
Embedded Control

High-order electrical RLC oscillators -
PID and LQR control

Hochschule Ravensburg-Weingarten
University of Applied Sciences

28.01.2022

Olti Cano
Anton Gres

Kastriot Thaqi
Michael Schichta

David Schlumberger

Contents

1 Problem statement 4

2 Part I: Research (by David Schlumberger) 5
2.1 First Order System . 5
2.2 Second Order System . 7
2.3 Third Order System . 10

3 Part II: Algorithm (by Anton Gres) 12
3.1 N-th order system . 12
3.2 Algorithm: Example on an N-th order system 14

4 Part III: Stability (by Kastriot Thaqi) 17
4.1 Stability of higher order RLC systems 17
4.2 Stability with varying R component 20
4.3 Stability with varying C component 22
4.4 Stability with varying L component 24
4.5 Comparing the stability of high and low values of the inductor

and capacitor . 26
4.6 Stability with influence of component tolerance 28

5 Part IV: Simulation of RLC systems (by Kastriot Thaqi) 30

6 Part V: PID Controller (by Michael Schichta) 36
6.1 Computing the transfer functions 36
6.2 Controller design . 38

6.2.1 Ziegler-Nichols method . 38
6.2.2 Iterative method . 40
6.2.3 Random gain probing . 41

6.3 Implementation of the PID Controller in C 44
6.3.1 Software-in-the-loop simulation 45

6.4 Conclusion . 46

7 Part VI: LQR Controller (by Olti Cano) 47
7.1 Introduction . 47
7.2 Continuous-time LQR . 48

7.2.1 State feedback law and Riccati equation 49
7.2.2 The feedforward filter . 49

7.3 Discrete-time LQR . 51
7.3.1 State feedback law and Riccati equation 51
7.3.2 The feedforward filter . 52

1

8 Part VII: Simulation of LQR for n-order systems (by Olti Cano) 54
8.1 First order system . 54

8.1.1 First order linear time-continuous system 54
8.1.2 First order discrete system 55

8.2 Third order system . 58
8.2.1 Third order linear time-continuous system 58
8.2.2 Third order discrete system 60

8.3 Fourth order system . 63
8.3.1 Fourth order linear time-continuous system 63
8.3.2 Fourth order discrete system 65

8.4 Conclusions . 68
8.4.1 Implementation of the feedforward filter 68
8.4.2 Time continuous vs. Time discrete system 68

References 69

List of Figures
2.1.1 First order RLC oscillator . 5
2.2.1 Second order RLC oscillator . 7
2.3.1 Third order RLC oscillator . 10
3.1.1 Third order RLC oscillator . 12
3.1.2 Graphic representation of the meshes and nodes 12
4.1.1 Eigenvalue spectrum with constant R, L and C values 18
4.1.2 Constant R, L and C values . 19
4.2.1 Varying R values with constant L = 2 and C = 1 20
4.2.2 Varying resistor values with constant L = 2 and C = 1 21
4.3.1 Varying C values with constant R = 3 and L = 2 22
4.3.2 Varying capacitor values with constant R = 3 and L = 2 23
4.4.1 Varying L values with constant R = 3 and C = 1 24
4.4.2 Varying L values with constant R = 3 and C = 1 25
4.5.1 Constant C, R and high/low L values 26
4.5.2 Constant L, R and high/low C values 27
4.6.1 Eigenvalue spectrum of components with tolerance 28
4.6.2 Eigenvalue spectrum of components with tolerance 29
5.0.1 Step Response of system with constant R, L, C and order of 10

with change over time highlighted in red square 31
5.0.2 Same system components as in Figure 5.0.1 but with the order

of 30 . 31
5.0.3 Step Response of Figure 4.5.1(a) 32
5.0.4 Closer look at (a) first and (b) last circuit step response with

each corresponding step response of 5.0.3 32
5.0.5 Step Response of Figure 4.5.2(b) 33
5.0.6 Emphasis on the first (a) and last (b) step response of 5.0.5 . . . 33

2

5.0.7 Step Response of Figure 4.6.1(a) seen in red square 34
5.0.8 Step Response of Figure 4.6.2(b) shown in red square 34
5.0.9 Focus on first step response (a) with change over time (b) of 5.0.8 35
5.0.10Focus on last step response (a) with change over time (b) of 5.0.8 35
6.2.1 The step response of the plant transfer function 38
6.2.2 The step response of the closed-loop transfer function 39
6.2.3 The system’s Pole-Zero-Map . 41
6.2.4 Examples step responses of closed-loop (Kp, Ki, Kd) left: 3.8,

1.2, 0.83; right: 1.2, 0.3, 1.89 . 43
6.2.5 The step response of the closed-loop transfer function 43
6.3.1 Closed-loop control system with PID Controller 44
6.3.2 The system’s output . 46
7.1.1 System block diagrams . 47
7.2.1 System block diagram with feedforward filter 50
7.3.1 System block diagram with feedforward filter 52
8.1.1 Time response of a first order linear time-continuous system . . . 55
8.1.2 Time response of first order discrete system 57
8.2.1 Time response of a third order linear time-continuous system . . 59
8.2.2 Time response of a third order discrete system 62
8.3.1 Time response of a fourth order linear time-continuous system . 64
8.3.2 Time response of a fourth order discrete system 67

List of Tables
4.2.1 Overview of resistor values with order of 5 20
4.2.2 Overview of resistor values for order of 10 21
4.3.1 Overview of capacitor values with order of 5 22
4.3.2 Overview of capacitor values with order of 15 23
4.4.1 Overview of inductor values with order of 5 24
4.4.2 Overview of inductor values with order of 15 25

3

1 Problem statement
The interest of this work is to design an PID and LQR controller for a high-
order electrical RLC oscillator. For this purpose, state space equations are first
formed for the cases n = 1, n = 2, n = 3 and n = n. After that, the general
stability behaviour is checked and simulated. Finally, the PID and LQR controls
are created.

4

2 Part I: Research
(by David Schlumberger)

The aim of this chapter is to find out how the state space representation of an
electrical RLC oscillator system changes if one or multiple RLC oscillators are
added to the system. In order to get this finding, the state space representations
of a first order, a second order and a third order electrical RLC oscillator are
set up.

Based on the results of this chapter, an algorithm could be defined in the next
chapter.

2.1 First Order System
We investigate a first order electrical RLC oscillator as shown in Figure 2.1.1.

Figure 2.1.1: First order RLC oscillator

We assume the value of each component to be known, as well as the voltage
over each component as

uR(t) = Ri(t),

uL(t) = L
∂i(t)

∂t
,

uC(t) =
1

C

∫
i(τ)dτ. (2.1.1)

By reshaping Equation (2.1.1) we obtain the current

i(t) = C
∂u(t)

∂t
= Cu̇(t).

The mesh equation is noted as

uin(t) = uR(t) + uL(t) + uC(t) = Ri(t) + L
∂i(t)

∂t
+ uC(t)

= RCu̇C(t) + LCüC(t) + uC(t). (2.1.2)

5

We introduce new variables, namely

input u(t) = uin(t),

state z(t) = uC(t)

which we insert into the mesh Equation (2.1.2) to yield

LCz̈(t) +RCż(t) = u(t)− z(t). (2.1.3)

We now have a representation of the system in the form

Mz̈(t) +Nż(t) = Ãz(t) + B̃u(t).

The desired state space notation is

ẋ(t) = Ax(t) +Bu(t). (2.1.4)

We reshape our representation by again introducing new variables, namely

x1(t) = z(t),

x2(t) = ż(t) = ẋ1(t)

which we insert into Equation (2.1.3) to yield

LCẋ2(t) = −x1(t)−RCx2(t) + u(t).

We can now describe the system by two equations

ẋ1(t) = x2(t),

LCẋ2(t) = −x1(t)−RCx2(t) + u(t)

or by one equation in matrix notation(
1 0
0 LC

)(
ẋ1(t)
ẋ2(t)

)
=

(
0 1
−1 −RC

)(
x1(t)
x2(t)

)
+

(
0
1

)
u(t).

We now have a representation of the system in the form

S ˙⃗x(t) = T x⃗(t) + B̂u(t). (2.1.5)

Since matrix S has obviously full rank, we can write

˙⃗x(t) = S−1T x⃗(t) + S−1B̂u(t).

We invert matrix S of Equation (2.1.5)

S−1 =
1

LC

(
LC 0
0 1

)
=

(
1 0
0 1

LC

)
and finally we can note our system in the desired state space notation (2.1.4)

˙⃗x(t) =

(
0 1

− 1
LC −RC

LC

)
x⃗(t) +

(
0
1

LC

)
u(t)

and thus the stability of the system could be checked by eigenvalue computation,
and classical control methods like state controller and state observer could be
applied.

6

2.2 Second Order System
We investigate a second order electrical RLC oscillator as shown in Figure 2.2.1.

Figure 2.2.1: Second order RLC oscillator

We assume the value of each component to be known, as well as the voltage
over each component as

uRn
(t) = Rin(t), (2.2.1)

uLn
(t) = Ln

∂in(t)

∂t
, (2.2.2)

uCn(t) =
1

Cn

∫
iCn(τ)dτ (2.2.3)

for n ∈ {1, 2}.

The node equation is

i1(t) = i2(t) + iC1(t) = iC2(t) + iC1(t). (2.2.4)

We insert Equation (2.2.3) into (2.2.4) and obtain the currents

i1(t) = C1
∂uC1(t)

∂t
+ C2

∂uC2(t)

∂t
= C1u̇C1(t) + C2u̇C2(t),

i2(t) = C2
∂uC2(t)

∂t
= C2u̇C2(t).

