
Simulation of two-dimensional
heat conduction in Julia

programming language using
CUDA

By Eslam Abdelfatah E.Mohamed
Matriculation Nr.: 30740

Examiner: Prof. Dr.-Ing. Lothar Berger

Second supervisor: M. Sc. Stephan Scholz

A thesis submitted in partial fulfillment of the requirements for the
degree

B. Eng. of Electrical Engineering and Information
Technology

Faculty of Electrical Engineering and Computer Science
Ravensburg-Weingarten University of Applied Science

Germany
April 2022

Simulation of two-dimensional heat conduction in

Julia programming language using CUDA

by Eslam Abdelfatah E.Mohamed

Abstract

Heat is vital when work and energy are involved in phase transitions, according to
this fact, heat conduction qualities as well as the properties of molecules inside the
bodies needed to be analyzed. Computation of heat transfer has been a considerable
challenge during the last decade, especially when time is considered as a component
with an unaffordable price.
The heat equation is a parabolic partial differential equation that represents how
temperature varies in space over time. It may also be described as the process
which reflects how heat is transferring from a higher temperature median to a lower
temperature one. In some complex occasions it is nearly impossible to calculate
the heat diffusion manually, that is why Julia programming language is utilized
to solve one and two-dimensional heat equation problems by using CUDA, which is
configured to accelerate the calculation through the graphics processing unit (GPU).

3

Acknowledgements

I would like to thank my supervisors, Prof. Dr.-Ing. Lothar Berger and Mr. Stephan
Scholz, for their constant support, patience, and guidance throughout my bachelor’s
thesis. Over six months, I gained experience not only in the technical sector, but also
in how to cope with difficulties, how to handle working under pressure by turning
the negative vibe into a motivational one otherwise, I wouldn’t be able to conquer
and take any steps forward.
I can’t express how grateful I am to my family for their love, understanding, support,
and inspiration.
Finally, I’d like to thank my friends who have supported me during difficult times
and have been a part of my adventure at Ravensburg-Weingarten University.

4

Contents

1 Introduction 8
1.1 Motivation . 9
1.2 Problem Statement . 10
1.3 Strategy of solution . 12

2 The Heat conduction 13
2.1 Partial differential equations . 13
2.2 Heat Equation . 17

2.2.1 Discretization for one-dimensional case 17
2.2.2 Two-dimensional heat equation 19

2.3 Numerical integration methods . 21
2.3.1 Euler method . 22
2.3.2 Midpoint method . 23
2.3.3 Runge-Kutta methods . 23

3 Hardware and Software tools 24
3.1 GPU Core . 24

3.1.1 NVDIA GTX 1050 Ti . 27
3.2 CUDA . 28

3.2.1 C++ Programming Model . 29
3.2.2 Julia Programming Model . 31

3.3 DifferentialEquation.jl . 32
3.4 DiffEqGPU.jl . 33

4 Implementation 34
4.1 One-dimensional heat equation . 34

4.1.1 CPU computation by semi-discretization 34
4.1.2 GPU computation by semi-discretization 37

4.2 Two-dimensional heat equation . 39
4.2.1 CPU computation by full-discretization 39
4.2.2 GPU computation by full-discretization 42
4.2.3 CPU computation by semi-discretization 44
4.2.4 GPU computation by semi-discretization 46

5 Conclusion 48

A Data Samples 49
A.1 CPU Analysis . 49
A.2 GPU Analysis . 51

5

List of Figures

1.1 Graphic Card NVIDIA GeForce GTX 1050 Ti 8
1.2 GPU Devotes More Transistors to Data Processing 9
1.3 External view of the micro heat pipe 11

2.1 Resolution domain and boundary . 16
2.2 Heat kernel . 17
2.3 Explicit and Implicit graphs . 22
2.4 Euler method graph . 22

3.1 Graphic Card Components . 24
3.2 CPU vs GPU . 25
3.3 GPU Block Diagram . 26
3.4 Schematic of NVIDIA GPU architecture 26
3.5 GTX 1050 Ti . 27
3.6 Schematization of CUDA architecture 28
3.7 CUDA Memory hierarchy . 29
3.8 Heterogeneous Programming . 30

4.1 The solution algorithm . 35
4.2 One-Dimensional Semi-Discretization on CPU with DBC 35
4.3 One-Dimensional Semi-Discretization on CPU with NBC 36
4.4 One-Dimensional Semi-Discretization on GPU with DBC 37
4.5 One-Dimensional Semi-Discretization on GPU with NBC 38
4.6 Two-Dimensional Full-Discretization on CPU with DBC 40
4.7 Two-Dimensional Full-Discretization on CPU with NBC 41
4.8 Two-Dimensional Full-Discretization on GPU with DBC 42
4.9 Two-Dimensional Full-Discretization on GPU with NBC. 43
4.10 Two-Dimensional Semi-Discretization on CPU with DBC 44
4.11 Two-Dimensional Semi-Discretization on CPU with NBC 45
4.12 Two-Dimensional Semi-Discretization on GPU with DBC 46
4.13 Two-Dimensional Semi-Discretization on GPU with NBC 47

A.1 One-dimensional computational costs on CPU 49
A.2 Two-dimensional computational costs on CPU 50
A.3 One-dimensional computational costs on GPU 51
A.4 Two-dimensional computational costs on GPU 52

6

List of Tables

2.1 Coefficients of partial differential equation 14

3.1 Comparison between CPU and GPU 25
3.2 Comparison between different NVIDIA models 27

4.1 Simulation Parameters . 34
4.2 Simulation Parameters . 39

7

Chapter 1

Introduction

Modern graphics and image processing are handled relatively efficiently by computer
graphics processing units (GPUs). Due to their highly parallel structure, GPUs are
more effective than general-purpose CPUs for techniques that need parallel pro-
cessing of huge blocks of data. Furthermore, modern GPUs can execute tens of
thousands of threads at the same time.
A significant difference in computation operations was made by compute unified
device architecture (CUDA). It rapidly runs the tasks and renders high-resolution
images for all outcomes. CUDA is designed to be coded in programming languages
such as C, C++, and Julia. This accessibility makes it easier for specialists in par-
allel programming to use GPU resources, in contrast to prior APIs like Direct3D
and OpenGL, which required advanced skills in graphics programming.
DifferentialEquations.jl, DiffEqGPU.jl and CUDA.jl are packages developed in the
Julia programming language and includes functionality for making use of GPUs in
the differential equation solvers.

Figure 1.1: Graphic Card NVIDIA GeForce GTX 1050 Ti [1]

Figure 1.1 shows the Nvidia graphics card which we use for our data processing, It
has seven hundred sixty eight CUDA cores, A memory speed of seven Gbps, stander
memory configuration of four GB, memory interface GDDR5 , CUDA supporter and
capability of simultaneous multi-projection [2].

8

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

1.1 Motivation

A graphics processing unit (GPU) is a specialized electronic circuit that can ma-
nipulate and alter memory quickly in order to speed up the production of images
in a frame buffer for display. Nvidia popularized the term ”GPU” in 1999 when it
promoted the GeForce 256 as the world’s first graphic processing unit. A single-chip
processor with integrated transform, lighting, triangle setup/clipping and rendering
engines are capable of processing at least 10 million polygons per second [3].
Originally, GPUs were only used to render visuals for video games. Many calcula-
tions are required to create a figure from recorded data. In comparison to the CPU,
it takes far less time to create a vibrant, high-quality image.
CUDA programming language has high efficacy at solving complex mathematical
operations by calling CuArray, which can operate arrays by passing them to GPU
cores or using one of the methods defined for gpuArray objects to establish an ar-
ray directly on the GPU. These kinds of arrays are specialized for highly parallel
computations and therefore designed such that more transistors are devoted to data
processing rather than data caching and flow control.
The schematic figure 1.2 shows an example distribution of chip resources for the
CPU versus GPU.

Figure 1.2: GPU Devotes More Transistors to Data Processing [4]

The simplest way to understand the difference between a CPU and a GPU is to
compare how they process tasks. Basically, CPUs and GPUs have significantly dif-
ferent architectures that makes them better suited to different tasks [5].
The CPU consists of a few cores optimized for sequential serial processing, while a
GPU has a massively parallel architecture consisting of hundreds of smaller cores.
Although GPUs have a large number of cores, all of these cores share the same
device memory, which means input and output data from the GPU take extra time.
Therefore, for problems with frequent data changing, the GPU is not a smart choice.
The structure of the GPU enables them to handle large amounts of data in many
streams, deals with multiple tasks simultaneously and performing relatively simple
operations on them. However, if you’re not doing thousands of “stuff” in parallel,
it’s not going to be fast [6].

