshots at the final time T f i nal = T f f +300 = 1500 seconds and

they unveil the significant influence of the actuator’s spatial characteris-

tics on the thermal treatment. Finally, we portray the temperatures inside

the cuboid at the final time T f i nal in Fig. 8.12.
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Figure 8.12: Temperatures inside the
cuboid at the final time T f i nal = 1500 sec-
onds.



Epilogue
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Conclusion and Future Work

In this theses, we developed a mathematical framework, which connects

the modeling and simulation of heat conduction with the control design

via multiple actuators and sensors. In each part of this work we note con-

nections to related topics in order to give an idea about the wide field of

research on heat transfer problems. In this chapter, we present a selection

of related topics and we discuss how they can improve our proposed heat

conduction framework.

In the simulation of technical systems, which are described by par-

tial differential equations, we find the significant issue that computational

costs increase by the number of spatially approximated states. In par-

ticular the size of an approximated system may grow quadratically for a

two-dim. and cubically for a three-dim. geometry. To solve this issue, we

can reduce the system size before the computation using model order re-

duction methods, e.g. proper orthogonal decomposition, and we can ac-

celerate the matrix-vector operations during the simulation with parallel

computing, e.g. using graphics processing units (GPU). The scientific field

of model order reduction provides a wide range of well-established ap-

proaches for PDE and common state space models. These approaches are

described in the literature, see the book [159] and they are implemented as

software libraries, see e.g. [160,161]. In case of simple geometries like rect-

angles or cuboids, these approaches may perform very well, but we need

to take care about the boundary sides to maintain the spatial character-

istics of actuators and sensors with a minimum loss of information. This

issue is crucial to yield a proper evaluation of supplied heat and temper-

ature measurements. When we concern the hardware, we have a fast de-

velopment of GPU, which comes along with recent needs in the domain of

computer graphics and artificial intelligence. GPU-based computational

methods are also applied on problems in scientific computing to solve

PDE, see e.g. [162, 163], and additionally we find applications in model

predictive control, see [164]. One major advantage of GPU approaches is

the fast operation of linear algebra methods on large matrices. Hence, we

may apply GPU methods to solve the linear spatially approximated heat

conduction problems in Section 3.4 and Chapter 4.
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The recent developments in artificial intelligence also enforce new con-

nections between scientific computing and machine learning. One of these

branches is known as Scientific Machine Learning (SciML), which focuses

on computational methods to improve scientific models with data-based

approaches and machine learning techniques. In particular, real data from

lab experiments can enhance SciML models dramatically. We refer to the

website [165] for an introduction and we find related SciML software li-

braries for the Julia programming language on the website [166]. Next, we

briefly present two SciML approaches, Physics-Informed Neural Networks

and Dynamic Mode Decomposition, which provide powerful tools to im-

prove the modeling of processes.

Neural networks are popular techniques in machine learning for clas-

sification and regression purposes. They are extended for the modeling

and simulation of physical systems as Physics-Informed Neural Networks

(PINN)1, see [60–63]. The input layer receives spatial coordinates, e.g. 1 We mentioned PINN in the beginning of
Chapter 3 as an alternative to the proposed
finite volume approach.

(x1, x2, x3), and time t to compute the states, e.g. temperature ϑ(t , x), in

the output layer. The objective function of this neural network type con-

tains the considered PDE, including initial and boundary conditions, and

possibly the evaluation of errors between computed states and experi-

mental data. The PDE derivatives are realized with algorithmic differenti-

ation, see [148,149]. This PINN approach might be very helpful in scenario

where we have a good model of the actual process but additional uncer-

tainties like unknown parameters or external influences on the process. In

the sense of our thermal dynamics, we assume to have a perfect geome-

try state several assumptions regarding a perfect geometry, known mate-

rial properties and thermal emissions. Furthermore, we neglect close or

adjacent objects in the object’s surrounding. In real experiments we can-

not assure these assumptions and so we may improve the thermal model

with a PINN approach and experimental data. However, one drawback of

PINN and neural networks in general is the large size of the network archi-

tecturere. This situation leads to high computational costs2 and a weak 2 Here we refer to the parallel computing
approaches mentioned above.understanding of learning process.3
3 This issue is discussed in the field of
Explainable Artificial Intelligence.Another vibrant field of SciML was established in computational fluid

dynamics: Dynamic Mode Decomposition (DMD), see the article [167].