The first mesh Equation is denoted as

uin(t) =uR1(t) + uL1(t) + uC1(t)

=R1i1(t) + L1
∂i1(t)

∂t
+ uC1(t)

=R1(C1u̇C1(t) + C2u̇C2(t))

+ L1(C1üC1(t) + C2üC2(t)) + uC1(t)

=R1C1u̇C1(t) +R1C2u̇C2(t)

+ L1C1üC1(t) + L1C2üC2(t) + uC1(t). (2.2.5)

7

The second mesh Equation is denoted as

uC1(t) = uR2(t) + uL2(t) + uC2(t)

= R2i2(t) + L2
∂i2(t)

∂t
+ uC2(t)

= R2C2u̇C2(t) + L2C2üC2(t) + uC2(t). (2.2.6)

We introduce new variables, namely

input u(t) = uin(t),

states z1(t) = uC1(t)

and z2(t) = uC2(t)

which we insert into the first and second mesh Equation (2.2.5) (2.2.6) to yield

L1C1z̈1(t) + L1C2z̈2(t) +R1C1ż1(t) +R1C2ż2(t) = −z1(t) + u(t),

L2C2z̈2(t) +R2C2ż2(t) = z1(t)− z2(t).

We note the resulting mesh equations in matrix-vector notation as(
L1C1 L1C2

0 L2C2

)(
z̈1(t)
z̈2(t)

)
+

(
R1C1 R1C2

0 R2C2

)(
ż1(t)
ż2(t)

)
=

(
−1 0
1 −1

)(
z1(t)
z2(t)

)
+

(
1
0

)
u(t).

We now have a representation of the system in the form

M ¨⃗z(t) +N ˙⃗z(t) = Ãz⃗(t) + B̃u(t). (2.2.7)

The desired state space notation is

˙⃗x(t) = Ax⃗(t) +Bu⃗(t). (2.2.8)

We reshape our representation by again introducing new variables, namely

x⃗1(t) = z⃗(t) =

(
z1(t)
z2(t)

)
,

x⃗2(t) = ˙⃗z(t) =

(
ż1(t)
ż2(t)

)
= ˙⃗x1(t)

which we insert into Equation (2.2.7) to yield

M ˙⃗x2(t) = Ãx⃗1(t)−Nx⃗2(t) + B̃u(t). (2.2.9)

We can now describe the system by two equations

I ˙⃗x1(t) = Ix⃗2(t),

M ˙⃗x2(t) = Ãx⃗1(t)−Nx⃗2(t) + B̃u(t)

8

or by one equation in matrix notation(
I 0
0 M

)(
˙⃗x1(t)
˙⃗x2(t)

)
=

(
0 I

Ã −N

)(
x⃗1(t)
x⃗2(t)

)
+

(
0

B̃

)
u(t)

which is equivalent to
1 0 0 0
0 1 0 0
0 0 L1C1 L1C2

0 0 0 L2C2

ẋ11(t)
ẋ12(t)
ẋ21(t)
ẋ22(t)

=

0 0 1 0
0 0 0 1
−1 0 −R1C1 −R1C2

1 −1 0 −R2C2

x11(t)
x12(t)
x21(t)
x22(t)

+

0
0
1
0

u(t). (2.2.10)

We now have a representation of our second order electrical RLC oscillator in
the form

S ˙⃗x(t) = T x⃗(t) + B̂u(t). (2.2.11)

The system is not yet completely in the desired state space notation (2.2.8), but
we stop here with our research for the second order system, since a trend can
already be determined. The final step would only be of computational effort,
what we can delegate to MATLAB in the next chapter when designing the al-
gorithm.

If matrix S of Equation (2.2.11) is invertible, the final step would be to write

˙⃗x(t) = S−1T x⃗(t) + S−1B̂u(t)

which would be equivalent to the desired state space notation (2.2.8) and thus
the stability of the system could be checked and classical control methods could
be applied.

9

2.3 Third Order System
We investigate a third order electrical RLC oscillator as shown in Figure 2.3.1.

Figure 2.3.1: Third order RLC oscillator

We assume the value of each component to be known, as well as the voltage
over each component as in Equation (2.2.1), (2.2.2) and (??) for n ∈ {1, 2, 3}.

We set up the node equations as we did in the previous chapter in Equation
(??) and insert Equation (??) to obtain the currents

i1 = C1u̇C1 + C2u̇C2 + C3u̇C3,

i2 = C2u̇C2 + C3u̇C3,

i3 = C3u̇C3.

We set up the mesh equations as we did in the previous chapter in Equation
(2.2.5) and (2.2.6) to yield

uin = R1C1u̇C1 +R1C2u̇C2 +R1C3u̇C3

+ L1C1üC1 + L1C2üC2 + L1C3üC3 + uC1, (2.3.1)

uC1 = R2C2u̇C2 +R2C3u̇C3 + L2C2üC2 + L2C3üC3 + uC2, (2.3.2)

uC2 = R3C3u̇C3 + L3C3üC3 + uC3 (2.3.3)

which we can reshape by introducing new state variables in order to get a
representation of the system in the form (2.2.7) as

L1C1z̈1(t) + L1C2z̈2(t) + L1C3z̈3(t) +R1C1ż1(t) +R1C2ż2(t) +R1C3ż3(t) = u(t)− z1(t),

L2C2z̈2(t) + L2C3z̈3(t) +R2C2ż2(t) +R2C3ż3(t) = z1(t)− z2(t),

L3C3z̈3(t) +R3C3ż3(t) = z2(t)− z3(t)

noted in matrix notationL1C1 L1C2 L1C3

0 L2C2 L2C3

0 0 L3C3

z̈1(t)
z̈2(t)
z̈3(t)

+

R1C1 R1C2 R1C3

0 R2C2 R2C3

0 0 R3C3

ż1(t)
ż2(t)
ż3(t)

=

−1 0 0
1 −1 0
0 1 −1

z1(t)
z2(t)
z3(t)

+

1
0
0

u(t).

10

Finally, after again introducing new variables, we obtain a representation of our
third order electrical RLC oscillator according to Equation (2.2.11) as

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 L1C1 L1C2 L1C3

0 0 0 0 L2C2 L2C3

0 0 0 0 0 L3C3

ẋ11(t)
ẋ12(t)
ẋ13(t)
ẋ21(t)
ẋ22(t)
ẋ23(t)

=

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 −R1C1 −R1C2 −R1C3

1 −1 0 0 −R2C2 −R2C3

0 1 −1 0 0 −R3C3

x11(t)
x12(t)
x13(t)
x21(t)
x22(t)
x23(t)

+

0
0
0
1
0
0

u(t). (2.3.4)

We now have a representation of our third order electrical RLC oscillator in the
form

S ˙⃗x(t) = T x⃗(t) + B̂u(t). (2.3.5)

The system is not yet completely in the desired state space notation, but we
stop here with our research for the third order system, since a trend can already
be determined. The final step would only be of computational effort, what we
can delegate to MATLAB in the next chapter when designing the algorithm.

If matrix S of Equation 2.3.5 is invertible, the final step would be to write

˙⃗x(t) = S−1T x⃗(t) + S−1B̂u(t)

which would be equivalent to the desired state space notation and thus the sta-
bility of the system could be checked and classical control methods could be
applied.

The amount of added RLC subsystems can be increased even more. The be-
haviour of such higher order systems is treated in the following chapter.

11

3 Part II: Algorithm
(by Anton Gres)

3.1 N-th order system
Continuing with the results from chapter 2, an equation for an nth order elec-
trical RLC oscillator system shall be created. The attempt to find a general
approach is demonstrated using a third order system or n = 3 as an example,
seen in Figure 3.1.1.

Figure 3.1.1: Third order RLC oscillator

With the help of Kirchhoff’s current law and Kirchhoff’s voltage law one can
define the nodes and meshes in Figure 3.1.2. From this Figure one can conclude
that

1. the number of mesh and node equations increase linear with the order
number,

2. that the mesh and node equations have a predictable pattern with increas-
ing order number and

3. that the mesh equation per mesh is based on the previous voltage and the
node equation per node is based on the upcoming current.

Figure 3.1.2: Graphic representation of the meshes and nodes

Therefore, the following rules for creating a state space representation for a nth
order system can be established:

12

1. Node equations
For n equations the following node equations can be noted as

ik(t) =
∑n

j=k Cj
∂uCj(t)

∂t =
∑n

j=k Cj u̇Cj(t)

with k ∈ N : 0 < k ≤ n
(3.1.1)

13

2. Mesh equations
For n equations with uC0(t) = uin the following mesh equations can be
noted as

uCm−1(t) = Rmim(t) + Lm
∂im(t)

∂t + uCm(t)

with m ∈ N : 0 < m ≤ n
(3.1.2)

3. Setting up the general matrix
All generated equations can be merged into the form M ¨⃗z(t) + N ˙⃗z(t) =
Ãz⃗(t) + B̃u(t) with the new variables names u(t) = uin and zm(t) =
uCm(t).

4. Setting up the state space equation
For the desired state space equation ˙⃗x(t) = AC x⃗(t) +BCu(t), the general
matrix is reshaped again with the new variables x1(t) = z(t) and x2(t) =

ż(t) = ẋ1(t). This yields an equation of the form S ˙⃗x(t) = T x⃗(t) + B̂u(t)

and thus the state space equation ˙⃗x(t) = S−1[T x⃗(t) + B̂u(t)] = AC x⃗(t) +
BCu(t).

3.2 Algorithm: Example on an N-th or-

der system
In order to form a state space notation of an N -th order system, the previously
discussed rules must be applied. In particular, the following node equations can
be derived from (3.1.1)

iN (t) = CN u̇CN (t)

iN−1(t) = CN−1u̇CN−1(t) + CN u̇CN (t)

...

i1(t) =

N∑
n=1

Cnu̇Cn(t). (3.2.1)

The mesh equations can be obtained from (3.1.2) by

uin = uC0(t) = R1i1(t) + L1
∂i1(t)

∂t
+ uC1(t)

uC1(t) = R2i2(t) + L2
∂i2(t)

∂t
+ uC2(t)

...

uCN−1(t) = RN iN (t) + LN
∂iN (t)

∂t
+ uCN (t). (3.2.2)

14

The systems of equations (3.2.1) and (3.2.2) can be joined together

uin = R1

[
N∑

n=1

Cnu̇Cn(t)

]
+ L1

[
N∑

n=1

CnüCn(t)

]
+ uC1(t)

uC1(t) = R2

[
N∑

n=2

Cnu̇Cn(t)

]
+ L2

[
N∑

n=2

CnüCn(t)

]
+ uC2(t)

...

uCN−1(t) = RNCN u̇CN (t) + LNCN üCN (t) + uCN (t). (3.2.3)

After the conversion of (3.2.3) with zm(t) = uCm(t), the system of equations
can be put into a more readable form

L1C1z̈1(t) + L1C2z̈2(t) + · · · + L1CN z̈N (t) + R1C1ż1(t) + R1C2ż2(t) + · · · + RNCN żN (t) = u(t) − z1(t)

L2C2z̈2(t) + · · · + L2CN z̈N (t) + R2C2ż2(t) + · · · + R2CN żN (t) = z1(t) − z2(t)
.
.
.