9 Chapter 1

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

1.2 Problem Statement

The study of heat conduction theory was first developed by Joseph Fourier in 1822
for the purpose of modeling how a quantity such as heat diffuses through a given
region. The heat equation is a parabolic differential equation and it is considered
basic to the broader subject of partial differential equations. The problem, is deter-
mining how to derive the next step value from the previous one.
In this thesis statement, we simulate one-dimensional and two-dimensional heat con-
duction by assuming a homogeneous rod in a one-dimensional case it has the same
properties at every point, it is uniform without irregularities, with a length ”L”,
then applying a heat source somewhere on the rod, By dissect the rod into M-nodes
and visualizing the heat spreading along this nodes, we can notice how the temper-
ature of the electrons in the atoms rise and keep rising by time passing, The heat
spot is expanding till it reach to the boundaries which we are controlling once with
Dirichlet’s method ”Fixed boundary condition” and once with Neumann’s method
”Heat flux boundary condition”.
For two-dimensional case, a plate with a length of L and a width of W. By the same
technique, set a heat source some were on the plate , the heat source has tempera-
ture 500 [K]. The plate shows the spreading of the heats spot. the plate is divided
in the x-direction with Nx-steps and in y-direction with Ny-steps.

L

W

1st stage

Nx × Ny points

2nd stage

3rd stage 4th stage

Basic idea of heat extension over the plate

The diagram shows the diffusion of the heat source with 500 kelvin temperature
(1st stage). The heat spreads in a 360-degree direction as in the 2nd stage. Heat
goes through the direct microscopic exchange of kinetic energy of particles such as
molecules in 3rd stage. In 4th stage the heat flows so that the body and the surround-
ings reach the same temperature, at which point they are in thermal equilibrium.

10 Chapter 1

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

The temperature of each point is stored in a cell of an array. Each cell is a
vector value that has a magnitude and direction. We will represent this array by
using a CUDA array that provides a fully functional GPU array, which copy values
simultaneously. and with same strategy it past all out outcome immediately.

(1,1) (Nx,1)

(1,Ny) (Nx,Ny)
...
...
...
...
...
...
...
...
...
...
...
...
...

Two-dimensional heat matrix

One of the main factors in heat conduction is the number of the cells, as when the
number of the cells changes, the values of x-grid spacing and y-grid spacing change.
The grid spacing is the distance between two cells.This affects the whole calculation
process.
The simulation in time is implemented first with a manual Euler integration theory
(full-discretization). A second will be through the DifferentialEquations.jl package,
which implements the results as (semi-discretization).

Application Problem

In reality, we have a lot of applications that describe our problem. One of these
applications is the micro heat pipe array. A heat pipe is a two-phase heat transfer
device with a very high effective thermal conductivity that is made up of a series of
micro heat pipe channels and is used to create a small heat dissipation device that
can effectively remove heat from an electronic chip. Each of the array’s channels
functions as a separate heat transfer device.

Figure 1.3: External view of the micro heat pipe [7]

The heat sinks have been presented previously by Sobhan et al. (2000). Originally
micro heat pipes were developed as a microscale heat removal device for miniaturized
applications, such as electronics cooling. The average length of micro heat pipes is
a few centimeters and they have a hydraulic (internal) diameter between 50 and 600
µm.

11 Chapter 1

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

1.3 Strategy of solution

The heat equation is a parabolic partial differential equation, so we will start by
learning the characteristics of the partial differential equation that describes a value
by how it changes in multiple directions, how it changes in the (x, y) physical
directions, and how it changes in time.
The best way to solve a PDE problem is to convert it into an ODE problem, so we
will go through spatial discretization using finite difference methods to convert the
partial differential equation into an ordinary differential equation.
Typically, we have specified some boundary conditions, which specify the value of
the solution or its derivatives along the boundary of a region, and some initial
conditions, which specify the value of the solution or its derivatives for some initial
time.
We will first set this boundary condition to the Dirichlet boundary condition, then
to the Neumann boundary condition, and compare the results.
The input is defined as a matrix. Each matrix has its own (i, j) vector value. So we
will use the dot product to multiply matrices together.
Discretization will be eliminated twice. First, as full-discretization by ruining the
Euler’s method (”a numerical method that can be used to approximate the solution
to an initial value problem with a differential equation”), we will run it manually
by using the mathematical Euler formula and a for loop to make it several times,
which will give us the ability to see changes in the value of the heat matrix.
Secondly, with the semi-discretization method, which will be introduced under the
DifferentialEquations.jl and DiffEqGPU.jl packages. These packages are inserted
into the Julia language and have a different number of algorithmic methods that we
will choose among them.
We aim to utilize the CUDA programming language to solve the heat equation.
As a hardware tool, the GTX 1050 Ti is used, and as a software language, the
Julia programming language, which is among the extensions of Atom, Visual Studio
Code, and Visual Studio Codium. All of these are open-source text and source code
editors, with which we got in touch during the period of the thesis.
We will run the computation twice: once on the motherboard by creating the system
on the central processing unit and once on the graphic card by using the CuArray
command to activate the graphic processing unit. Then see the differences in the
results. A comparison of efficiency and time cost will be made.

12 Chapter 1

Chapter 2

The Heat conduction

In section 2.1 of this chapter, we introduce the mathematical basics of partial dif-
ferential equations. In section 2.2, we discuss the analytical and numerical heat
conduction models. Finally, numerical integration methods are presented in section
2.3.

2.1 Partial differential equations

A partial differential equation, or simply a PDE, is a mathematical equation involv-
ing two or more independent variables, an unknown function depending on those
variables, and partial derivatives of the unknown function with respect to those
variables.

E(u) =

Z

Ω

f(x, u,∇u, dx)) (2.1)

where Ω ⊂ Rn. n is a domain, x = (x1, ..., xn), u = u(x) and ∇u = (ux1,uxn) and

ux1 =
∂u

∂x1

[8].

For linear PDEs in two dimensions there is a simple classification in terms of the
general equation Auxx + Buxy + Cuyy = f(x, y), where u = u(x, y).
The A, B and C coefficients are real and in general can also be functions of x and y
as

uxx =
∂2u

∂x2
second partial derivative relative to i-th inputs,

uxy =
∂2u

∂x∂y
second partial derivative relative to the i-th and j-th inputs,

uyy =
∂2u

∂y2
second partial derivative relative to j-th inputs.

This classification concept is local as it is function of x and y. If f(x, y) is zero
everywhere, then the linear PDE is homogeneous otherwise, it is in-homogeneous.
The PDEs of this type are classified by the value of discriminant ”Dλ” of the eigen-
value problem, where Dλ = B2 − 4AC. A simple classification is shown at table
2.1. Elliptic, parabolic, and hyperbolic partial differential equations of second order
have been widely studied since the beginning of the twentieth century.

13

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

Dλ Type Eigenvalues

Dλ < 0 Elliptic All positive or all negative.

Dλ = 0 Parabolic All positive or all negative, except one
that is zero.

Dλ > 0 Hyperbolic Only one negative eigenvalue and all the
rest are positive or vice versa.

Table 2.1: Coefficients of partial differential equation [9]

However, we focus on the parabolic PDE. By changing the independent variables,
parabolic equations can be turned into a form of heat equation.

∂u(x, t)

∂t
= α

∂2u(x, t)

∂x2
(2.2)

is a parabolic equation because it describes time-dependent and dissipative processes
such as diffusion that are evolving toward a steady state. Each of these classes should
be investigated separately as different methods are required for each. The next point
to emphasize is that the method for numerically solving differential equations.

Finite Difference

The PDE is to approximate all the derivatives by finite differences. We divide the
domain in space using a mesh x0, x1, ..., xN and in time using a mesh t0, t1, ..., tT .
First, we assume a uniform partition both in space and in time, so that the difference
between two consecutive space points will be ∆x and between two consecutive time
points will be △t like

xi = x0 + i∆x, i = 0, 1, · · · ,∆xN .

tj = x0 + j∆t, j = 0, 1, · · · ,∆tT .

The Taylor series method,consider a Taylor expansion of an analytical function u(x)

u(x+∆x) = u(x)+
∞X

n=1

∆xn

n!

∂nu(x)

∂xn
= u(x)+∆x

∂u

∂x
+
∆x2

2!

∂2u

∂x2
+
∆x3

3!

∂3u

∂x3
+· · · , (2.3)

then for the first derivative we obtain

∂u

∂x
=

u(x+∆x)− u(x)

∆x
− ∆x

2!

∂2u

∂x2
− ∆x

3!

∂3u

∂x3
− · · · . (2.4)

If we break the right-hand side of the last equation after the first term, for ∆x << 1.
The equation becomes

∂u

∂x
=

u(x+∆x)− u(x)

∆x
+O(∆x) =

∆iu

∆x
+O(∆x), (2.5)

14 Chapter 2

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

where

∆iu = u(x+∆x)− u(x) := ui+1 − ui

is called a forward difference. The backward expansion of the function f(u) and
∆x << 1 can be written as

∂u

∂x
=

u(x)− u(x−∆x)

∆x
+O(∆x) =

▽i u

∆x
+O(∆x) (2.6)

where

▽iu = u(x)− u(x−∆x) := ui − ui−1.