This approach is used to compute a time-discrete mapping f : RN → RN

with known data snapshots z as in

z(tn+1) = f (z(tn)) .

The basic concept was proposed for linear systems where standard meth-

ods from linear algebra, e.g. singular value decomposition, are applied to

recover a linear mapping f (z) = Az. When we transfer this concept to our

framework, then we find the linear operator as the system matrix ANd and

the states as temperature Θ, see Section 3.4 and Chapter 4. Hence, we are

able to reconstruct the diffusive behavior from known temperature data

via DMD. This basic DMD approach was extended in many directions, e.g.

for systems with inputs in [168] and physics-informed DMD in [169], and

so we find promising interfaces to our heat conduction framework. Re-

cent contributions of the author focus on DMD approaches for systems

with structured system matrix as described in Section 3.4, see [42, 43].
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In a nutshell, the described heat conduction framework provides links

to various modern and auspicious fields of research. In future work, the

extensions should improve the computation of the thermal dynamics and

they should include data-based approaches to enhance the practicality for

real-world scenarios like industrial applications.
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Mathematical Fundamentals

A.1 Analytical Solution of the Heat Equation

In this section, we derive an analytical solution of the one-dimensional

heat equation. Firstly, we describe the case of Neumann boundary con-

ditions and secondly, we discuss briefly the case of Dirichlet boundary

data. We utilize a separation of variables approach, which is a well known

technique in the literature, see e.g. [4, p. 75], [170, p. 124] and [171]. We

assume the one-dim. heat equation with length L > 0 constant material

properties: λ > 0, c > 0, ρ > 0, and we note them as diffusivity α = λ
c ρ .

Accordingly, we consider the linear heat equation (2.21) as

∂

∂t
ϑ(t , x) =α ∂2

∂x2ϑ(t , x) (A.1)

for (t , x) ∈ (0,T )× (0,L) with initial condition

ϑ(0, x) =ϑ0(x) := p x (L−x) (A.2)

and scaling p > 0. We assume thermally insulated boundary sides and

note the boundary conditions as

∂

∂x
ϑ(·, x)

∣∣∣∣
x=0

· n⃗(x) = 0 and
∂

∂x
ϑ(·, x)

∣∣∣∣
x=L

· n⃗(x) = 0 (A.3)

with outer normal vector n⃗(0) = −1 on the left and n⃗(L) = +1 on the right

boundary. We assume a separation of variables as

ϑ(t , x) = f (t ) g (x)

in Eq. (A.1) to separate the temporal and spatial dynamics as

d

d t
f (t )g (x) =α f (t )

d 2

d 2x
g (x)

or equivalently
ḟ (t )

α f (t )
= g ′′(x)

g (x)
=µ.

We find the solution of the first-order differential equation ḟ (t ) = µ α f (t )

as

f (t ) = exp(µ α t ) f (0), (A.4)
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where we set f (0) = 1. In the next step, we solve the second-order differ-

ential equation
d 2

d 2x
g (x) =µ g (x) (A.5)

and we notice that µ determines the solution g (x). Hence, we have to dis-

cuss three cases µ≡ 0, µ> 0 and µ< 0.

1. If µ≡ 0, then Eq. (A.5) is simplified as d 2

d 2x
g (x) = 0 and we yield

g (x) = c1x + c0.

We evaluate the boundary condition (A.3) as d
d x g (x) = 0 for x = 0 and

x = L and we find c1 ≡ 0. Thus, the solution of Eq. (A.5) for µ ≡ 0 is

g (x) = c0, but this is not possible due to the initial conditions. There-

fore, µ≡ 0 is not a possible value.

2. If µ> 0, then we may assume the solution1 1 If c1 = c2 then we may write g (x) =
c1 cosh(

p
µx) and if c1 =−c2 then we have

g (x) = c1 sinh(
p
µx).g (x) = c1 exp(

p
µx)+ c2 exp(−pµx)

and its first derivative

d

d x
g (x) =p

µc1 exp(
p
µx)−p

µc2 exp(−pµx).