.

.

.

LNCN z̈N (t) + RNCN żN (t) = zN−1(t) − zN (t)

from which the matrix form M ¨⃗z(t) +N ˙⃗z(t) = Ãz⃗(t) + B̃u(t) can be easily read
out

L1C1 L1C2 · · · L1CN

0 L2C2 · · · L2CN

...
...

. . .
...

0 0 0 LNCN

z̈1(t)
z̈2(t)
...

z̈N (t)

+

R1C1 R1C2 · · · R1CN

0 R2C2 · · · R3CN

...
...

. . .
...

0 0 0 RNCN

ż1(t)
ż2(t)
...

żN (t)

=

−1 0 · · · 0
1 −1 · · · 0
...

. . .
. . .

...
0 0 1 −1

z1(t)
z2(t)
...

zN (t)

+

1
0
...
0

u(t). (3.2.4)

With new variable names x1(t) = z(t) and x2(t) = ż(t) = ẋ1(t) the final state

space notation S ˙⃗x(t) = T x⃗(t)+ B̂u(t) can be constructed from (3.2.4) as follows(
I 0
0 M

)(
˙⃗x1(t)
˙⃗x2(t)

)
=

(
0 I

Ã −N

)(
x⃗1(t)
x⃗2(t)

)
+

(
0

B̃

)
u(t). (3.2.5)

Of these derivations, the following MATLAB algorithm can be written to cal-
culate the matrices M,N, Ã and B̃. The N ×N zero matrices and zero vectors
are created and then populated as described in (3.2.4).

15

1 function [M,N,A,B] = RLC_osc(R, L, C)

2 % Get size of array(s)

3 order = length(R);

4

5 % Create base matrices

6 M = zeros(order);

7 N = zeros(order);

8 A = -1*eye(order);

9 B = zeros(order, 1);

10

11 for row = 1:order

12 for column = row:order

13 % fill matrices with corresponding value pairs

14 M(row, column) = L(row)*C(column);

15 N(row, column)= R(row)*C(column);

16

17 if row > 1

18 % fill matrix A with ones under the main diagonal

19 A(row, row - 1) = 1;

20 end

21 end

22 end

23

24 B(1) = 1;

25 end

The matrices can be used in the subsequent algorithm to create the state space
notation S ˙⃗x(t) = T x⃗(t)+ B̂u(t) and consequently ˙⃗x(t) = S−1(T x⃗(t)+ B̂u(t)) =
AC x⃗(t) +BCu(t).

For this the matrices M,N, Ã and B̃ are used to fill the matrices S, T and B̂ as
described in (3.2.5). Thereby the matrices AC and BC can be devised.

1 function [Ac,Bc] = RLC_ss(M, N, A, B)

2 % Get order of resulting matrices

3 order = length(B);

4

5 % Build matrices

6 S = [eye(order), zeros(order);

7 zeros(order), M];

8

9 T = [zeros(order), eye(order);

10 A, -N];

11

12 % Calculate Ac and Bc

13 Ac = S\T;

14 Bc = S\[zeros(order, 1); B];

15 end

16

4 Part III: Stability
(by Kastriot Thaqi)

In this chapter the stability of the RLC system will be tested. For this the
algorithm explained in the chapter 3.2 is going to be used. First the stability of
a higher order system with constant values for the R, L and C components is
checked.

Then different variants will be tested for example rising or falling values for R,
then for L and lastly for C while the other components stay the same. After-
wards constant high and low values for C and L are going to be examined for
stability. And lastly a real example of a possible low-pass circuit is tested for
stability.

To find out if the system is stable the eigenvalues of the system matrix A have
to be calculated. And if the real part of all eigenvalues is negative then the
system is said to be asymptotically stable [1].

Proofing the stability by calculating the A matrix is possible because of the
state space representation of the RLC system and it being linearly as well as
time-invariant.

4.1 Stability of higher order RLC sys-

tems
Calculating the eigenvalues of the state matrix A analytically is too complex for
higher-order systems. This is why the algorithm created in chapter 3.2 is used
with the addition of the MATLAB function eig(A).

This function returns all eigenvalues of a matrix with real and imaginary part.
The eigenvalues are then shown on a map, called eigenvalue spectrum, for better
visualization. If all eigenvalues are on the left half of the plane then the system
is stable.

It can be compared to the s-plane when displaying poles and zeros in transfer
function representation. As it can be assumed that the poles in the transfer
function are the same as the eigenvalues of the system matrix A [1].

17

For the following Figures the values for the components are R = 3, L = 2 and
C = 1. These values are constant and only the order of the system increases.
The values are also chosen arbitrary.

(a) 5th order (b) 10th order

Figure 4.1.1: Eigenvalue spectrum with constant R, L and C values

Now through the eigenvalue spectrum the behaviour of the system can be esti-
mated. For example as seen in Figure 4.1.1 the position of the eigenvalues on
the left half plane define how fast a system is. Poles that are farther away from
the origin make the system react quicker. Imagining an impulse that is applied
to the system the poles that are farthest away make the system return much
faster to its original state.

In this case the pole which is at x = −0.0275 (x being the real axis) on the left
graph is the slowest reacting pole while the pole at x = −1.47 is the fastest.
It can also be assumed that poles influence each other meaning that the pole
that is closest to the origin is the more dominant pole for the system behaviour.
This makes the system react more slowly even though it has the fast reacting
pole at x = −1.47.

By looking at the poles that have a real part and an imaginary part it is possible
to tell that the system has a damped oscillation when the pole is on the left half
of the s-plane. The higher the imaginary part is the greater is the amplitude of
the oscillation as it has a smaller damping value.

In the case of Figure 4.1.1 the complex conjugate pole pair with the greatest y
value has a damping factor of 0.553. This causes an overshoot before the system
output settles.

18

Looking at the graph on the right of Figure 4.1.1 the poles of a 10th order sys-
tem can be seen. Here almost the same characteristic of the system is visible as
in the graph on the left but it can be estimated that the system reacts slower
than before.

Due to the addition of eigenvalues on the real axis and more being closer to the
origin. The pole closest to the origin has the value x = −0.00748 while the pole
farthest away is at x = −1.49.

The increase in the order also effected the complex conjugate poles on the imag-
inary axes. Where the poles causing the greatest oscillation have a damping
factor of 0.536. What can also be seen is that the poles on the real axis don’t
exceed the value of 1.5.

(a) 20th order (b) 30th order

Figure 4.1.2: Constant R, L and C values

Figure 4.1.2 shows how the poles behave when increasing the order of the system
even more. On the left side the system has an order of 20 and on the right side
the system has an order of 30. In general the behaviour is still the same as the
poles only marginally increase on the imaginary axis and on the real axis the
eigenvalues get closer to the origin and −1.5.

19

4.2 Stability with varying R component
Now the stability is tested with constant L and C components but the value of
the R component varies. First it increases for every subsequent circuit. This
means that the value of R in the first circuit is 2 then in the adhering circuit
the value is 4 and so on. Afterwards the poles are compared to a decreasing R
component which is done in a similar way where the first value of R is 10 and
for every subsequent circuit the value decreases by 2.

(a) 5th order increasing R (b) 5th order decreasing R

Figure 4.2.1: Varying R values with constant L = 2 and C = 1

Increasing R value Decreasing R value
1st circuit 2 10
2nd circuit 4 8
3rd circuit 6 6
4th circuit 8 4
5th circuit 10 2

Table 4.2.1: Overview of resistor values with order of 5

In Figure 4.2.1 the eigenvalue spectrum with the values for the resistor stated
in the Table 4.2.1 is displayed.

Both graphs show that with an increasing and decreasing resistor value the
system stays stable. The eigenvalues that are closer to the origin are again
more dominant and in turn make the system react slower.

20

Additionally both systems have complex conjugate eigenvalues. For the system
with the increasing R value has there is only one eigenvalue pair on the imag-
inary axis while for the system with the decreasing R value there are two. As
a result the oscillation is estimated to be greater than for the system with one
conjugate complex pole pair.

Comparing this Figure with the Figures from the chapter before, for example
4.1.1, it is visible that an increasing as well as a decreasing R component value
affects the oscillation. Both oscillations are slower and have a smaller amplitude.

The next Figure 4.2.2 shows the poles of a 10th order system. Here it is visible
that the left most pole has a value of almost −10 and the pole close to the
origin has now a value of −0.0015 where before it was at −0.01. The conjugate
complex pole pairs on the other hand stayed at the same position with only a
very minimal change which can be neglected.

(a) 10th order increasing R (b) 10th order decreasing R

Figure 4.2.2: Varying resistor values with constant L = 2 and C = 1

Increasing R value Decreasing R value
1st circuit 2 20
2nd circuit 4 18

...
9th circuit 18 4
10th circuit 20 2

Table 4.2.2: Overview of resistor values for order of 10

This means that the oscillation is still as great as in the system with the order of
5 but with even more poles closer to the origin the system should react slower.

21

4.3 Stability with varying C component
Coming next is checking the stability of an RLC system where the R and L
component values are constant only the capacitor component value varies. The
variation is done in the same way as in the chapter 4.2.