We can see that both forward and backward differences are of the order O(∆x). By
combining these two approaches, we derive a central difference, which yields a more
accurate approximation, if we subtract equation (2.5) from equation (2.6) we get

∂u

∂x
=

u(x+∆x)− u(x−∆x)

2∆x
+O(∆x2). (2.7)

The second derivative can be found in the same way by using the linear combination
of different Taylor expansions. For instance, consider

u(x+ 2∆x) = u(x) + 2∆x
∂u

∂x
+

(2∆x)2

2!

∂2u

∂x2
+

(∆x)3

3!

∂3u

∂x3
+ · · · (2.8)

subtracting from the last equation, equation (2.3) and multiplied by two we get

u(x+ 2∆x)− 2u(x+∆x) = −u(x) +∆x2
∂2u

∂x2
+∆x3

∂3u

∂x3
· · · . (2.9)

Hence we can approximate the second derivative as

∂2u

∂x2
=

u(x+ 2∆x)− 2u(x+∆x) + u(x)

∆x2
+O(∆x). (2.10)

Similarly one can obtain the expression for the second derivative in terms of back-
ward expansion like

∂2u

∂x2
=

u(x− 2∆x)− 2u(x−∆x) + u(x)

∆x2
+O(∆x). (2.11)

Expression for the central second derivative reads

∂2u

∂x2
=

u(x+∆x)− 2u(x) + u(x−∆x)

∆x2
+O(∆x2). (2.12)

This is a centred finite difference approximation with 2nd order accuracy. Thus,

approximation of ut(x, t) could be
un+1
i − un

i

∆t
with 1st order accuracy. Then the

PDE in equation can be discretized as

un+1
i − un

i

∆t
= α

un
i+1 − 2un

i + un
i−1

∆x2
. (2.13)

15 Chapter 2

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

The solution of PDEs involves arbitrary functions, Additional conditions are needed.
These conditions can be given in the form of initial and boundary conditions i,e.,

ut = kuxx (x, t) ∈ (0, L)× (0, Tf)

u(x, 0) = 0 IC

u(L, t) = 0 BC

(2.14)

Initial conditions (IC) define the values of the dependent variables at the initial
stage (e.g. at t = 0), whereas the boundary conditions (BC) give the information
about the value of the dependent variable or its derivative on the boundary of the
area of interest.

Boundary Condition

Boundary conditions are constraints that must be satisfied in order to solve a bound-
ary value issue. A boundary value problem is a differential equation (or system of
differential equations) that must be solved in a domain with a set of known condi-
tions on the boundary [10].
In Figure 2.1 Ω is the function domain, ∂Ω is the boundary of the domain.

Figure 2.1: Resolution domain and boundary [10]

There are five types of boundary conditions: Dirichlet, Neumann, Robin, Mixed,
and Cauchy, within which Dirichlet and Neumann are predominant and that what
we focus on.
Dirichlet boundary conditions may also be referred to as a fixed boundary condition.
In heat transfer problems, this condition corresponds to surface is held at a fixed
temperature. As an example, on a plate with Dirichlet boundary conditions, there
is heat transfer at the surface, while the surface remains at the temperature of the
phase change process. u(0, t) = v1(t), u(L, t) = v2(t) where v1(t) and v2(t) remain
at constant temperature.
Neumann boundary conditions represent the heat flux across the boundaries. When
imposed on an ordinary or a partial differential equation, the condition specifies the
values of the derivative applied at the boundary of the domain. In heat transfer
problems, prescribed heat flux from a surface would serve as a boundary condition.
If the flux is equal to zero, the boundary conditions describe the ideal heat insulator
with heat diffusion ux(0, t) = w1(t), ux(L, t) = w2(t) [11].

16 Chapter 2

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

2.2 Heat Equation

The heat equation is a partial differential equation that describes how heat moves
through a region over time.
Let u(−→x , t) represent the heat at a point −→x in n-dimensional space at time t, and
let u0(

−→x) = u(−→x , 0) be the initial distribution of heat.

Figure 2.2: Heat kernel [12]

In the simplest case, heat distributes over time according to the homogeneous heat
equation

∂u(−→x , t)

∂t
= α∇2u(−→x , t). (2.15)

For any set of time the heat equation can be defined as

∂u

∂t
= α

∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

+ · · ·+ ∂2u

∂x2
n

!
. (2.16)

A solution to the homogeneous heat equation can be used to construct solutions
to a more general in-homogeneous heat equation in which the right-hand in Equa-
tion 2.16 side includes an additional f(x, t) term that models heat sources or sinks.
Since the heat equation is defined with respect to continuous functions, but com-
puters operate only on discrete values, we look for an approximate solution to the
heat equation by discretizing space-time.

2.2.1 Discretization for one-dimensional case

Discretization is the method of converting continuous variables, models, or functions
into discrete ones. This procedure is typically used as the initial step in preparing the
heat equation for numerical evaluation and implementation on digital computers.
From Equation 2.13 displays the temperature change at every discretized space xi
in the one-dimensional body under consideration of the boundary conditions. The
boundary condition for both ends of the rod are fixed (Dirichlet boundary condition)
as u−1 = 0 and uNx+1 = 0. As the both value u−1, uNx+1 are imaginary points Nx
is the number of discretization points.

un+1
i − un

i

∆t
=

α

∆x2
(un

i+1 − 2un
i + un

i−1)

By applying the Forward in Time Central in Space Scheme (FTCS) where place the
time derivative by the forward differencing scheme and the space derivative by the
central difference scheme.

17 Chapter 2

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

un+1
i − un

i =
α∆t

∆x2
(un

i+1 − 2un
i + un

i−1) (2.17)

since

un+1
i = (

α∆t

∆x2
)un

i+1 + (1− 2
α

∆x2
)un

i + (
α

∆x2
)un

i−1 (2.18)

if we considered the θ =
α∆t

∆x2
The explicit nature of the difference method can then

be expressed in matrix

un+1
1

un+1
2

un+1
3

...

un+1
Nx−1

=

1− 2θ θ 0 0

θ 1− 2θ θ 0

0 θ 1− 2θ θ
.

.

0 θ 1− 2θ θ

0 0 θ 1− 2θ

un
1

un
2

un
3

...

un
Nx−1

.

(2.19)

For Neumann boundary condition. A boundary condition on the derivative ux is
given rather than a condition on the value of u itself. Now the boundary condition
is

ux(0, t) = w1(t), ux(L, t) = w2(t).

To approximate the Neumann Boundary Condition, we derive a second order ap-
proximation

u1 − u−1

2∆x
= w1(t),

ui+1 − ui−1

2∆x
= w2(t) (2.20)

u−1 and uNx+1 are imaginary points, we know un+1
0 is approximated by un

−1, u
n
0 and

un
1 . Also, u

n+1
Nx approximated by un

Nx−1, u
n
Nx and un

Nx+1.

un+1
0 = θun

−1 + (1− 2θ)un
0 + θnn

1 (2.21)

and

un+1
Nx = θun

Nx−1 + (1− 2θ)un
Nx + θUn

Nx+1. (2.22)

Now, use u−1 = u1 + 2w1(t)∆x and uNx+1 = uNx−1 + 2w2(t)∆x , According to
equation 2.20.

un+1
0 = θ(un

−1 − 2w1(t)∆x) + (1− 2θ)un
0 + θun

1 (2.23)

since

un+1
0 = 2θun

1 + (1− 2θ)un
0 − 2θw1(t)∆x (2.24)

then

un+1
0 + 2θw1(t)∆x = 2θun

1 + (1− 2θ)un
0 . (2.25)

18 Chapter 2

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

Similarly, we have the uNx approximation

un+1
i + 2θw2(t)∆x = 2θun

i + (1− 2θ)un
i−1 (2.26)

For the explicit method, we obtain the following system of equations

un+1
0

un+1
1

un+1
2

...

un+1
Nx

=

1− 2θ 1 + θ 0 0

θ 1− 2θ θ 0

0 θ 1− 2θ θ
.

.

0 θ 1− 2θ θ

0 0 1− 2θ 1 + θ

un
0 + 2θw1(t)∆x

un
1

un
2

...

un
Nx + 2θw2(t)∆x

(2.27)

We have this because

un+1
i = θun

i+1 + (1− 2θ)un
i + θun

i−1.

For i = 1, 2, ..., Nx− 1 we use the derived finite difference expression 2.21 and 2.22
for u0 and uNx.