We find the boundary conditions (A.3) the linear system of equations

d

d x

(
g (x)

∣∣
x=0

g (x)
∣∣

x=L

)
=

( p
µ −pµp

µ e
p
µL −pµ e−

p
µL

) (
c1

c2

)
=

(
0

0

)

which is solved with the inverse matrix as(
c1

c2

)
= 1

µ (−e−
p
µL +e

p
µL)

(
−pµ e−

p
µL p

µ

−pµ e
p
µL p

µ

) (
0

0

)
(A.6)

and so we find c1 = c2 ≡ 0. We note that the expression

1

µ (−e−
p
µL +e

p
µL)

̸= 0

for all µ and L. As we cannot find any µ> 0, which solves Eq. (A.6), we

need to exclude this approach as a candidate solution. Additionally, we

also ignore the approach

g (x) = c1 exp
(p−µx

)+ c2 exp
(−p−µx

)
because it leads to the wrong second-order differential equation

d 2

d x2 g (x) =−µg (x).

3. In the last case µ< 0, we assume the solution of Eq. (A.5) as

g (x) = c1 sin(
p−µx)+ c2 cos(

p−µx) (A.7)

and we calculate with the first derivative

d

d x
g (x) =p−µ [

c1 cos(
p−µx)− c2 sin(

p−µx)
]

.
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We yield the boundary conditions as

d

d x
g (x = 0) =−p−µ c1 = 0,

which implies c1 = 0, and

d

d x
g (x = L) =−c2

p−µsin(
p−µL) = 0.

We notice that this approach offers a suitable solution if the expression

µ

Figure A.1: Eigenvalues of analyti-
cal heat equation. Function graph of
−p−µsin(

p−µL) with roots

µ=−[ n π
L

]2 for n ∈ {0,1, . . . ,4}.

−p−µsin(
p−µL) = 0

is guaranteed for certain values of µ. We find these roots as µ=−[ nπ
L

]2

with n ∈ {0,1, . . . ,∞}, see Fig. A.1.

We conclude from these calculations that αµn = −α[ nπ
L

]2 are the eigen-

values and

ϕn(x) = c2,n cos(
p−µn x) = c2,n cos

(
n π

x

L

)
are the eigenvectors2 of the linear heat equation (A.1). In the next steps, 2 They are also known as eigenfunctions.

we find the coefficients c2,n . We know that eigenvectors span an orthonor-

mal basis and thus we calculate the inner product of the function space

L2((0,L),R) as

〈ϕn ,ϕm〉 :=
L∫

0

c2,n cos
(
n π

x

L

)
c2,m cos

(
m π

x

L

)
d x = δi , j

with δm,n =
1 for n = m,

0 otherwise.
In case of equality n = m, we find

〈ϕn ,ϕn〉 = c2
2,n

L∫
0

cos
(
n π

x

L

)2
d x = c2

2,n
L

2
!= 1

for n > 0 and thus we have c2,n =
√

2
L , and for n = 0 we find c2,0 = 1p

L
.

Otherwise n ̸= m the integral vanishes as

L∫
0

cos
(
n π

x

L

)
cos

(
m π

x

L

)
d x ≡ 0

for all x ∈ [0,L] and so we note the orthonormal eigenvectors

ϕ0(x) = 1p
L

and ϕn(x) =
√

2

L
cos

(
n π

x

L

)
for n > 0. (A.8)

The principle of superposition provides us a general solution of the heat

equation (A.1) as

ϑ(t , x) = c̃0 +
∞∑

n=1
c̃n fn(t ) ϕn(x)

= c̃0 +
∞∑

n=1
c̃n exp

(
α µn t

)√ 2

L
cos

(
nπ

x

L

)
(A.9)

where the coefficients c̃0 and c̃n describe the behavior at the initial time,

see Eq. (A.2). These coefficients are computed in the following steps. At
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the initial time t = 0 we know that fn(0) = 1 for all n > 0 in Eq. (A.9) and so

we have

ϑ(0, x) =ϑ0(x) = c̃0 +
∞∑

n=1
c̃n ϕn(x). (A.10)

We multiply Eq. (A.10) with the eigenvector ϕn on both sides and apply

the inner product as

〈ϑ0,ϕn〉 = c̃0 〈1,ϕn〉︸ ︷︷ ︸
n=0

+c̃n 〈ϕn ,ϕn〉︸ ︷︷ ︸
n>0

, (A.11)

which is distinguished as

〈ϑ0,ϕ0〉 = c̃0〈1,ϕ0〉 for n =0 and (A.12)