(a) 5th order increasing C (b) 5th order decreasing C

Figure 4.3.1: Varying C values with constant R = 3 and L = 2

Increasing C value Decreasing C value
1st circuit 2 10
2nd circuit 4 8
3rd circuit 6 6
4th circuit 8 4
5th circuit 10 2

Table 4.3.1: Overview of capacitor values with order of 5

Figure 4.3.1 shows that with a varying C component the system is still stable.
What is interesting to see is that the system has very little or no oscillation.
Looking at the left graph where C increases only one complex conjugate pole
pair is present with an imaginary value of ±0.185. This means that the oscilla-
tion is damped more and because of the position on the real axis the oscillation
is relatively fast.

When the C value decreases on the other hand there is no visible oscillation in
place. All poles are on the real axis with the more dominant poles close to the
origin causing the system to react more slowly.

22

Increasing the order of the system as seen in Figure 4.3.2 to 15 has no effect on
the stability. The system is still stable with a similar characteristic as with the
order of 5.

The complex conjugate pole is still at the same position with the same oscil-
lation when C increases. The poles on the real axis have shifted closer to the
origin and the value of −1.5.

(a) 15th order increasing C (b) 15th order decreasing C

Figure 4.3.2: Varying capacitor values with constant R = 3 and L = 2

Increasing C value Decreasing C value
1st circuit 2 30
2nd circuit 4 28

...
14th circuit 28 4
15th circuit 30 2

Table 4.3.2: Overview of capacitor values with order of 15

23

4.4 Stability with varying L component
Now the stability of a system with a varying inductor component is checked.
This means that the R and C component values are constant throughout the
circuit. Only the value of the L component increases or decreases.

(a) 5th order increasing L (b) 5th order decreasing L

Figure 4.4.1: Varying L values with constant R = 3 and C = 1

Increasing L value Decreasing L value
1st circuit 2 10
2nd circuit 4 8
3rd circuit 6 6
4th circuit 8 4
5th circuit 10 2

Table 4.4.1: Overview of inductor values with order of 5

In Figure 4.4.1 it is visible that the system is stable for a decreasing or increas-
ing inductor value as all poles are on the left half of the plane. The eigenvalue
spectrum of both cases also show that there are only two eigenvalues without
an imaginary part. Also the value of the smallest real pole almost doubles when
the L value increases. This could affect the reaction of the system in general.

Also an oscillation is visible through the poles that are on the imaginary axis.
The poles from both graphs seem to have a similar oscillation characteristic
with the only difference being that the highest pole on the imaginary axis which
causes a less damped oscillation is farther away from the origin in the decreasing
inductor graph.

24

This means that the pole has less of an effect on the oscillation due to more
poles being closer to the origin. When looking at the Figure 4.4.2 where the
order of the system is at 15 a pattern of the complex conjugate poles is visible
and it being still stable.

(a) 15th order increasing L (b) 15th order decreasing L

Figure 4.4.2: Varying L values with constant R = 3 and C = 1

Increasing L value Decreasing L value
1st circuit 2 30
2nd circuit 4 28

...
14th circuit 28 4
15th circuit 30 2

Table 4.4.2: Overview of inductor values with order of 15

In this case most of the eigenvalues are on the imaginary axis. With the major-
ity of them being around the value −1 on the real axis. The complex conjugate
eigenvalues from graph 4.4.2a and 4.4.2b are clustered up around ±0.1 to ±0.3
on the real axis. This causes a more damped and slow oscillating behaviour.

Although the order has been increased to 15 the maximum values on the real
axis did not exceed −1.2 when the inductor value is increased or −0.6 when the
inductor value is decreased. Another difference is the two additional poles on
the real axis which are close to the origin.

25

4.5 Comparing the stability of high and

low values of the inductor and ca-

pacitor
In this chapter the stability of the system is checked with a relatively high and
low value for the capacitor and the inductor. Only one of these elements is
changed while the other two components are constant.

The order chosen to look at the stability of this system is 10. The reason
being that already at the 10th order a certain pattern can be assumed so when
increasing the order the eigenvalues follow that pattern.

(a) 10th order with L = 10 (b) 10th order with L = 0.01

Figure 4.5.1: Constant C, R and high/low L values

The stability of the system with a constant resistance and capacitance value, in
this case the values are R = 1 and C = 1, and a high as well as low inductor
value can be seen in Figure 4.5.1. Both graphs show a stable system. But with
a low inductor value of 0.01 there is no visible oscillation.

The poles on the real axis also have a great distance to each other with the
lowest pole being at −99.9 and the pole closest to the origin at −0.02. This
makes the system react slow.

Through an L value of 10 the behaviour changes a lot. Now there is a less
damped oscillation taking place and all poles are very close to the origin. With
the maximum negative pole being at −0.066. This would show a very slow
oscillation with a great amplitude due to the relatively high imaginary value.

26

(a) 10th order with C = 10 (b) 10th order with C = 0.01

Figure 4.5.2: Constant L, R and high/low C values

Figure 4.5.2 displays the eigenvalue spectrum of the varying C component with
a high and a low value. Here the system is as well stable for both cases. What
can be seen is that the characteristic of the eigenvalues is similar to Figure 4.1.1.

There the amount of eigenvalues that are on the real axis and on the imaginary
axis is almost the same. But here less eigenvalues are complex conjugate.

On the contrary with a small capacitor value it shows a very strong oscillation
with a high amplitude as there are no eigenvalues on the real axis to dampen
it. Also the highest imaginary value is at almost ±20.

27

4.6 Stability with influence of compo-

nent tolerance
Lastly the stability with the influence of component tolerance is going to be
tested. For this an RLC low-pass filter with the values of R = 14.14Ω, L = 1mH
and C = 10µF is picked. To these values a random tolerance of 5%, 10% and
20% has been added.

How the random tolerance is calculated and added to each value in MATLAB
can be seen below with the example of a 5% tolerance

1 R = 14.14 + (14.14*0.05)*(randn(1,1)/4);

2 L = 1e-3 + (1e-3*0.05)*(randn(1,1)/4);

3 C = 10e-6 + (10e-6*0.05)*(randn(1,1)/4);

In this case the order of the system is set to be 10. The following Figure 4.6.1
shows the eigenvalue spectrum of the system without a tolerance and with a
tolerance of 5%.

(a) no tolerance (b) 5% tolerance

Figure 4.6.1: Eigenvalue spectrum of components with tolerance

It is visible that the system in general is stable. The eigenvalue closest to the
origin for Figure 4.6.1a is at −159.7 while the farthest eigenvalue on the real
axis is at −13980.2. This already shows that the system will react really fast.

The poles with an imaginary part are at −7070 on the real axis and these
conjugate complex poles have a maximum value of ±18469.69. This causes the
oscillation of the system to reach a very high amplitude.

28

For the system with a 5% tolerance for each component the eigenvalue spectrum
looks similar. The poles have moved slightly with the maximum real pole being
at −14134.69 and the pole closest to the origin being at −160.2.

While the complex conjugate eigenvalues are now placed at around −7133 to
−7075. The behaviour of the system should be similar as the values of the
poles did not change that much. Considering the values of the components it is
interesting to see how much larger the values for the poles are.

Because of this it is to be expected as stated before that the system will react
really quick. Figure 4.6.2 shows what a difference of 10% and 20% tolerance
can make for the poles of the system.

The stability of the system is still ensured as all poles are on the left half of
the plane. But comparing it to the eigenvalue spectrum from Figure 4.6.1 it is
observable that the poles have moved even more.

(a) 10% tolerance (b) 20% tolerance

Figure 4.6.2: Eigenvalue spectrum of components with tolerance

The complex conjugate eigenvalues have moved in a range from −7264 to −6891
on the real axis for the system with 20% tolerance. This movement affects the
reaction of the system as well as the oscillation.

It is also noticeable that the poles on the real axis have moved greatly. The
closest pole to the origin is now at −147 and the outer most left pole is at
−14468.

29

5 Part IV: Simulation of RLC sys-
tems
(by Kastriot Thaqi)

In this chapter the simulation consisting of the step response for some RLC
systems that have been mentioned in the chapter 4 is shown. The simulation is
done through MATLAB.

In the simulation every step response from the output of every circuit is plotted.
This means that the step response of the first circuit is displayed up to the step
response of the last circuit in the RLC system.

For this case the order of the system is 10 which in turn results in 10 step
responses shown in the Figures. Additionally the change over time of every
corresponding step response is included in these Figures.

Looking at Figure 5.0.1 the step response of an RLC system with a constant
R, L and C value show a relatively slow reacting system. The change over time
has been magnified for better visibility and can be seen in the red rectangle.

Only for the example with the constant R, L, C values the order for the step
response is increased to 30. To see how much the system response is affected by
an increasing order. And through Figure 5.0.2 it is readable that the system is
almost 10 times slower than with an order of 10.

Following the constant R, L, C step responses is first the example of a high value
for the inductor and then the example of a low value for the capacitor shown
in Figure 5.0.3 and 5.0.5. Lastly the simulation of the system with real values
plus a tolerance is displayed by Figure 5.0.8.

Each Figure after the constant R, L, C step responses show in more detail the
first output and the last output. The emphasis lies on these two because it is
interesting to see how an output changes for every consecutive circuit until it
reaches the end.

Most noticeable from the step responses following after Figure 5.0.1 and Figure
5.0.2 is the time it takes to reach the amplitude 1. Also the increase in oscillation
is perfectly displayed in Figure 5.0.3 and 5.0.5 where many or all eigenvalues
are complex conjugates.

30

Figure 5.0.1: Step Response of system with constant R, L, C and order of 10
with change over time highlighted in red square

Figure 5.0.2: Same system components as in Figure 5.0.1 but with the order of
30

31

Figure 5.0.3: Step Response of Figure 4.5.1(a)

(a) (b)

Figure 5.0.4: Closer look at (a) first and (b) last circuit step response with each
corresponding step response of 5.0.3

32

Figure 5.0.5: Step Response of Figure 4.5.2(b)

(a) (b)

Figure 5.0.6: Emphasis on the first (a) and last (b) step response of 5.0.5

33

Figure 5.0.7: Step Response of Figure 4.6.1(a) seen in red square

Figure 5.0.8: Step Response of Figure 4.6.2(b) shown in red square

34

(a) (b)

Figure 5.0.9: Focus on first step response (a) with change over time (b) of 5.0.8

(a) (b)

Figure 5.0.10: Focus on last step response (a) with change over time (b) of 5.0.8

35

6 Part V: PID Controller
(by Michael Schichta)

Within this chapter the tuning and implementation of a PID controller is cov-
ered. The implementation in C is integrated into the MATLAB environment as
a part of a software-in-the-loop routine.