2.2.2 Two-dimensional heat equation

In two dimensions, we have −→x = (x, y) and u(−→x , t) = u(x, y, t), in which case this
equation translates to

∂u(x, y, t)

∂t
= α(

∂2u(x, y, t)

∂x2
+

∂2u(x, y, t)

∂y2
). (2.28)

Suppose that in two dimensions we discretize the dimensions x, y, and t into points
spaced ∆x, ∆y, and ∆t apart, respectively. In the discretized space-time, each
integer tuple (i, j, n) ∈ Z3 corresponds to a point (x, y, t)) = (i∆x, j∆y, n∆t) in
continuous space.Because of the discretization, however, we can only compute a
function Un

i,j which is an approximation to the solution, that is,

Un
i,j ≈ α(u(i∆x, j∆y, n∆t)) (2.29)

Because the heat equation incorporates continuous derivatives, it must also be dis-
cretized. Approximating derivatives with finite-difference methods is a standard
technique. It turns out that one typical approximation for the first derivative with
regard to time for the heat equation is

∂u(x, y, t)

∂t
≈ α(

un+1
i,j − un

i,j

∆t
) (2.30)

and for the spatial second derivatives, a popular approximation is

∂2u(x, y, t)

∂x2
≈ α(

un
i−1,j − 2un

i,j + un
i+1,j

∆x2
). (2.31)

19 Chapter 2

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

function diffusion2d_x!(dx,x,Nx, Ny, dx)

for iy in 1 : Ny

for ix in 2 : Nx-1

i = (iy-1)*Nx + ix

dx[i] = (x[i-1] - 2*x[i] + x[i+1])/ dx^2

end

end

A simple loop in Julia that performs the x-axis diffusion, which shown in equation
2.31.

∂2u(x, y, t)

∂y2
≈ α(

un
i,j−1 − 2un

i,j + un
i,j+1

∆y2
). (2.32)

function diffusion2d_y!(dx,x,Nx, Ny, dy)

for ix in 1 : Nx

for iy in 2 : Ny-1

i = (iy-1)*Nx + ix

dx[i] = dx[i] + (x[i-Nx] - 2*x[i] + x[i+Nx])/dy^2

end

end

A simple loop in Julia that performs the computation in equation 2.32.
Substituting the approximations equation 2.31, equation 2.32 into equation 2.28.
we get

un+1
i,j − un

i,j

∆t
= α

un
i−1,j − 2un

i,j + un
i+1,j

∆x2
+

un
i,j−1 − 2un

i,j + un
i,j+1

∆y2

!
. (2.33)

Although u(x,y,t) and Un
i,j are functions that are conceptually defined everywhere,

we can only simulate a finite grid, that is, 0 ≤ i ≤ W and 0 ≤ j ≤ L for a finite
time 0 ≤ n ≤ Tf . The choice of the spatial steps ∆x and ∆y are determined by the
required spatial resolution. With the spatial steps set, the time step is limited by
the stability of the numerical approximation of the equation [13]

∂t ≤ ∆x2∆y2

2α(∆x2 +∆y2)
. (2.34)

Stencil Computations

A stencil is a geometric arrangement of a nodal group that relates to the point of
interest by using a numerical approximation routine. Stencils are the basis for many
algorithms to numerically solve PDE. Two examples of stencils are the five-point
stencil and the Crank–Nicolson method stencil. The term ”stencil” was coined for
such patterns to reflect the concept of laying out a stencil in the usual sense over a
computational grid to reveal just the numbers needed at a particular step [14][15].
The approximation scheme in equation 2.33 belongs to the stencil computation
category.
As we mentioned, to compute u at a point (i, j, n + 1) in step n + 1, we require

20 Chapter 2

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

five points from the previous time step n. A stencil is a set of points that must be
accessed in order to calculate a value at the next time step.

i,j

i,j+1

i+1,j

i,j-1

i-1,j

Visualization of the nodes

In a stencil computation, the computation of the value at a point (i,j) in space at
time step n requires only “local” values, that is, values from neighboring points of
(i,j) from a few previous time steps. In general, one can use other approximation
schemes for solving equation 2.28 besides equation 2.33. Many of these alternative
schemes can also expressed as stencil computations. For example, one can use a
higher-order approximation to derivatives, which would require a larger stencil.
A simple loop in Julia which we referred above shows a simple nested loop which
performs the stencil computation in equation 2.33 goes once by once for each value
of the heat matrix for time steps n ranging between t0 and t1. In this code, u(x, y, t)
conceptually stores the values for un

i,j in some abstract array data structure.

function diffuse!(u, a, dt, dx, dy)

dij = view(u, 2:M-1, 2:M-1)

di1j = view(u, 1:M-2, 2:M-1)

dij1 = view(u, 2:M-1, 1:M-2)

di2j = view(u, 3:M , 2:M-1)

dij2 = view(u, 2:M-1, 3:M)

end

The efficiency of the code with stencil depends on how we store the array for u. Since
the values of u at a time step n only rely on values from step n=1, Overlapping to
all values of the array, Winding numbers in array and slide that window and then
apply stencil throw multiply the number by over array with coefficient that come
with stencil add them all up and that gives us the u2

i,j value.

2.3 Numerical integration methods

The terms ”explicit” and ”implicit” are frequently used to describe numerical so-
lution approaches. The computation is said to be explicit when the dependent
variables may be directly computed in terms of known quantities. The numerical
method is implicit when the dependent variables are described by coupled sets of
equations and the solution requires either a matrix or an iterative procedure [16].
The main advantage of implicit solution methods, which are more difficult to im-
plement and demand more computational work in each solution step, is that they

21 Chapter 2

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

allow for larger time steps. A basic qualitative model will be used to demonstrate
how this works.
In brief, the advance of the pressure step in explicit methods must be limited to
less than one computational cell per time step. Implicit approaches, on the other
hand, use an iterative solution to connect all the cells and allow pressure signals to
be conveyed over a grid, so we will use explicit iterative methods to solve our heat
equation problem.

Figure 2.3: Explicit and Implicit graphs [17]

2.3.1 Euler method

Numerical methods can be used to approximate difficult–to–solve differential equa-
tions. look at one numerical method called the Euler’s Method. Euler’s method uses
the readily available slope information to start from the point (x0, y0) then move
from one point to the next (x1, y1) along the polygon approximation of the graph of
the particular differential equation to ultimately reach the terminal point (xn, yn)
As illustrated in the diagram 2.4.

Figure 2.4: Euler method graph [18]

Although interested in determining all of the points along with the differential equa-

22 Chapter 2

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

tion, it is often the case that the value of yn at the terminal point is of most interest.
More specifically, let y = f(x) be the solution to the differential equation.

dy

dx
= g(x, y) with y(x0) = y0 (2.35)

for x0 ≤ x ≤ xn, let xi + 1 = xi + h, where h =
xn − x0

n
and

yi+1 = yi + y(xi, yi)h, (2.36)

or 0 ≤ i ≤ n− 1, then
f(xi+1) ≈ yi+1 (2.37)

2.3.2 Midpoint method

In numerical analysis, a branch of applied mathematics, the midpoint method is a
one-step method for numerically solving the differential equation,

y′(t) = f(t, y(t)), y(t0) = y0. (2.38)

The explicit midpoint method is given by the formula

yn+1 = yn + hf

�
tn +

h

2
, yn +

h

2
f(tn, yn)

�
. (2.39)

2.3.3 Runge-Kutta methods

In the forward Euler method, we used the information on the slope or the derivative
of y at the given time step to extrapolate the solution to the next time step. Runge-
Kutta is a collection of methods. The n-order case requires s free parameters, one
for each stage of each implementation.

yn+1 = yn +
1

6
h(k1 + 2k2 + 2k3 + k4) (2.40)

where

k1 = f(tn, yn),

k2 = f(tn +
h

2
, yn + h

k1

2
),

k3 = f(tn +
h

2
, yn + h

k2

2
),

k4 = f(tn + h, yn + hk3).

k1 : is the slope at the beginning of the interval, using y (Euler’s method).
k2 : is the slope at the midpoint of the interval, using y and k1.
k3: is again the slope at the midpoint, but now using y and k2.
k4 : is the slope at the end of the interval, using y and k3.

23 Chapter 2

Chapter 3

Hardware and Software tools

In this chapter, we focus on the hardware and software tools that we use and the
packages that fulfill our needs to overcome the heat equation problem. In section 3.1
is a brief introduction to GPUs, Section 3.2 demonstrates how to use CUDA in C++
and Julia programming language to write a program that solves the two-dimensional
heat equation on a GPU core. While at the end of this chapter, sections 3.3 and 3.4
show how to use the DifferentialEquation.jl and DiffEqGPU.jl packages.

3.1 GPU Core

There was no need for a graphics card in the past when computers were only utilized
for basic tasks. However, as the popularity of computer gaming grew, there was a
huge need for graphics cards. Games today demand a massive quantity of graphics
that can’t be delivered by integrated graphics alone; of course, the graphics card is
the most vital component for any gamer.
A graphics card is not only useful for gaming, but it is also useful for a variety of other
tasks. This is especially useful for graphic design editing. These cards, however, are
not without flaws. It’s vital to weigh the benefits and drawbacks before installing
a graphics card. Much like a motherboard contains a central processing unit, a
graphics card refers to an add-in board that incorporates the graphics processing
chip or unit. This board also includes the raft of components required to both allow
the GPU to function and connect to the rest of the system figure 3.1.