〈ϑ0,ϕn〉 = c̃n〈ϕn ,ϕn〉 for n >0 . (A.13)

We find the left-hand side of Eq. (A.12) as

〈ϑ0,ϕ0〉 = ϕ0

∫ L

0
ϑ0(x)d x = 1p

L

∫ L

0
px(L−x)d x

= 1p
L

p

[
L

2
x2 − 1

3
x3

]L

0
= 1p

L
p

L3

6

and the right-hand side of Eq. (A.12) as

c̃0〈1,ϕ0〉 = c̃0 ϕ0

∫ L

0
1d x = c̃0

1p
L

L.

Hence, we compute the coefficient c̃0 = p L2

6 . In case of the second equa-

tion (A.13), we know that 〈ϕn ,ϕn〉 = 1 and we reduce our calculations as

c̃n = 〈ϑ0,ϕn〉 =
∫ L

0
ϕn(x) ϑ0(x)d x

=
√

2

L

∫ L

0

[
p x (L−x)

]
cos

(
nπ

x

L

)
d x

= −
√

2

L
p L

(
L

nπ

)2 [
(−1)n +1

]
.

We see that

(−1)n +1 =
2 if n is even,

0 if n is odd

and we specify the coefficients

c̃n =
−2

√
2
L p L

( L
nπ

)2
if n is even,

0 if n is odd.

We identify the coefficients c̃0 and c̃n with n > 0 in Eq. (A.9) and we yield

ϑ(t , x) = p
L2

6
−2p

L2

π2

∞∑
n=1

1

n2

[
(−1)i +1

]
exp

(
−α

(nπ

L

)2
t

)
cos

(
nπ

x

L

)
.

Finally, we consider only even indices as n = 2k and we note the analytical

solution of the one-dim. linear heat equation with initial temperature in

Eq. (A.2) as

ϑ(t , x) = p
L2

6
−p

L2

π2

∞∑
k=1

1

k2 exp

(
−α 4

[
kπ

L

]2

t

)
cos

(
2 k π

x

L

)
. (A.14)
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(b) Temperature Evolution

Figure A.2: Simulation of the heat equation
with Neumann boundary conditions.The
scaling of the initial temperature is p = 4.
The computed temperature converges to-
wards the mean value of the initial temper-
ature distribution.

We evaluate the found solution (A.14) for an example with length L = 1,

diffusivity α = 0.1 and scaling p = 4, where we neglect physical units. We

compute the solution (A.14) for k ∈ {1, . . . ,100} and we visualize the com-

puted data in Fig. A.2. In Fig. A.2 (a) we see that the temperature is con-

verging towards the mean value of the initial temperature distribution

ϑ0 = 1

L

∫ L

0
4x [L−x]d x = 2

3
L2 = 2

3
.

In Fig. A.2 (b), we notice the continuous transition of the temperature val-

ues and we find the temperatures rise close to the boundary sides.

Side Note: Relations to the Basel Problem

At (t , x) = (0,0) we yield for Eq. (A.14)

ϑ(0,0) = c̃0 − ĉ
∞∑

k=1

1

k2 (A.15)

with ĉ = p L2

π2 . The series
∞∑

k=1

1
k2 equals the Riemann Zeta function

ζ(s) =
∞∑

n=1

1

ns

for s = 2, and the exact calculation of series
∞∑

k=1

1
k2 is known as the “Basel

problem”. According to Leonhard Euler, we note the series

∞∑
k=1

1

k2 = π2

6

and we find coefficient c̃0 in Eq. (A.15) as

c̃0 = ϑ(0,0)+ ĉ
∞∑

k=1

1

k2 =ϑ(0,0)+ ĉ
π2

6

= ϑ(0,0)+p
L2

π2

π2

6
=ϑ(0,0)+p

L2

6
.
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Heat Equation with zero-Dirichlet Boundary Conditions

In this paragraph, we compare the previous results with a heat equation,

which is equipped with a Dirichlet boundary condition. This means that

a temperature data - instead of a gradient - along all boundary sides is

fixed. As we do not assume Dirichlet conditions in this thesis, we only state

briefly the differences to our previous case with Neumann conditions. We

consider the heat equation (A.1) with fixed temperatures as

ϑ(·,0) = 0 and ϑ(·,L) = 0. (A.16)

We split again the temporal and spatial terms, f (t ) and g (x), we note the

temporal term as in Eq. (A.4) and we consider the spatial term as in Eq.