6.1 Computing the transfer functions
As presented in chapter 2 and then 3, n-coupled RLC circuits are translated
in to their respective state space model via the developed MATLAB functions.
Before we can construct the transfer functions of the system we first have to
construct the remaining matrices C and D for the state space model.

As an example a circuit of three coupled RLC circuits is assumed. This re-
sults in the following matrices for Ac and Bc.

1 R = [1, 1, 1];

2 L = [1, 1, 1];

3 C = [1, 1, 1];

4

5 % using the developed functions from the team

6 [M,N,A,B] = RLC_osc(R,L,C);

7

8 [Ac, Bc] = RLC_ss(M,N,A,B);

This results in

Ac =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−2 1 0 −1 0 0
1 −2 1 0 −1 0
0 1 −1 0 0 −1

 and Bc =

0
0
0
1
0
0

 .

36

With Ac and Bc being the state transition matrix and input coefficient matrix,
respectively, the output coefficient matrix C and the direct path coefficient
matrix D are still to be set up. While we can choose D to be a 0, C needs to
be constructed so we only get a single output for our multi-input matrix [2]. So
we set declare

D = 0 and C =
(
0 0 1 0 0 0

)
and implement them in MATLAB as stated in the following code listing

1 % construct matrix C and D so they are compatible

2 % for calculating the transfer function

3 C = zeros(1, size(Ac,1));

4 C(length(C)/2) = 1;

5 D = [0];

We remember the state space model[3] representation and the formula for the
transfer function

˙⃗x(t) = Ax⃗(t) +Bu⃗(t), y⃗(t) = Cx⃗(t), Gp =
Y (s)

U(s)
. (6.1.1)

In order to get the transfer function we take the Laplace transform on the state
space model

sX(s) =AX(s) +BU(s) (6.1.2)

Y (s) =CX(s). (6.1.3)

And since we are interested in the relation of output Y(s) to input X(s) we solve
for X

sX(s)−AX(s) =BU(s)

⇔ X(s) =(sI −A)−1BU(s).

Inserting this into the output equation yields

Y (s) = C(sI −A)−1BU(s).

Which finally becomes a formula by which we can convert state space models
to transfer functions

⇔ Gp =
Y (s)

U(s)
= C(sI −A)−1B.

This procedure is utilized by MATLAB when using the ss2tf-function. The next
step is to calculate first the open-loop transfer function and then the closed loop
transfer function. But in order to calculate them we need to set the gains for
the PID controller which should be used in our system.

37

6.2 Controller design

6.2.1 Ziegler-Nichols method

For the scope of this project a heuristic approach was chosen for calculating
the individual gains for the PID controller. In this case the Ziegler-Nichols ap-
proach was used.[4]

This procedure uses the step response of the plant. The values which are neces-
sary for this approximation are derived from the time constant Tg, dead time Tu

and gain Ks. Before the approximated values for the controller are calculated
the time constants are determined, as seen in Figure 6.2.1

Figure 6.2.1: The step response of the plant transfer function

With

Ks = 1, Tu = 2.28 and Tg = 4.8

we set up Equation 6.2.1, 6.2.2 and 6.2.3 as

Kp =
1.2

Ks

Tg

Tu
= 2.52, (6.2.1)

Tn =2 Tu, (6.2.2)

TV =
1

2
Tu = 1.14. (6.2.3)

Following the Ziegler-Nichols method, we can solve

Tn =Kp TI for TI (6.2.4)

and Tv =
TD

Kp
for TD. (6.2.5)

38

in order to arrange Equation 6.2.6,

u(t) = Kpe(t) +
1

TI

∫ t

0

e(τ)dτ + TD
d

dt
e(t), (6.2.6)

as the differential equation for the PID controller. Equation 6.2.6

⇔ Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
d

dt
e(t). (6.2.7)

Solving Equations 6.2.4 and 6.2.5 we get the following values for 6.2.7,

Kp = 2.52, Ki = 0.5526, Kd = 2.87.

After calculating the gains for the PID controller that should be established,
the transfer function of the controller Gc, then the open-loop transfer function
Go and finally the closed-loop transfer function Gcl are computed as in Listing
6.2.1.

1 G_c = pid(Kp, Ki, Kd, 0);

2 % Open Loop transfer function

3 G_o = G_p * G_c;

4 % Closed Loop transfer function

5 G_cl = G_o/(1 + G_o);

Investigating the step response of Gcl shows strong oscillating behavior as seen
in Figure 6.2.2 which implies bad practicalities.

Figure 6.2.2: The step response of the closed-loop transfer function

39

6.2.2 Iterative method

Another method which seemed to lead to usable results is to find the gains for
the transfer functions in an iterative matter. Its implementation is easy and
fast but it is clearly flawed. The working principle are three nested for-loops
for Kp, Ki and Kd each. Retrieving gains iteratively, calculating the transfer
function and finally checking for the poles to assure stability proves itself useless
as a method. Because many combinations of gains can prove to feature stable
behavior for a given plant, but still be without beneficial properties in terms of
non-oscillating behavior or no steady-state errors.

1 sys_p = ss(Ac, Bc, C, D);

2 G_p = tf(sys_p);

3

4 for Kd = 0:0.1:10

5 for Ki = 0:0.1:10

6 for Kp = 0:0.1:10

7 % Time constant of the first-order derivative

8 % filter Tf = 0 => no filter on derivative action

9 G_c = pid(Kp, Ki, Kd, 0);

10

11 % Open Loop transfer function

12 G_o = G_p * G_c;

13

14 % Closed Loop transfer function

15 G_cl = G_o/(1 + G_o)

16

17 % calc poles of G_cl

18 % poles(G_cl)

19 [p,z] = pzmap(G_cl)

20 if (p <= 0)

21 disp ("Gains found!")

22 step(G_cl)

23 return;

24 end

25 end

26 end

27 end

For these reasons another method is tested to identify the gains for the to be
implemented PID controller.

40

6.2.3 Random gain probing

Determining gain values of the controller from a range of random numbers is
another attempt to design the to be used controller. Hereby the same problem
is present as in the other methods. After calculating the closed-loop transfer
function the poles are investigated to check for stability. The poles feature
all negative valued and conjugated complex results except for one pole with a
real and imaginary part of zero which makes it marginally stable. While this
would imply that this controller is not suitable in real world applications due to
instability in case of noise, calculating the zeros of the transfer function featured
a zero on top of the pole which compensates it[5], as seen in Figure 6.2.3.

Figure 6.2.3: The system’s Pole-Zero-Map

41

For this reason when checking if the transfer function with the randomly selected
gains features such a constellation some conditions are introduced to make sure
the pole is compensated by a zero as seen in Listing 6.2.3.

1 while(1)

2 % select a random float between 0 and 50

3 Kd = 0 + (50-0).*rand();

4 Ki = 0 + (50-0).*rand();

5 Kp = 0 + (50-0).*rand();

6

7 % Time constant of the first-order derivative filter Tf = 0 =>

8 % no filter on derivative action

9 G_c = pid(Kp, Ki, Kd, 0);

10 % Open Loop transfer function

11 G_o = G_p * G_c;

12 % Closed Loop transfer function

13 G_cl = G_o/(1 + G_o);

14

15 % calc poles of G_cl

16 [p,z] = pzmap(G_cl)

17 if p <= 0

18 if p(1) <= 0 && z(1) <= 0

19 % for some reasing connecting the conditions with

20 % logical operators didnt work with all the cond.

21 if p(2:end) < 0

22 if z(2:end) < 0

23 step(G_cl);

24 return;

25 end

26 end

27 end

28 end

29 end

42

Figure 6.2.4: Examples step responses of closed-loop
(Kp, Ki, Kd) left: 3.8, 1.2, 0.83; right: 1.2, 0.3, 1.89

While this methods does not aim to be a reliable way to calculate the gains in
its current state, it is able to determine both, gains which lead to a satisfying
step response and gains which do not, as seen in Figure 6.2.4 and 6.2.5.

Figure 6.2.5: The step response of the closed-loop transfer function

43

6.3 Implementation of the PID Controller

in C
The goal of introducing a PID controller is to be able to set the voltage over the
n-th capacitor for a given reference R. Looking at Figure 6.3.1 it is clear that
the controllers output U aims to drive the plant so that its output Y = R. This
is done by comparing the systems’ output Y and the reference R, and applying
the resulting error E as feedback to generate a corrective action.

Figure 6.3.1: Closed-loop control system with PID Controller

Implemented as software, the working principle of generating said corrective
action, output U , remains. The implemented function needs to solve Equation
6.2.7 but as a discrete time system.[6]

Given e(t) as the continuous-time error signal, the discrete-time error signal e[k]
is defined as e(t) sampled at t = kTs with Ts being the sampling time. With
this the integral error-term of the PID control can be approximated to

ei(t) ≡
∫ t

0

e(τ)dτ ≈
k−1∑
n=0

e[n]Ts.

The derivative error-term of the PID control is approximated using finite differ-
ences

ed(t) ≡
d

dt
e(t) ≈ e(t)− e(t− Ts)

Ts
≡ ed[k] ≡

e[k]− e[k − 1]

Ts
.

44

In summery the syntax which represents the three error-terms can be realized
as in the following code listing.

1 prev_err = err;

2 err = ref - y;

3 int_err = int_err + (err*Ts);

4 div_err = (err - prev_err)/Ts;

5

6 %my c-function called from matlab

7 u = cpid_mex(0.7922, 0.274, 0.1704, err, int_err, div_err);

Additionally, the function for the controller which is executed when called during
the MATLAB script is realized in a separate C-file shown in the listing below.