Figure 3.1: Graphic Card Components [19]

24

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

Some of the most exciting applications for GPU technology involve AI and ma-
chine learning. Because GPUs incorporate an extraordinary amount of computa-
tional capability, they can deliver incredible acceleration in workloads that take
advantage of the highly parallel nature of GPUs, such as image recognition. Many
of today’s deep learning technologies rely on GPUs working in conjunction with
CPUs.

Figure 3.2: CPU vs GPU

In figure 3.2 the CPU on the left has several cores that share the same memory. The
GPU on the right has hundreds of cores, but all the cores share one device memory.
The main difference between CPU and GPU architecture is that a CPU is designed
to handle a wide range of tasks quickly (as measured by CPU clock speed) but is
limited in the concurrency of tasks that can be running. Here is a small comparison
between the GPU and the CPU In Table 3.1.

CPU GPU

Really fast caches (great for data reuse) Lots of math units

Fine branching granularity Fast access to on-board memory

Lots of different processes/threads Run a program on each fragment/vertex

CPUs are great for task parallelism GPUs are great for data parallelism

CPU optimised for high performance on
sequential codes (caches and branch pre-
diction)

GPU optimised for higher arithmetic in-
tensity for parallel nature (Floating point
operations)

Table 3.1: Comparison between CPU and GPU

Graphic processing unit is designed to quickly render high-resolution images and
video concurrently. Because GPUs can perform parallel operations on multiple sets
of data, they are also commonly used for non-graphical tasks such as machine learn-
ing and scientific computation. Designed with thousands of processor cores running
simultaneously, GPUs enable massive parallelism where each core is focused on mak-
ing efficient calculations.
It is a massively parallel architecture. Many problems can be solved quickly and
efficiently with GPU computing. A considerable number of arithmetic capabilities
are available on GPUs. They boost the pipeline’s programmability.

25 Chapter 3

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

Each GPU currently comes with up to four gigabytes of graphics double data rate
(GDDR) DRAM, referred to as global memory in figure 3.3. The GPU’s RAM is
distinct from the CPU’s since they serve as frame buffer memories for rendering
graphics.

Figure 3.3: GPU Block Diagram [20]

The architecture of a typical CUDA-capable GPU, It can be seen to be an array of
streaming processors capable of a high degree of threading.
In figure 3.4 SMs form a building block. However, the number of SMs in a building
block can vary from one generation of CUDA GPUs to another generation.
Also, Every SM has a number of streaming processors (SPs) that share control logic
and instruction cache.

Figure 3.4: schematic of NVIDIA GPU architecture [21]

They carry video pictures and texture information for three-dimensional render-
ing in graphics applications, but they also serve as very-high-bandwidth, off-chip
memory for computing, though with a slightly greater delay than standard system
memory. The larger bandwidth compensates for the long delay in massively parallel
applications.

26 Chapter 3

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

3.1.1 NVDIA GTX 1050 Ti

Nvidia’s GeForce 10 series of graphics processing units are based on the Pascal mi-
croarchitecture, which was first introduced in 2014. This design series superseded
the GeForce nine hundred series and was followed by the Turing microarchitecture-
based GeForce 16 and GeForce 20 series. In march 2014, the Pascal microarchi-
tecture, named after Blaise Pascal, was revealed as the Maxwell microarchitecture’s
replacement. The GeForce GTX 1080 and 1070, the series’ first graphics cards, were
announced on May 6, 2016, and released a few weeks later, on may 27 and June
10, respectively. The architecture uses either TSMC’s 16 nm FinFET technology
or Samsung’s 14 nm FinFET technology. Initially, only TSMC’s 16 nm technology
was used, but later chips were fabricated using Samsung’s newer 14 nm processes
(GP107 and GP108).

Figure 3.5: GTX 1050 Ti

The GTX 1050 Ti officially launched on 25th Oct.2016 under the code name GP107-
300-A1 and size 132 mm2. It has a core configuration of 768:48:32 and a core speed
of 1290 MHZ for the base core clock and 1392 MHZ for the boost core clock. The
bandwidth of the memory is 112 GB/s and the bus width is 128 bits with the
GDDR5 type. 1981 (2138) (boost) is a single processing power and 62 (72) (boost)
is double processing power. The GTX 1050 has been reduced to 2 GB GDDR5,
while the GTX 1050 Ti is even more generously equipped with 4 GB GDDR5 than
the 3 GB variant of the GeForce GTX 1060.

Model Memory (GB/s) Processing power (boost)

GT 1030(DDR4) 48 29(35)

GTX 1050 Ti 112 62(67)

GTX 1060 160 120(137)

Table 3.2: Comparison between different NVIDIA models

27 Chapter 3

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

3.2 CUDA

CUDA (Compute Unified Device Architecture) is NVIDIA’s GPU architecture fea-
tured in the GPU cards, positioning itself as a new means for general-purpose com-
puting with GPUs. The CUDA architecture is made up of three main pieces that
allow the programmer to fully utilize the graphics card’s computational capabilities.
The CUDA architecture splits the device into grids, blocks and threads in a hier-
archical structure as shown in figure 3.6. Since there are a number of threads in
one block, a number of blocks in one grid and a number of grids in one GPU, the
parallelism that is achieved using such a hierarchical architecture is immense.

Figure 3.6: Schematization of CUDA architecture [22]

A grid is a collection of threads that all execute the same kernel. There is no
synchronization between these threads. Every CUDA call from the CPU is routed
through a single grid. Asynchronous action starts a grid on the CPU, although
numerous grids can run at the same time. Grids cannot be shared between GPUs
in multi-GPU systems since they require many grids for maximum efficiency.
Blocks are used to make grids. Each block is a logical unit with a set of coordinating
threads and a certain quantity of shared memory. Blocks are not shared between
multiprocessors in the same way that grids are not shared between GPUs. The same
program is used by all blocks in a grid. To identify the current block, utilize the
built-in variable ”blockIdx.” Block IDs can be one or two-dimensional (based on
grid dimension). A GPU typically contains 65,535 blocks in each dimension.
Threads are used to make blocks. Threads execute on the multiprocessor’s individ-
ual cores, but unlike grids and blocks, they are not limited to a single core. Each
thread, like blocks, has a unique identifier (threadIdx). Thread IDs (depending on
block dimension) can be 1D, 2D, or 3D. The thread id is related to the block in
which it is located. The amount of register memory available to threads is limited.
In most cases, each block can have up to 512 threads. But as of March 2010, with
compute capability 2.x and higher, blocks may contain up to 1024 threads.

28 Chapter 3

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

Figure 3.7 shows how CUDA threads can access data from multiple memory spaces
during execution. Each thread has its own private memory. Each thread block has
a shared memory that is visible to all block threads and has the same lifetime as
the block. The global memory is shared by all threads.

Figure 3.7: CUDA Memory hierarchy [23]

The following memories are exposed by the GPU architecture.
Registers: These are private to each thread, which means that registers assigned
to a thread are not visible to other threads. The compiler makes decisions about
register utilization.
Global memory: Is a memory that can both read and write. It’s uncached and
sluggish, requiring sequential and aligned 16-byte reads and writes (coalesced read-
/write).
L1/Shared memory (SMEM): every SM has a fast, on-chip scratchpad memory that
can be used as an L1 cache and shared memory. All threads in a CUDA block can
share shared memory, and all CUDA blocks running on a given SM can share the
physical memory resource provided by the SM.
L2 cache: is shared across all SMs, so every thread in every CUDA block can access
this memory. The NVIDIA A100 GPU has increased the L2 cache size to 40 MB,
as compared to 6 MB in V100 GPUs.
Read-only memory (ROM): each SM has an instruction cache, constant memory,
texture memory and RO cache, which is read-only to kernel code.

3.2.1 C++ Programming Model

Figure 3.8 shows the CUDA programming model assumes that the CUDA threads
execute on a physically separate device that operates as a co processor to the host
running the C++ program. This is the case, for example, when the kernels execute
on a GPU and the rest of the C++ program executes on a CPU.
The CUDA programming model also assumes that both the host and the device

29 Chapter 3

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

maintain their own separate memory spaces in DRAM, referred to as host mem-
ory and device memory, respectively. Therefore, a program manages the global,
constant, and texture memory spaces visible to kernels through calls to the CUDA
run time. This includes device memory allocation and deal location as well as data
transfer between host and device memory. To execute any CUDA program, there
are three main steps. The first is the host-to-device transfer process, which copies
data from host memory to device memory. Then load the GPU program and ex-
ecute it, caching data on-chip for performance. The last step is the device-to-host
transfer process of copying results from device memory to host memory.

Figure 3.8: Heterogeneous Programming [4]

Every CUDA kernel starts with a global declaration specifier. By using built-in
variables, programmers provide a unique global ID to each thread. For conve-
nience, threadIdx is a 3-component vector, so that threads can be identified using
a one-dimensional, two-dimensional, or three-dimensional thread index, forming a
one-dimensional, two-dimensional, or three-dimensional block of threads, called a
thread block. This provides a natural way to invoke computation across the ele-
ments in a domain such as a vector, matrix, or volume. The CUDA programming
architecture creates a heterogeneous environment in which the host code executes a
C/C++ program on the CPU while the kernel executes on a physically distinct GPU
device. The CUDA programming paradigm also assumes that the host and device
have their own memory spaces, which are referred to as host memory and device
memory, respectively. To make programming easier, CUDA exposes several built-in
variables and offers multi-dimensional indexing flexibility. CUDA also manages reg-
isters, shared memory, L1 cache, L2 cache, and global memory, among other things.
Some of this memory can be used effectively by advanced developers to optimize the
CUDA program.