(A.7). Here, we apply the Dirichlet boundary conditions and we calculate

g (x = 0) = c2 = 0

on the left side and

g (x = L) = c1 sin
(p−µL

)= 0 (A.17)

on the right side. As we assume c1 ̸= 0, we know that

µ=−
[n π

L

]2

fulfills Eq. (A.17). Hence, we find the eigenvectors as

ϕn(x) = c1,n sin
(
nπ

x

L

)
,

where we have ϕ0(x) = 0. We evaluate the inner product

〈ϕn ,ϕm〉 :=
L∫

0

c1,n sin
(
n π

x

L

)
c1,m sin

(
m π

x

L

)
d x = δi , j

and we yield the coefficients c1,n =
√

2
L for n = m. We formulate a prelim-

inary version of the analytical solution as

ϑ(t , x) =
∞∑

n=1
c̃n ϕn(x) exp

(
−α

[nπ

L

]2
t

)
=

∞∑
n=1

c̃n

√
2

L
sin

(
nπ

x

L

)
exp

(
−α

[nπ

L

]2
t

)
(A.18)

in which we need to determine the coefficients c̃n via the initial tempera-

ture distribution in Eq. (A.2). For this purpose, we need to solve Eq. (A.13)

as

c̃n = 〈ϑ0,ϕn〉 =
∫ L

0
ϕn(x) ϑ0(x)d x

=
√

2

L

∫ L

0

[
p x (L−x)

]
sin

(
nπ

x

L

)
d x

=
√

2

L
2p

(
L

nπ

)3 [
1− (−1)n]

.

and we have

1− (−1)n =
0 if n is even,

2 if n is odd.
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(b) Temperature Evolution

Figure A.3: Simulation of the heat equation
with Dirichlet boundary conditions. The
scaling of the initial temperature is p = 4.
The computed temperature decreases in
time towards zero.

Thus, we note the coefficients as

c̃n =
0 if n is even,

4p
√

2
L

( L
nπ

)3
if n is odd.

We insert the coefficients c̃n in the solution (A.18), we define the new index

k = 2n −1 and we obtain the solution

ϑ(t , x) = 8p
L2

π3

∞∑
n=1

1

(2k −1)3 sin
(
[2k −1]π

x

L

)
exp

(
−α

[
[2k −1]π

L

]2

t

)
. (A.19)

We evaluate the solution of the Dirichlet problem (A.19) for the same

example as above with length L = 1, diffusivity α = 0.1, scaling p = 4, and

k ∈ {1, . . . ,100}. We portray the resulting temperatures in Fig. A.3, where we

see that the temperatures are decreasing towards zero because the data on

both boundary side is fixed at zero.

A.2 Riccati Equation

In Section 8.1, we apply the linear-quadratic regulator approach on the

heat conduction problem to find a stabilizing feedback law. Here, we de-

rive the feedback law (8.6) and the algebraic Riccati equation (8.7). The

subsequent ideas are based on [172, p. 296]. Further information about

solving the linear-quadratic problem may be found in [153, page 120],

[173, p. 363] and [174, p. 218].

We consider the quadratic optimal control problem

min

{
J (u) = z(T f )⊤Sz(T f )+

∫ T f

0
z(t )⊤Qz(t )+u(t )⊤Ru(t )d t

}
with subject to the state space system

d

d t
z(t ) = A z(t )+B u(t ) with z(0) = z0. (A.20)

We have the states z : [0,T f ] → RN , the input signals u : [0,T f ) → RNu and

the matrices A ∈ RN×N , B ∈ RN×Nu , S,Q ∈ RN×N and R ∈ RNu×Nu . We note

the Hamiltonian

H(z,u, v) = 1

2

[
z⊤Qz +u⊤Ru

]+ v⊤ [A z +B u]

with costate v : [0,T f ] →RN and we derive necessary (first-order) optimal-
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ity conditions

∂

∂v
H(z,u, v) = A z +B u = d

d t
z(t ), (A.21a)

∂

∂u
H(z,u, v) = Ru +B⊤v = 0, (A.21b)

∂

∂z
H(z,u, v) = Qz + A⊤v =− d

d t
v(t ) (A.21c)

with the terminal value

v(T f ) = d

d z(T f )

[
z(T f )⊤Sz(T f )

]= Sz(T f ).