1 #include <stdio.h>

2 #include "ECSpidmatlab.h"

3

4 double main(float Kp, float Ki, float Kd,

5 double err, double div_err, double int_err) {

6 return Kp * err + Ki * int_err + Kd * div_err;

7 }

6.3.1 Software-in-the-loop simulation

We conclude the C-implementation of the PID controller by using it in a software-
in-the-loop simulation where setting up the state space model matrices and
calculating the transfer function is done in MATLAB, but during the actual
simulation MATLAB calls C-functions and hands over the current error values
in order to get the output u[k].
This particular loop is composed of the following steps[6]:

• Calculating error by comparing the plant’s output and the reference.

• Computing control signal.

• Using the discretized differential equations of the plant to calculate its
output y(kTs).

• updating controller variables.

We discretize the state space model, previously describing our plant for con-
tinuous time, with the sampling time Ts. Numerical integration as a numerical
method is used to find the approximation to the solution of the differential equa-
tion.

45

The equations

x⃗d[k + 1] ≈ Ad x⃗d[k] +Bd u

and

yd[k + 1] ≈ Dd x⃗d[k + 1]

are implemented in MATLAB as in the the following listing.

1 x_d(:,i+1) = Ad*x_d(:,i)+Bd*u;

2 y=Cd*x_d(:,i+1)

Running this simulation loop for a reference value of 5 and plotting the output
y of the system generated the plot seen in Figure 6.3.2

Figure 6.3.2: The system’s output

6.4 Conclusion
The plot in Figure 6.3.2 features a response which does not have any over-shoot
or oscillating behavior but reaches the set reference value only after around 25
seconds. Considering the inefficient way of acquiring the gains for the controller,
its performance is acceptable. Having said this, we have to consider that this
was the result for a system composed of only three coupled RLC-circuits. For
higher-coupled system a more sophisticated approach for acquiring and tuning
the controller would be needed.

46

7 Part VI: LQR Controller
(by Olti Cano)

7.1 Introduction
LQR is a robust controller that is designed to minimize the cost function by im-
plementing different adjustable weighting factors. For a continuous-time linear
system (see Figure 7.1.1a) ẋ(t) = Ax(t) +Bu(t) the cost function is defined as

J =

∫ ∞

0

(xTQx+ uTRu)dt. (7.1.1)

For a discrete system (see Figure 7.1.1b) x(k+1) = ADx(k) +BDu(k) the cost
function is defined as

J =

∞∑
k=0

(xT
kQxk + uT

kRuk) (7.1.2)

The cost function is defined as the sum of deviations of some measurements
from the desired values.

(a) Continuous-time linear system (b) Discrete system

Figure 7.1.1: System block diagrams

47

7.2 Continuous-time LQR
In this section, a first order electrical RLC oscillator will be investigated by
implementing a continuous-time LQR as shown in Figure 2.1.1.

At first a general system of first order in state space notation is considered

˙⃗x(t) =

(
0 1

− 1
LC −RC

LC

)
x⃗(t) +

(
0
1

LC

)
u(t).

In addition, the cost function for a continuous-time is defined. In order to sim-
plify the complexity of the calculations the weighting factor N will be neglected.

J =

∫ ∞

0

(xTQx+ uTRu)dt =

∫ ∞

0

(
(
x1 x2

)(q11 0
0 q22

)(
x1

x2

)
+ ru2)dt,

and is equivalent to

J =

∫ ∞

0

(q11x
2
1 + q22x

2
2 + ru2)dt, (7.2.1)

subject to
ẋ(t) = Ax(t) +Bu(t),

with the initial conditions x(0)=0.

In the following the meaning and the appropriate values of each weighting factor
is explained.

The R corresponds to the weighting matrix for the control effort. In all the
cases the matrix R should always contain this properties, R = RT > 0, be
Hermitian, invertible and positive semi-definite. Initially the matrix R is equal
to ’1’ or the identity matrix.

R =

(
1 0
0 1

)
= I.

The Q corresponds to the weighting matrix for the performance. In all the cases
the matrix Q should always contain this properties, Q = QT ≥ 0, be positive
semi-definite and Hermitian. Q is usually interpreted as multiple of the identity
matrix.

Q = C · I =

(
q11 0
0 q22

)
.

48

7.2.1 State feedback law and Riccati equation

By solving the Riccati equation for the matrix P, it is possible to calculate the
gain factor K, which minimizes the cost function J. The Riccati equation has
the form:

ATP + PA− (PB +N)R−1(BTP +NT) +Q = 0. (7.2.2)

Due to its calculation complexity the matrix P will be calculated with the help
of MATLAB function called icare. To determine the gain factor K the following
equation is used

K = R−1(BTP +NT), (7.2.3)

where the feedback control input is u = −Kx.

After determining the gain factor, it is possible to define the closed loop equation
from

ẋ = Ax+Bu = Ax+B(−Kx) = (A−BK) · x,

and it is equal to
Acl = A−BK. (7.2.4)

Furthermore, the expression ẋ = Aclx, x(0) =

(
x01

x02

)
, is considered, where x0

corresponds to an initial condition point. In conclusion, optimal control problem
is solved to compute the feedback gain K to steer the system with feedback law
u(t) = −Kx(t) to zero.

7.2.2 The feedforward filter

Finally, a feedforward filter is implemented as shown in the Figure 7.2.1. The
v corresponds to the feedforward input to the system and the state W corre-
sponds to the inverse system of closed loop system W · T = 1.

For the feedforward filter the state space system

ẋ = Ax+Bu, (7.2.5)

y = Cx, (7.2.6)

is considered with the feedback control law input

u = −Kx+Wv.

49

Figure 7.2.1: System block diagram with feedforward filter

By substituting the u on the equation (7.2.5) and we get

ẋ = (A−Bk)x+BWu. (7.2.7)

When t → ∞ the ẋ → 0, so the (7.2.7) will be expressed as(
0
0

)
= (A−BK)x+BWv, (7.2.8)

and
y(t) = v(t), (7.2.9)

which is equal to
x(t) = −(A−BK)−1 +BW · v. (7.2.10)

By substituting equation (7.2.10) into the equation (7.2.6), the resulting equa-
tion is

y(t) = −C(A−BK)−1BW · v !
= v(t), (7.2.11)

with
I = −C(A−BK)−1BW.

As a result, the equation for the inverse system of closed loop system is achieved

W = −[C(A−BK)−1B]−1I. (7.2.12)

50

7.3 Discrete-time LQR

7.3.1 State feedback law and Riccati equation

Same as in the previous section, again a first order electrical RLC oscillator will
be investigated by implementing an continuous-time LQR as shown in Figure
2.1.1.

Initially, a general discrete system of first order in state space notation is taken
into consideration

x(k + 1) = eA∆T + x(k)

∫ ∆T

0

(eA(∆T−τ)Bu(τ))dτ,

x(k + 1) = eA∆T + x(k) + (eA∆T

∫ ∆T

0

e−Aτ)dτB) · u(k),

x(k + 1) = ADx(k) +BDu(k), x(0) = x0,

x(k + 1) =

(
0 1

− 1
LC −RC

LC

)
x(k) +

(
0
1

LC

)
u(k).

In addition, the cost function for a continuous-time is defined. In order to sim-
plify the complexity of the calculations, the weighting factor N will be neglected.
The cost function J is given as follows

J =

∞∑
k=0

(xT
kQxk + uT

kRuk) =

∞∑
k=0

(
(
xk1

xk2

)(qk11
0

0 qk22

)(
xk1

xk2

)
+ ru2

k),

which is simplified to the form

J =

∞∑
k=0

(qk11
x2
k1

+ qk22
x2
k2

+ ru2
k). (7.3.1)

The optimal feedback control input is given by the expression

uk = −Fxk,

and the gain coefficient F is given by the following equation

F = (R+BT
DPBD)−1(BT

DPAD). (7.3.2)

Same as for the continuous-time LQR, the unique positive definite matrix P
will be calculated by solving the algebraic Riccati equation.

P = ATPA−ATPB(R+BTPB)−1BTPA+Q (7.3.3)

Due to high calculation complexity the equation will be calculated with the help
of a MATLAB function called idare.

51

After determining the gain factor F, it is possible to define the closed loop
equation, which is

Adcl = AD −BD · F.

Furthermore, the expression x(k + 1) = Adclxk, x(0) =

(
x01

x02

)
, is considered,

where x0 corresponds to an initial condition point. In conclusion, optimal con-
trol problem is solved to compute the feedback gain F, to steer the system with
feedback law uk = −Fxk, to the desired value.

7.3.2 The feedforward filter

Finally, a feedforward filter is implemented as shown in the Figure 7.2.1. The v
corresponds to the feedforward input to the system and the stateW corresponds
to the inverse system of closed loop system W · T = 1.

Figure 7.3.1: System block diagram with feedforward filter

For the feedforward filter, we consider the following state space system

x(k + 1) = ADx(k) +BDu(k), (7.3.4)

y(k) = CDx(k), (7.3.5)

with feedback control law input

u(k) = −Fx(k) +Wr(k). (7.3.6)

By substituting equation (7.3.6) into the equation (7.3.4), the resulting equation
is

x(k + 1) = (AD −BDF)x(k) +BDWr(k). (7.3.7)

From equation (7.3.7), the resulting closed loop equation is,

ADcl = AD −BDF.

52

Furthermore, the limits of the continuous and discrete system are defined as in
following,

lim
t→∞

ẋ(t) = 0 → lim
k→∞

x(k + 1) = x(k).

By substituting the closed loop equation in the equation (7.3.7), we get

x(k + 1) = ADcl · x(k) +BDWr(k) = x(k), for k → ∞, (7.3.8)

which can be rewritten as

BDWr(k) = (I −ADcl) · x(k).

The equation above is solved for the x(k) and is defined as,

x(k) = (I −ADcl)−1BDWr(k). (7.3.9)

On the other side, the output y(k) from equation (7.3.5) is expressed as,

y(k) = CD · x(k) = CD(I −ADcl)−1BDW · r(k) = I · r(k). (7.3.10)

Finally, from the equation (7.3.10) the feedback filter equation is achieved and
is defined as following

W = [CD(I −ADcl)−1BD]−1.