30 Chapter 3

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

3.2.2 Julia Programming Model

CUDA.jl is a github organization created to unify the many packages for program-
ming graphic processing units in Julia. With its high-level syntax and flexible com-
piler, Julia is well-positioned to productively program hardware accelerators like
GPUs without sacrificing performance.
The Julia CUDA stack requires that users have a working NVIDIA driver and a
CUDA toolkit which is needed to develop GPU-accelerated applications. Toolkit
includes GPU-accelerated libraries, a compiler, development tools, and the run-
time.
To use CUDA.jl, we need a computer with a compatible GPU and to have installed
CUDA. we should also install the following packages using Julia’s package manager.

pkg> add CUDA

pkg> test CUDA

The simplest method to make use of the GPU’s tremendous parallelism is to define
operations as arrays. CUDA.jl has an array type, CuArray, as well as several spe-
cialized array operations that run quickly on the GPU hardware. CuArrays are fully
functional GPU arrays that can significantly outperform traditional arrays without
requiring any code changes. Julia completely implements CuArrays, making the
implementation both elegant and generic.

A = CuArrayInt(undef,1024)

A is a matreix with undefined values with 1024 cells Primarily, it is used to manage
GPU memory, and copy data from and back to the CPU.

B = zeros(M,M)

B-GPU = CuArray(convert(Array{Float32}, B))

The CPU can assign jobs to the GPU and then go do other stuff (such as assigning
more jobs to the GPU) while the GPU completes its tasks. Wrapping the execution
in a CUDA.@sync block will make the CPU block until the queued GPU tasks are
done, similar to how Base.@sync waits for distributed CPU tasks. Without such
synchronization, we’d be measuring the time it takes to launch the computation,
not the time it takes to perform the computation. But most of the time, we don’t
need to synchronize explicitly: Many operations, like copying memory from the GPU
to the CPU, implicitly synchronize execution [24].

function add-broadcast!(y, x)

CUDA.@sync y .+= x

return

end

To overcome the cost of launching kernels, CUDA makes it possible to build com-
putational graphs, and execute those graphs with less overhead than the underlying
operations [25].

A = CUDA.zeros(Int, 1)

A .+= 1

graph = capture() do

A .+= 1

end

31 Chapter 3

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

3.3 DifferentialEquation.jl

This is a suite for numerically solving differential equations written in Julia and
available for use in Julia, Python, and R. The purpose of this package is to supply
efficient Julia implementations of solvers for various differential equations [26].
To install the package, use the following command inside the Julia REPL

Pkg.add("DifferentialEquations")

and to load the package

using DifferentialEquations

If we have a model, This model says that the rate of change is proportional to the
current value with 0.98 so we can get through it by

f(u,p,t) = 0.98u

where p is the parameters and t is the time span and we consider time span on this
model from t=0.0 to t=1.0.
As we explained at chapter2 we need an Initial condition

u0 = 1.0

tspan = (0.0,1.0)

If we want to introduce this model, then we define an ODEProblem by specifying
this function f , this initial condition u0, and this time span as

prob = ODEProblem(f,u0,tspan)

To solve our ODEProblem we use the command solve.

sol = solve(prob)

Controlling the Solver

DifferentialEquations.jl has a common set of solver controls among its algorithms,
which can be found at reference number [27]. We can also turn off all intermediate
savings. by using save everystep=false.
To control the tolerance abstol=1e-xx and reltol=1e-xx are used.
There is a trade-off between accuracy and speed, so determining what the right
balance depends on the problem.
when saveat is used, the continuous output variables are no longer saved, and thus
sol(t), the interpolation, is only first order. As an example saveat=[0.2,0.7,0.9] so
solver will go only through these values.
If we need to reduce the amount of savings, we can also turn off the continuous
output directly via dense=false.
There is no best algorithm for numerically solving a differential equation. When we
call to solve the problem, DifferentialEquations.jl makes a guess at a good algorithm
for our problem, given the properties that we ask for (the tolerances, the saving
information, etc.). However, in many cases, we may want more direct control. As an
example, we want to use the Euler method to solve one-dimensional heat conduction

sol = solve(prob, Euler(), dt=t, save_everystep=false).

And for two dimensional heat case

sol = solve(prob, Tsit5(), dt=t, progress=true, save_start=true).

32 Chapter 3

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

3.4 DiffEqGPU.jl

This library is a component package of the DifferentialEquations.jl ecosystem. It
includes functionality for making use of GPUs in the differential equation solvers
[28].
DiffEqGPU.jl is compatible with all array operations take place on the GPU, in-
cluding any implicit solves. The native Julia libraries, including (but not limited to)
OrdinaryDiffEq, StochasticDiffEq, and DelayDiffEq, are compatible with u0 being a
CuArray. When this occurs, all array operations take place on the GPU, including
any implicit solves. This is independent of the DiffEqGPU library. These speedup
the solution of a differential equation which is sufficiently large or expensive. This
does not require DiffEqGPU.jl. To insert the DiffEqGPU package on Julia REPL

julia>]

pkg> add DiffEqGPU

To load it

using DiffEqGPU

Here is other model which defined the problem by using CuArray

using OrdinaryDiffEq, CUDA, LinearAlgebra

u0 = cu(rand(1000))

A = cu(randn(1000,1000))

f(du,u,p,t) = mul!(du,A,u)

then define our problem as function

f(du,u,p,t) = mul!(du,A,u)

the last step use the ODEProblem and solve commands to get the results.

prob = ODEProblem(f,u0,(0.0f0,1.0f0)) # Float32 is better on GPUs!

sol = solve(prob)

Parameter-parallel GPU methods are provided for the case where a single solve is
too cheap to benefit from within-method parallelism, but the solution of the same
structure is required for very many different choices of u0 or p.
For these cases, DiffEqGPU exports the following ensemble algorithms EnsembleG-
PUArray which it utilizes the CuArray setup to parallelize ODE solves across the
GPU and EnsembleCPUArray is a test version for analyzing the overhead of the
array-based parallelism setup.

33 Chapter 3

Chapter 4

Implementation

In the current chapter, Implementation of heat conduction computations at both
cores are described. In section 4.1, simulation of the semi-discretized one-dimensional
heat equation with Dirichlet and Neumann boundary conditions is discussed. In sec-
tion 4.2, simulation of the full and semi-discretized two-dimensional heat equations
is also performed, with both boundary conditions.

4.1 One-dimensional heat equation

By applying a heat cell with a temperature of 500 K somewhere on a homogeneous
rod with length L, we need to discretize the rod into a grid as we explained in
chapter 2. The characteristics of the rod are shown in table 4.1.

Parameters Symbol Value

Diffusivity α 0.0001 m2/s

Length L 0.5 m

Number of grid points M 66 points

x-grid spacing ∆x 7.69 mm

Largest stable time step ∆t 2.95 s

Heat cell u[28:38] 500 k

Table 4.1: Simulation Parameters

4.1.1 CPU computation by semi-discretization

We define M-matrix with a zero value on the CPU core. Then we apply the heat
source someplace on the heat matrix.
By creating a function that has the role of applying a stencil computation, which
windows all nodes, slides all of them, and applies a pattern (the diffusion of the
heat cell) and set the boundary condition. We know that the one-dimensional heat
equation is not a massive equation, that is the reason which makes us leave the
DifferentialEquations package choose the algorithmic method to solve our problem.
Because we know that the one-dimensional heat equaftion is not a massive equation,

34

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

we let the DifferentialEquations package choose the best solver for us.

Figure 4.1: The solution algorithm

We can see from a figure 4.1, that the solver used two methods, the Tsit5 and Rosen-
brock23, as the best choices to solve our problem. It is a good choice for very large
systems (greater than 1000 ODEs).
The time span is limited from zero to one hundred mile seconds.

Figure 4.2: One-Dimensional Semi-Discretization on CPU with DBC

35 Chapter 4

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

Each graph describes a stage in the heat diffusion system. Starting from stage
one, which shows applying the heat cell suddenly, and by going throw the stages
one by one we can see how the heat spread along the rod.
We notice how the boundary of rods stays constant according to the Dirichlet bound-
ary condition, where we fixed the temperature to be zero kelvin at the beginning
and end of the rod. The results are visualized by the Makie.jl package. Makie.jl
is a data visualization ecosystem for the Julia programming language, with high
performance and extensibility [29].