We obtain from Eq. (A.21b) the optimal input signal

u∗(t ) =−R−1B⊤v(t ) (A.22)

and we insert u∗ in the state-space system (A.20) to yield the closed-loop

system
d

d t
z(t ) = A z +B u = A z(t )−BR−1B⊤v(t ). (A.23)

We summarize the differential equations (A.21c) and (A.23) as(
ż(t )

v̇(t )

)
=

(
A −BR−1B⊤

Q A⊤

)(
z(t )

v(t )

)
(A.24)

with the initial value z(0) = z0 and the terminal value v(T f ) = Sz(T f ). As

we have a system of linear ODEs in Eq. (A.24), we can consider a linear

state-to-costate mapping

v(t ) = P (t )z(t ) (A.25)

with P : [0,T f → RN×N ]. In the end of this section, we note one way to

proceed from Eq. (A.24) to Eq. (A.25).

The mapping (A.25) is inserted in Eq. (A.22) and we find the feedback

law

u∗(t ) =−R−1B⊤ P (t )z(t ).

In the next steps we derive the Riccati equation to find P . We differentiate

the mapping (A.25) as

d

d t
v(t ) = Ṗ (t )z(t )+P (t )ż(t )

= Ṗ (t )z(t )+P (t )
[

A z(t )−BR−1B⊤P (t )z(t )
]

= [
Ṗ (t )+P (t )A−P (t )BR−1B⊤P (t )

]
z(t ). (A.26)

In the third optimality condition (A.21c), we specify the the derivative d
d t v(t )

as

d

d t
v(t ) = −Qz(t )− A⊤v(t ) =−Qz(t )− A⊤P (t )z(t )

= [−Q − A⊤P (t )
]

z(t ) (A.27)

We summarize Eq. (A.26, A.27) and we obtain the Riccati differential equa-

tion

Ṗ (t )+Q + A⊤ P (t )+P (t ) A−P (t ) B R−1 B⊤ P (t ) = 0.
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If we consider an infinite time horizon, T f →∞, the terminal costs vanish

as

z(T f )⊤ S z(T f ) = 0

and P is constant, Ṗ ≡ 0. Hence, we yield the algebraic Riccati equation

0 =Q +P A+ A⊤ P −P B R−1 B⊤P .

Approach to find Equation (A.25)

Next, we propose a naive approach to calculate the state-to-costate map-

ping (A.25). Firstly, we introduce

w(t ) :=
(

z(t )

v(t )

)
and M :=

(
A −BR−1B⊤

Q A⊤

)

such that ẇ(t ) = M w(t ) expresses the differential equation (A.24). We

solve this ODE from any time t ∈ [0,T f ) towards the final time T f as

w(T f ) = exp

(∫ T f

t
Mdτ

)
︸ ︷︷ ︸

=:Ω(t )

w(t ) (A.28)

in which we have the 2×2-matrix

Ω=
(
Ω1,1 Ω1,2

Ω2,1 Ω2,2

)
.

We formulate the solution (A.28) in terms of the original states z(t ) and

v(t ) with identity v(T f ) = Sz(T f ) as(
z(T f )

Sz(T f )

)
=

(
Ω1,1(t ) Ω1,2(t )

Ω2,1(t ) Ω2,2(t )

) (
z(t )

v(t )

)
(A.29)

Now, we solve the linear equations (A.29) and we note the state-to-costate

mapping as

v(t ) = [
Ω2,2(t )−SΩ1,2(t )

]−1 [
Ω2,1(t )−SΩ1,1(t )

]
x(t )

= P (t ) x(t ).
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Implementation of Simulations

In this thesis, we present several simulation results to exemplify and visu-

alize the proposed concepts and methods. These numerical experiments

are implemented with J U L I A programming language on a basis of the soft-

ware library Hestia.jl [44]. The provided functions of Hestia.jl are explained

in the online documentation [175]. The simulations are stored online on

GitHub and Zenodo in the project ThesisSimulations.jl [176, 177].