53

8 Part VII: Simulation of LQR
for n-order systems
(by Olti Cano)

In this section, the simulation of different order systems for continuous and
discrete systems will be considered. In addition, the results will be analysed
in detail and the controlling system will be adapted in order to increase the
efficiency. Furthermore, the changes between the time-continuous and discrete
system will be highlighted and explained.

8.1 First order system

8.1.1 First order linear time-continuous system

For this example the values of the RLC circuit are, R=1, L=2 and C=3. The
state space representation for this circuit is,

A =

(
0 1
−1
LC

−(RC)
(LC)

)
=

(
0 1
−1
6

−(1)
(2)

)
,

B =

(
0
1

LC

)
=

(
0
1
6

)
,

C =
(
1 0

)
,

R = 1 and Q = 100 · I.

In addition, by solving the Riccati equation, the unknown factor P is calculated.
By substituting the P in the feedback law equation, it is possible to calculate
the gain factor K.

K = R−1BTP =
(
9.0499 11.7512

)
.

The closed loop for this system is,

Acl = A−BK =

(
0 1
−1
6

−(1)
(2)

)
−
(
0
1
6

)(
9.0499 11.7512

)
.

As a result, the time response of the system can be shown graphically. Further-
more, the feedforward filter is implemented to the system, and the time response
of the system is represented graphically.

W = −[C(A−BK)−1B]−1I.

54

(a) Time response of Cont. LQR controller (b) Time response of Cont. LQR with feedfor-
ward filter

Figure 8.1.1: Time response of a first order linear time-continuous system

8.1.2 First order discrete system

For this example, the values of the RLC circuit are, R=1, L=2 and C=3. The
state space representation for this circuit is,

A =

(
0 1
−1
LC

−(RC)
(LC)

)
=

(
0 1
−1
6

−(1)
(2)

)
,

B =

(
0
1

LC

)
=

(
0
1
6

)
,

C =
(
1 0

)
,

R = 1 and Q = 100 · I.
The initial point for this example is x(0) = [5, 4].

In order to convert the continuous system to discrete system the c2d function
and a sampling time, Ts=1 as in the following is implemented.

1 Ts=1;

2 sys_c = ss(A, B, C, 0);

3 sys_d = c2d(sys_c, Ts) % Convert to discrete time

4

5 Ad = sys_d.A

6 Bd = sys_d.B

7 Cd = sys_d.C

55

The resulting discrete system defined by MATLAB is

AD =

(
0.9299 0.7654
−0.1276 0.5473

)
,

BD =

(
0.070073
0.127558

)
,

CD =
(
1 0

)
,

In addition, by solving the algebraic Riccati equation for discrete time systems,
the unknown factor P is calculated. By substituting the P in the feedback law
equation, it is possible to calculate the gain factor F.

F = (R+BT
DPBD)−1(BT

DPAD) =
(
3.1892 5.4108

)
.

The closed loop for this system is,

ADcl = AD −BDF,

ADcl =

(
0.9299 0.7654
−0.1276 0.5473

)
−
(
0.070073
0.127558

)(
3.1892 5.4108

)
,

ADcl =

(
0.7064 0.3862
−0.5344 −0.1429

)
.

As a result the time response of the system can be shown graphically in the
Figure 8.1.2a.

Furthermore, the feedforward filter is implemented to the system, and the time
response of the system is represented graphically in the Figure 8.1.2b.

W = −[C(A−BK)−1B]−1I = 4.1892.

The figures show graphically how the system is steered to the desired value in a
certain time. The MATLAB function used to draw these graphs is called lsim.

1 % time response of dynamic systems for arbitrary inputs.

2 lsim(sysd_cl1, u_in_1, tsteps, [5,4])

56

(a) Time response of Dis. LQR controller (b) Time response of Dis. LQR with feedforward
filter

Figure 8.1.2: Time response of first order discrete system

57

8.2 Third order system

8.2.1 Third order linear time-continuous system

For this example the values of the RLC circuit are,

R1 = 1, R2 = 3, R3 = 2,

L1 = 2, L2 = 1, L3 = 3,

C1 = 3, C2 = 2, C3 = 1.

The state space representation for this circuit is,

A =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−1/2 1/3 0 −1/2 5/3 5/6
1/2 −2/3 1/6 0 −3 −7/6
0 1/3 −1/3 0 0 −2/3

 ,

B =

0
0
0

1/6
0
0

 ,

C =
(
1 0 0 0 0 0

)
,

R = 1 and Q = 100 · I.

In addition, by solving the Riccati equation, the unknown factor P is calculated.
By substituting the P in the feedback law equation, it is possible to calculate
the gain factor K.

K = R−1BTP =

=
(
32.3007 14.9618 6.5188 34.3712 12.1114 5.3700

)
.

The closed loop for this system is,

Acl = A−BK

=

0 0 0 1.0000 0 0
0 0 0 0 1.0000 0
0 0 0 0 0 1.0000

−5.8835 −2.1603 −1.0865 −6.2285 −0.3519 −0.0617
0.5000 −0.6667 0.1667 0 −3.0000 −1.1667

0 0.3333 −0.3333 0 0 −0.6667

 .

58

As a result the time response of the system can be shown graphically. Further-
more, the feedforward filter is implemented to the system, and the time response
of the system is represented graphically.

W = −[C(A−BK)−1B]−1I = 54.7814.

(a) Time response of Cont. LQR controller (b) Time response of Cont. LQR with feedfor-
ward filter

Figure 8.2.1: Time response of a third order linear time-continuous system

59

8.2.2 Third order discrete system

For this example the values of the RLC circuit are,

R1 = 1, R2 = 3, R3 = 2,

L1 = 2, L2 = 1, L3 = 3,

C1 = 3, C2 = 2, C3 = 1.

The state space representation for this circuit is,

A =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−1/2 1/3 0 −1/2 5/3 5/6
1/2 −2/3 1/6 0 −3 −7/6
0 1/3 −1/3 0 0 −2/3

 ,

B =

0
0
0

1/6
0
0

,

C =
(
1 0 0 0 0 0

)
,

R = 1 and Q = 100 · I.

The initial point for this example is x(0) = [5, 4, 3, 2, 1, 0].

In order to convert the continuous system to discrete system the c2d function
and a sampling time, Ts=1 as in the following is implemented.

1 Ts=1;

2 sys_c = ss(A, B, C, 0);

3 sys_d = c2d(sys_c, Ts) % Convert to discrete time

4

5 Ad = sys_d.A

6 Bd = sys_d.B

7 Cd = sys_d.C

60

The resulting discrete system defined by MATLAB is

AD =

0.860457 0.0695239 0.00116966 0.740266 0.315229 0.145833
0.104286 0.830741 0.0631371 0.0376392 0.293281 −0.171173

0.00350898 0.126274 0.870195 0.000720012 0.0242831 0.683473
−0.212519 0.0852139 0.00392719 0.490324 0.357615 0.15307
0.127821 −0.240032 0.105938 0.0854663 0.0136298 −0.133543
0.0117816 0.211876 −0.223777 0.00314898 0.0546248 0.386816

 ,

BD =

0.0688492
0.00183646

2.19642e− 05
0.123378
0.0062732
0.000120002

 ,

CD =
(
1 0 0 0 0 0

)
.

In addition, by solving the algebraic Riccati equation for discrete time systems,
the unknown factor P is calculated. By substituting the P in the feedback law
equation, it is possible to calculate the gain factor F.

F = (R+BT
DPBD)−1(BT

DPAD) =

=
(
3.1245 2.1774 0.899275 5.40523 3.50601 1.56896

)
.

The closed loop for this system is,

ADcl = AD −BDF =

=

0.645338 −0.0803886 −0.0607448 0.36812 0.0738427 0.0378113
0.0985479 0.826742 0.0614856 0.0277127 0.286842 −0.174054
0.00344036 0.126226 0.870175 0.00060129 0.0242061 0.683438
−0.598012 −0.183429 −0.107023 −0.176561 −0.074948 −0.0405047
0.10822 −0.253691 0.100296 0.0515582 −0.00836409 −0.143385

0.0114066 0.211614 −0.223885 0.00250034 0.0542041 0.386628

As a result the time response of the system can be shown graphically in the
Figure 8.2.2a.

Furthermore, the feedforward filter is implemented to the system, and the time
response of the system is represented graphically in the Figure 8.2.2b.

W = −[C(A−BK)−1B]−1I = 7.20118.

61

The figures show graphically how the system is steered to the desired value in a
certain time. The MATLAB function used to draw these graphs is called lsim.

1 % time response of dynamic systems for arbitrary inputs.

2 lsim(sysd_cl1, u_in_1, tsteps, [5,4,3,2])

(a) Time response of Dis. LQR controller (b) Time response of Dis. LQR with feedforward
filter

Figure 8.2.2: Time response of a third order discrete system

62

8.3 Fourth order system

8.3.1 Fourth order linear time-continuous sys-
tem

For this example the values of the RLC circuit are,

R1 = 1, R2 = 3, R3 = 2, R4 = 4,

L1 = 2, L2 = 1, L3 = 3, L4 = 4,

C1 = 3, C2 = 2, C3 = 1, C4 = 4.

The state space representation for this circuit is,

A =

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

−1/2 1/3 0 0 −1/2 5/3 5/6 10/3
1/2 −2/3 1/6 0 0 −3 −7/6 −14/3
0 1/3 −7/12 1/4 0 0 −2/3 4/3
0 0 1/16 −1/16 0 0 0 −1

,

B =

0
0
0
0
1/6
0
0
0

,

C =
(
1 0 0 0 0 0 0 0

)
,

R = 1 and Q = 100 · I.

In addition, by solving the Riccati equation, the unknown factor P is calculated.
By substituting the P in the feedback law equation, it is possible to calculate
the gain factor K.

K = R−1BTP =

=
(
31.7695 12.0004 4.3627 14.1209 34.2858 11.1200 3.3186 8.6996

)
.