By Changing the boundary condition from a fixed boundary condition to a Neu-
mann boundary condition

Figure 4.3: One-Dimensional Semi-Discretization on CPU with NBC

As we can observe the change on the boundaries of the rod, it started from a tem-
perature of zero kelvin until it reached a temperature of fifty-nine kelvin on the left
side of the rod and forty-eight kelvin on the right side. Graph is increased from
the left side than the right side as the heat cell is given at the end of the rod not
at the center. As from sixty sixty steps, the heat was applied from twenty-eight to
thirty-eight and the reason is that we wanted to see the difference clearly.

36 Chapter 4

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

4.1.2 GPU computation by semi-discretization

Computations of the system are switched from the central processing unit to the
graphic processing unit. To access the GPU, we defied our array as a float 32 cu-
array. It is recommended to use Float32 consistently for the dependent variable,
parameters, and time on the GPU, especially on consumer-grade hardware.

u=CUDA.zeros(M)

u_GPU[28:38] .= 500f0

Creating the system using CUDA.zeros and defining our heat cell as a tempera-
ture of 500 degrees kelvin somewhere on the rod By Selecting the the time span
to be tspan = (0f0, 100f − 2) and using both package DifferentialEquations and
DiffEqGPU. Our problem defined as.

using DifferentialEquations, DiffEqGPU

prob = ODEProblem(diffuse!, u_GPU, tspan)

sol =solve(prob)

Here are the outcomes.

Figure 4.4: One-Dimensional Semi-Discretization on GPU with DBC

37 Chapter 4

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

After changing the boundary condition from a fixed boundary condition to a
Neumann boundary condition, We received the data as follows:

Figure 4.5: One-Dimensional Semi-Discretization on GPU with NBC

As expected, we received the same data from the GPU with the same kind of
explicit algorithms. But the variation is in the time that we received the data on it.
In this case, the CPU was faster than the GPU. The problem is too small for GPU.

38 Chapter 4

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

4.2 Two-dimensional heat equation

With the same technique, we used on a one-dimensional case, Applying a heat source
with temperature 500 K somewhere on a homogenise surface area with length L and
width W. The characteristics of the samples depend on the purpose of the process.
We use our samples to do full and semi discretization with Dirichlet and Neumann
boundary condition by both cores.

Parameters Symbol Sample-one Sample-two

Diffusivity α 0.0001 m2/s 0.0001 m2/s

Width W 0.4 m 0.6 m

Length L 0.5 m 0.8 m

Numbers of grids x-axis Nx 60 points 60 points

Numbers of grids y-axis Ny 66 points 80 points

x-grid spacing ∆x 8.47 mm 13.5 mm

y-grid spacing ∆y 6.15 mm 7.59 mm

Largest stable time step ∆t 0.123 s 0.219 s

Heat cell u[23:35, 28:38] 500 K 500 k

Table 4.2: Simulation Parameters

4.2.1 CPU computation by full-discretization

The sample-one which has a surface area of 0.5 m × 0.4 m. The disassembly is 60
steps in the x-direction and 66 steps in the y-direction. We define a Nx×Ny matrix
with a zeros values on CPU core, Applying a the heat source somewhere on the
plate as

u= zeros(Nx,Ny)

u[23:35, 28:38] .= 500.

Run the diffuse function 1000 times, which has the role of applying a stencil com-
putation on the x-axis and y-axis, The for-loop lets the heat spread all over the
plate.

for i in 1:1000 ; diffuse!(u, a, dt, dx, dy) end.

Set the boundaries of the plate at temperature equal to zero kelvin (Dirichlet bound-
ary condition).

39 Chapter 4

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

Figure 4.6: Two-Dimensional Full-Discretization on CPU with DBC

We can notice that the heat does not go out of the system. The system is com-
pletely isolated from the surrounding atmosphere.
After changing the boundary condition from Dirichlet boundary condition to Neu-
mann Condition and makes our system bigger by increasing the length of the plate.
The sample is switched now too second sample.

@. u[1, :] += a * dt * (2*u[2, :] - 2*u[1, :])/dx^2

@. u[Nx, :] += a * dt * (2*u[Nx-1, :] - 2*u[Nx, :])/dx^2

@. u[:, 1] += a * dt * (2*u[:, 2]-2*u[:, 1])/dy^2

@. u[:, Ny] += a * dt * (2*u[:, Ny-1]-2*u[:, Ny])/dy^2

This is part of the diffuse function, The role of it to update boundary condition to
Neumann bc after apply diffusion of the heat cells.

40 Chapter 4

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

The results of full discretization are as follows.

Figure 4.7: Two-Dimensional Full-Discretization on CPU with NBC

It is noticed as the heat goes out of the system. The system is not isolated anymore.
Each stage shows how the heat spreads all over the plate. The last stage shows
how the heat goes out of the system. It is sifted to the right because the heat cell
is applied at range 30:40 in x-direction and from 35 to 45 at y-direction, which is
oblique to the right on the x-axis and is at the center of the y-axis.

41 Chapter 4

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

4.2.2 GPU computation by full-discretization

Here we wanted to transfer our system from the CPU core to the GPU and see if
we would receive the same data or not.
We define a zero NX × Ny-matrix on GPU core, applying the heat source somewhere
on the with surface area 0.4m × 0.5m as we did on the case of Dirichlet boundary
condition on CPU(Sample-one).

u_GPU = CUDA.zeros(Nx,Ny)

u_GPU[25:35, 28:38] .= 500

Here is the way to explain how we adjust the temperature of outlines to zero kelvin.

temp_left = 0

temp_right = 0

temp_bottom = 0

temp_top = 0

@. u[1, :] = temp_left

@. u[Nx, :] = temp_right

@. u[:, 1] = temp_bottom

@. u[:, Ny] = temp_top

The result are shown as follows.

Figure 4.8: Two-Dimensional Full-Discretization on GPU with DBC

We obtain the same implementation as we received it from the center processing

42 Chapter 4

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

unit by adapting the factors and samples to be identical on both cores.
For Neumann boundary condition. Our model (0.6m × 0.8m) would be set as the
CPU case, and the reason that we want to make the compere the results between
the data which we received from CPU and and the data which we received it from
GPU.

W = 6f-1 # Width

L = 8f-1 # Length

Nx = 60 # No.of grids in x-axis

Ny = 80 # No.of grids in y-axis

u_GPU= CUDA.zeros(Nx,Ny) # Heat matrix

@. u_GPU[30:40, 35:45] = 500 # Heat cell

The result are shown as follows.

Figure 4.9: Two-Dimensional Full-Discretization on GPU with NBC.

As expected, the results on both cores are similar to the full-discretization with-
out using any packages. The difference is at the boundary of Dirichlet, where the
boundary is fixed at zero Kelvin. However, the boundary changes in Neumann
boundary condition.

43 Chapter 4

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

4.2.3 CPU computation by semi-discretization

Semi-discretization proofs it is efficiency than the full-discretization as on CPU we
had used many algorithmic method to get our implementation.
Here to code our problem we needed to add other variable to store the process of
difusion on it dijij = view(du, 2:Nx-1, 2:Ny-1).
After fixed the boundary condition to Dirichlet boundary condition. we define the
problem as prob = ODEProblem(diffuse!, u, tspan) with time span tspan = (0.0,
100.0).
We didn’t do our computation manually as in full-Discretization. we used the Euler
method which is inserted already at DifferentialEquations package.

using DifferentialEquations, DiffEqGPU

tspan = (0.0, 100.0)

prob = ODEProblem(diffuse!, u, tspan)

sol = solve(prob, Euler(), dt=t, save_everystep=false)

Here is our result

Figure 4.10: Two-Dimensional Semi-Discretization on CPU with DBC

44 Chapter 4

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

For Neumann boundary condition we used Tsit5 to get the results.

Figure 4.11: Two-Dimensional Semi-Discretization on CPU with NBC

Here are some of our algorithms that run at high efficiency on the CPU.

@time sol = solve(prob, Euler(), dt=t) # 2.65 seconds

@time sol = solve(prob, Tsit5(), dt=t) # 1.25 seconds

@time sol = solve(prob,BS3(), dt=t) # 1.86 seconds

@time sol = solve(prob, Midpoint(), dt=t) # 1.21 seconds

@time sol = solve(prob,Ralston(), dt=t) # 1.064 seconds

The native OrdinaryDiffEq.jl algorithms are vastly more efficient than the other
choices. Euler is a first-order explicit Runge-Kutta method solver, A-B-L-stable
and explicit FSAL Runge-Kutta method [30]. Midpoint is a parallelized explicit
extrapolation method. Midpoint extrapolation using Barycentric coordinates [31].
Ralston is explicit Runge-Kutta Method. It is optimized second order midpoint
method. Uses embedded Euler method for adaptive. BS3 is a third-order, four-stage
explicit FSAL Runge-Kutta method with embedded error estimator of Bogacki and
Shampine [32] [33]. Tsit5 has a high efficiency, when more robust error control is re-
quired. It is a fourth-order, five-stage explicit Runge-Kutta method with embedded
error estimator of Tsitouras. Free 4th order interpolant [34].