We need to specify several coefficients to setup a heat conduction sim-

ulation with Hestia.jl. First of all, we define the dimensions: length L,

width W , height H , and their corresponding number of finite volume cells:

N j , Nm , Nk . In the next step, we set the material properties with the

(anisotropic) thermal conductivity λ, density ρ and specific heat capac-

ity c. On all boundary sides, we have a thermal emission and so we denote

a heat transfer coefficient h and an emissivity ε. In case of an insulated

boundary side, the values h = ε = 0 are set by default. If we assume ac-

tuators and sensors, then we need to specify the number of actuators Nu

and sensors Ny , the corresponding boundary sides, the checkerboard pat-

terns in case of a three-dim. problem and the spatial characteristics with

the scaling m, curvature matrix M and power ν. The central point xc is

computed internally. Finally, we state the initial temperature ϑ0 and the

simulation time T f i nal or T f f for the feed-forward control.

Subsequently, we list the source code files of the simulations and the

corresponding figures in this thesis.

Heat Conduction

Fig. 2.3 via 11_slow_fast_heat_conduction.jl

Fig. 2.4 via 12_anisotropic_heat_conduction.jl

Fig. 2.6 via 13_dynamic_heat_conduction.jl

Fig. 2.7 via 14_heat_supply_vs_emission.jl

Fig. 2.9 via 15_heat_transfer_heat_radiation.jl

Folder: src/modeling

Approximated Linear System

Fig. 4.8 via 21_relative_error_condition_number.jl

Fig. 4.11 via 22_analytical_sol_gauss_quad.jl

Folder: src/simulation
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Numerical Time Integration

Fig. 5.8 via 23_numerical_error_time_integration.jl

Folder: src/simulation

The Control System Framework

Fig. 6.6 via 31_actuation_narrow_wide.jl

Fig. 6.5 via 32_actuator_characteristics_2d.jl

Folder: src/control_feed_forward

Feed-forward Control

Fig. 7.1 via 41_gevrey_transition_bump.jl

Fig. 7.2 via 42_gevrey_derivatives.jl

Fig. 7.4 via 43_gevrey_input_heat_eq_pde.jl

Fig. 7.7 via 44_flatness_ode_1d.jl

Fig. 7.9 via 45_flatness_ode_2d.jl.jl

Fig. 7.10 via 46_polynomial_transition.jl

Fig. 7.15 via 47_opt_input_approximation.jl

Fig. 7.16 via 47_opt_input_approximation.jl.jl

Fig. 7.18 via 48_opt_reference_tracking.jl

Fig. 7.19 via 48_opt_reference_tracking.jl

Fig. 7.21 via 49_opt_energy_parameter_search.jl

Fig. 7.22 via 49_opt_energy_parameter_search.jl

Folder: src/control_feed_forward

Simulation of the Feed-forward Controlled System

Fig. 7.27 via 51_ff_example_approx_input.jl

Fig. 7.28 via 51_ff_example_approx_input.jl

Fig. 7.29 via 52_ff_example_energy_supply.jl

Fig. 7.30 via 52_ff_example_energy_supply.jl

Fig. 7.31 via 52_ff_example_energy_supply.jl

Fig. 7.32 via 53_ff_example_optimization.jl

Fig. 7.33 via 53_ff_example_optimization.jl

Fig. 7.34 via 53_ff_example_optimization.jl

Folder: src/control_feed_forward/example_2d

Closed-Loop Control

Fig. 8.2 via 61_lqr_linear_2d.jl

Fig. 8.4 via 62_step_impulse_response.jl

Fig. 8.5 via 63_mpc_step_response_2d.jl

Fig. 8.6 via 64_mpc_linear_2d.jl

Folder: src/control_feedback
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Simulation and Control of Heat Conduction in a Cuboid

Fig. 8.9 via 71_cuboid_energy_opt.jl

Fig. 8.10 via 72_cuboid_opt_control.jl

Fig. 8.11 via 73_cuboid_mpc.jl

Fig. 8.12 via 74_cuboid_volume_plot.jl

Folder: src/control_feedback/example_3d

Analytical Solution of the Heat Equation

Fig. A.2 via 81_analytical_solution_neumann_dirichlet.jl

Fig. A.3 via 81_analytical_solution_neumann_dirichlet.jl

Folder: src/simulation
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