63

The closed loop for this system is,

Acl = A−BK =

=

0 0 0 0 1.0000 0 0 0
0 0 0 0 0 1.0000 0 0
0 0 0 0 0 0 1.0000 0
0 0 0 0 0 0 0 1.0000

−5.7949 −1.6667 −0.7271 −2.3535 −6.2143 −0.1867 0.2802 1.8834
0.5000 −0.6667 0.1667 0.0000 0 −3.0000 −1.1667 −4.6667

0 0.3333 −0.5833 0.2500 0 0 −0.6667 1.3333
0 0 0.0625 −0.0625 0 0 0 −1.0000

.

As a result the time response of the system can be shown graphically.

Furthermore, the feedforward filter is implemented to the system, and the time
response of the system is represented graphically.

W = −[C(A−BK)−1B]−1I = 63.2535.

(a) Time response of Con. LQR controller (b) Time response of Dis. LQR with feedforward
filter

Figure 8.3.1: Time response of a fourth order linear time-continuous system

64

8.3.2 Fourth order discrete system

For this example the values of the RLC circuit are,

R1 = 1, R2 = 3, R3 = 2, R4 = 4,

L1 = 2, L2 = 1, L3 = 3, L4 = 4,

C1 = 3, C2 = 2, C3 = 1, C4 = 4.

The state space representation for this circuit is,

A =

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

−1/2 1/3 0 0 −1/2 5/3 5/6 10/3
1/2 −2/3 1/6 0 0 −3 −7/6 −14/3
0 1/3 −7/12 1/4 0 0 −2/3 4/3
0 0 1/16 −1/16 0 0 0 −1

,

B =

0
0
0
0

1/6
0
0
0

,

C =
(
1 0 0 0 0 0 0 0

)
.

R = 1 and Q = 100 · I.
The initial point for this example is x(0) = [5, 4, 3, 2, 1, 0,−1,−2].

In order to convert the continuous system to discrete system the c2d function
and a sampling time, Ts=1 as in the following is implemented.

1 Ts=1;

2 sys_c = ss(A, B, C, 0);

3 sys_d = c2d(sys_c, Ts) % Convert to discrete time

4

5 Ad = sys_d.A

6 Bd = sys_d.B

7 Cd = sys_d.C

65

The resulting discrete system defined by MATLAB is

AD =

0.860 0.069 0.001 0 0.740 0.315 0.145 0.582
0.104 0.830 0.061 0.001 0.037 0.293 −0.170 −0.755
0.003 0.123 0.785 0.087 0 0.023 0.656 0.368

7.63e− 06 0 0.021 0.977 1.107e− 06 8.33e− 05 0.006 0.627
−0.212 0.085 0.003 5.48e− 05 0.490 0.357 0.153 0.608
0.127 −0.240 0.101 0.004 0.085 0.013 −0.132 −0.714
0.011 0.203 −0.359 0.141 0.003 0.053 0.320 0.485

4.11e− 05 0.002 0.035 −0.037 7.08e− 06 0 0.017 0.358

,

BD =

0.0688492
0.00183646

2.18657e− 05
2.4736e− 08
0.123378
0.0062732

0.000119267
1.84599e− 07

,

CD =
(
1 0 0 0 0 0 0 0

)
.

In addition, by solving the algebraic Riccati equation for discrete time systems,
the unknown factor P is calculated. By substituting the P in the feedback law
equation, it is possible to calculate the gain factor F.

F = (R+BT
DPBD)−1(BT

DPAD) =

=
(
3.030 1.799 0.6444 1.897 5.358 3.365 1.337 4.751A

)
.

The closed loop for this system is,

ADcl = AD −BDF =

=

0.652 −0.054 −0.043 −0.131 0.371 0.084 0.054 0.255
0.099 0.827 0.061 −0.002 0.028 0.287 −0.174 −0.765
0.003 0.124 0.785 0.087 0.001 0.024 0.657 0.368
0 0.001 0.022 0.978 0 0 0.007 0.628

−0.586 −0.137 −0.076 −0.234 −0.171 −0.058 −0.012 0.022
0.109 −0.251 0.098 −0.008 0.052 −0.007 −0.143 −0.744
0.011 0.203 −0.356 0.141 0.002 0.053 0.32 0.485
0 0.002 0.035 −0.038 0 0 0.017 0.358

.

As a result the time response of the system can be shown graphically in the
Figure 8.2.2a.

Furthermore, the feedforward filter is implemented to the system, and the time
response of the system is represented graphically in the Figure 8.2.2b.

W = −[C(A−BK)−1B]−1I = 8.37063.

66

The Figures show graphically how the system is steered to the desired value in
a certain time. The MATLAB function used to draw these graphs is called lsim.

1 % time response of dynamic systems for arbitrary inputs.

2 lsim(sysd_cl1, u_in_1, tsteps, [5,4,3,2,1,0,-1,-2])

(a) Time response of Dis. LQR controller (b) Time response of Dis. LQR with feedforward
filter

Figure 8.3.2: Time response of a fourth order discrete system

67

8.4 Conclusions

8.4.1 Implementation of the feedforward filter

The implementation of the feedforward filter into the oscillating system main-
tains a more stabilized behaviour by preventing the problems before they occur.

Another important reason of using the feedforward filter is the possibility to
steer the system to the desired set of points.

Using only the feedback system is not sufficient for building a good controlling
system especially in critical controlling tasks such as air-crafts, driving assis-
tance etc.

8.4.2 Time continuous vs. Time discrete system

Nowadays, the time continuous controllers are found only in few technical appli-
cations. They are usually implemented as electronics (via OP-Amps or FPGAs).

Usually, the time continuous systems are implemented in safety-critical systems
(air-crafts, ADAS, etc.) because circuits can be tested more easily than software
and pure electronics are rather real-time capable.

However, implementing a controller in electronics results in high financial and
time costs. Alternatively, it is much easier to rewrite some lines of code instead
of redesigning and reproducing a circuit.

The time discrete controllers are mostly implemented in the standard applica-
tions. Modern controllers are becoming more complex because techniques such
as Artificial Neural Networks controllers are being implemented. As a conse-
quence, implementing this type of controllers in electronics is very complicated
and requires a lot of effort.

68

References
[1] Control systems/state-space stability, Wikibooks, 07.01.2022. [Online]. Avail-

able: https://en.wikibooks.org/wiki/Control_Systems/State-
Space_Stability.

[2] J. O. S. III, Introduction to linear state space models, 2019. [Online]. Avail-
able: https://ccrma.stanford.edu/~jos/StateSpace/StateSpace_
4up.pdf.

[3] P. S. Solvang, State space model based pid controller tuning, Master’s Thesis
2019 Industrial IT and Automation, 2019.

[4] Faustformelverfahren (automatisierungstechnik). [Online]. Available: https:
//de.wikipedia.org/wiki/Faustformelverfahren_(Automatisierungstechnik).

[5] Regelkreis, bedeutung der pole und nullstellen der übertragungsfunktion eines
übertragungssystems. [Online]. Available: https://de.wikipedia.org/
wiki/Regelkreis#Bedeutung_der_Pole_und_Nullstellen_der_\%C3\

%9Cbertragungsfunktion_eines_\%C3\%9Cbertragungssystems.

[6] Pid controller. [Online]. Available: https://en.wikipedia.org/wiki/
PID_controller#PID_tutorials.

69

https://en.wikibooks.org/wiki/Control_Systems/State-Space_Stability
https://en.wikibooks.org/wiki/Control_Systems/State-Space_Stability
https://ccrma.stanford.edu/~jos/StateSpace/StateSpace_4up.pdf
https://ccrma.stanford.edu/~jos/StateSpace/StateSpace_4up.pdf
https://de.wikipedia.org/wiki/Faustformelverfahren_(Automatisierungstechnik)
https://de.wikipedia.org/wiki/Faustformelverfahren_(Automatisierungstechnik)
https://de.wikipedia.org/wiki/Regelkreis#Bedeutung_der_Pole_und_Nullstellen_der_\%C3\%9Cbertragungsfunktion_eines_\%C3\%9Cbertragungssystems
https://de.wikipedia.org/wiki/Regelkreis#Bedeutung_der_Pole_und_Nullstellen_der_\%C3\%9Cbertragungsfunktion_eines_\%C3\%9Cbertragungssystems
https://de.wikipedia.org/wiki/Regelkreis#Bedeutung_der_Pole_und_Nullstellen_der_\%C3\%9Cbertragungsfunktion_eines_\%C3\%9Cbertragungssystems
https://en.wikipedia.org/wiki/PID_controller#PID_tutorials
https://en.wikipedia.org/wiki/PID_controller#PID_tutorials

	Problem statement
	Part I: Research (by David Schlumberger)
	First Order System
	Second Order System
	Third Order System

	Part II: Algorithm (by Anton Gres)
	N-th order system
	Algorithm: Example on an N-th order system

	Part III: Stability (by Kastriot Thaqi)
	Stability of higher order RLC systems
	Stability with varying R component
	Stability with varying C component
	Stability with varying L component
	Comparing the stability of high and low values of the inductor and capacitor
	Stability with influence of component tolerance

	Part IV: Simulation of RLC systems (by Kastriot Thaqi)
	Part V: PID Controller (by Michael Schichta)
	Computing the transfer functions
	Controller design
	Ziegler-Nichols method
	Iterative method
	Random gain probing

	Implementation of the PID Controller in C
	Software-in-the-loop simulation

	Conclusion

	Part VI: LQR Controller (by Olti Cano)
	Introduction
	Continuous-time LQR
	State feedback law and Riccati equation
	The feedforward filter

	Discrete-time LQR
	State feedback law and Riccati equation
	The feedforward filter

	Part VII: Simulation of LQR for n-order systems (by Olti Cano)
	First order system
	First order linear time-continuous system
	First order discrete system

	Third order system
	Third order linear time-continuous system
	Third order discrete system

	Fourth order system
	Fourth order linear time-continuous system
	Fourth order discrete system

	Conclusions
	Implementation of the feedforward filter
	Time continuous vs. Time discrete system

	References