45 Chapter 4

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

4.2.4 GPU computation by semi-discretization

We transmit our system from CPU core to the GPU and analysis the properties of
the system.
After introducing the system to the graphics card, especially the graphic processing
unit. We receive this result under the Dirichlet boundary condition.

Figure 4.12: Two-Dimensional Semi-Discretization on GPU with DBC

The first stage shows the heat cell without any diffusion yet. The black spots start to
change in the second stage from black to dark blue and from dark blue to purple in
all directions (360· on the surface) till they reach their highest degree, which we refer
to as the yellow color. On the third stage, the heat spot will increase without getting
out and with time passing till we reach stage number four, where the yellow spot
will keep spreading till it covers all the plates without losses on the system. The sys-
tem is well isolated. We consider this an ideal case that will never happen in real life.

46 Chapter 4

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

The results are shown as follows for the Neumann boundary condition.

Figure 4.13: Two-Dimensional Semi-Discretization on GPU with NBC

Here is some of our algorithmic methods which is working at a high efficiency on
the GPU.

@time sol = solve(prob, Euler(), dt=t) # 1.2 seconds

@time sol = solve(prob, Tsit5(), dt=t) # 0.94 seconds

@time sol = solve(prob,RK4(), dt=t) # 1.23 seconds

@time sol = solve(prob, SSPRK22(), dt=t) # 1.15 seconds

@time sol = solve(prob,AitkenNeville(), dt=t) # 2.5 seconds

For medium accuracy calculations, RK4 is a good choice. RK4 The canonical
Runge-Kutta Order 4 method. Uses a defect control for adaptive stepping and
maximum error over the whole interval [30].
SSPRK22 is the two-stage, second order strong stability preserving (SSP) method
of Shu and Osher (SSP coefficient 1, free 2nd order SSP interpolant). Fixed timestep
only [35]. AitkenNeville parallelized explicit extrapolation method Euler, extrap-
olation using Aitken-Neville with the Romberg Sequence [36].

47 Chapter 4

Chapter 5

Conclusion

In this research, we were interested in the data processing of heat equations by using
a high-performance programming language. We studied heat analysis theory, the fi-
nite difference method, and discretization analysis for partial differential equations.
Within the scope of the presented work, we tried to work on three axes, First
axis to compere between the quality of the result by semi discretization and in full
discretization methods. From the result the semi discretization is more efficient
numerical method that provides a finite-dimensional matrix approximation of the
infinite-dimensional monodromy matrix.
The second axis was the boundaries. Once we specified the boundaries at zero
Kelvin, this method is called the Dirichlet boundary condition, which makes the
system completely isolated from the surrounded area. In the second case, we used
the Neumann boundary condition and sighted how the heat flows out of the system
to the temperature median.
The third axis was the computational costs which took place on the mother board,
especially at the center processing unit, for the time of computation that happened
at the graphic card, especially the graphic processing unit. We reach the conclusion
that GPUs have thousands of cores, proving their capability in massive systems
that need to do thousands of ”stuff” in parallel. So in the one-dimensional case, the
actual kernels that are called are slower on the GPU than on the CPU. But when
we switched to the two-dimensional case, the cores of the GPU were faster than the
CPU’s cores.
We used two methods to access and go through each cell in the heat matrix sten-
cil computation and for-for-loop. We get in touch with the Euler and Rung-Kutta
methods, which are inserted in the DifferentialEquation.jl package.
The Makie.jl library is used to visualize the results and it is GPU stable.
GPUs have hundreds or thousands of tiny cores dedicated to a single task, such
as image processing and data analysis. Face recognition, video surveillance, au-
tonomous driving, automated visual inspection, machine learning, and other edge
AI computing applications will all benefit from the GPU computer.
Computing with GPU is a vast subject that requires a plethora of words to express
how beneficial it is to our industrial revolution.
The three-dimensional systems are not compatible with the GPU core and with the
last version of the code we have. The functionality of the GPU can be tested more
by a three-dimensional heat equation as GPUs have an advantage in solving the
heat equation.

48

Appendix A

Data Samples

A.1 CPU Analysis

Figure A.1: One-dimensional computational costs on CPU

49

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

Figure A.2: Two-dimensional computational costs on CPU

50 Chapter A

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

A.2 GPU Analysis

Figure A.3: One-dimensional computational costs on GPU

51 Chapter A

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

Figure A.4: Two-dimensional computational costs on GPU

52 Chapter A

Bibliography

[1] M. Chiappetta. “Nvidia geforce gtx 1050 and gtx 1050 ti review: Low power,
low price pascal.” (2016), [Online]. Available: https://hothardware.com/
reviews/nvidia-geforce-gtx-1050--1050-ti-review.

[2] Nvidia. “Geforce gtx 1050 ti.” (2022), [Online]. Available: https://www.
nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1050-ti/

specifications/.

[3] N. Sonawane and B. Nandwalkar, r. Time Efficient Sentinel Data Mining using
GPU. 2015, https://www.ijert.org/time-efficient-sentinel-data-
mining-using-gpu.

[4] NVIDA. “Cuda c++ programming guide, the programming guide to the cuda
model and interface.” (2022), [Online]. Available: https://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.html.

[5] M. Jill Reese and S. Zaranek. “Gpu programming in matlab.” (2015), [Online].
Available: https://www.mathworks.com/company/newsletters/articles/
gpu-programming-in-matlab.html.

[6] A. Rege. “Modern gpu architecture.” (2015), [Online]. Available: http://
download.nvidia.com/developer/cuda/seminar/TDCI_Arch.pdf.

[7] D. C. B. Sobhan. “Modeling of flow and heat transfer in micro heat pipe.”
(2020), [Online]. Available: https : / / rpi . edu / dept / cct / public % 20 /

TwoPhaseHeatTransferLab/research/mfht/mfht.html.

[8] E. Miersemann, ” Partial Differential Equations,” chapter 1 ”Introduction”.
2012, https://www.math.uni-leipzig.de/~miersemann/pdebook.pdf.

[9] L. Evans, Partial differential equations, Graduate Studies in Mathematics.
Americal Mathmatical society, May 1998.

[10] Simscale. “Boundary conditions.” (2021), [Online]. Available: https://www.
simscale.com/docs/simwiki/numerics-background/what-are-boundary-

conditions/.

[11] J. Randall and LeVeque, ” Finite Difference Methods for Ordinary and Partial
Differential Equations. 2007, http://sgpwe.izt.uam.mx/files/users/
uami/mlss/documentos/LeVequeRJ.pdf.

[12] North-Holland, Handbook of Numerical Analysis, Numerical analysis part A.
2022, https://www.ijert.org/time-efficient-sentinel-data-mining-
using-gpu.

[13] ENCCS. “Solving heat equation with cuda.” (2020), [Online]. Available: https:
/ / enccs . github . io / OpenACC - CUDA - beginners / 2 . 02 _ cuda - heat -

equation/.

53

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

[14] H. Emmons, ”The numerical solution of partial differential equations”. 1944,
https://www.ams.org/journals/qam/1944-02-03/S0033-569X-1944-

10680-3/S0033-569X-1944-10680-3.pdf.

[15] W. E. Milne, ”T Numerical solution of differential equations”. 1953, https:
//www.worldcat.org/title/numerical- solution- of- differential-

equations/oclc/527661.

[16] R. S. U.M. Ascher S.J. Ruuth, ”Implicit-Explicit Runge-Kutta Methods for
Time-Dependent Partial Differential Equations”. 1997, http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.48.1525&rep=rep1&type=

pdf.

[17] C. Obbink-Huizer. “Implicit vs explicit finite element analysis: When to use
which?” (2021), [Online]. Available: https://info.simuleon.com/blog/
implicit-vs-explicit-finite-element-analysis.

[18] M. Bourne. “Euler’s method - a numerical solution for differential equations.”
(2021), [Online]. Available: https://www.intmath.com/differential -
equations/11-eulers-method-des.php.

[19] pctechguide. “Graphic card components.” (2022), [Online]. Available: https:
//www.pctechguide.com/graphics-cards/graphic-card-components.

[20] . “Graphics processing unit architecture.” (2021), [Online]. Available: http:
//ouhks260fminiproject.blogspot.com/2011/01/graphics-processing-

unit-architecture.html.

[21] P. Fritzson. “Simplified schematic of nvidia gpu architecture, consisting of a
set of streaming multiprocessors (sm).” (2012), [Online]. Available: https://
www.researchgate.net/figure/Simplified-schematic-of-NVIDIA-GPU-

architecture-consisting-of-a-set-of-Streaming_fig1_271848367.

[22] A. Lippert. “Nvidia gpu architecture for general purpose computing.” (2012),
[Online]. Available: https://developer.nvidia.com/blog/cuda-refresher-
cuda-programming-model/.

[23] P. Gupta. “Cuda refresher: The cuda programming model.” (2020), [Online].
Available: https://developer.nvidia.com/blog/cuda-refresher-cuda-
programming-model/.

[24] github. “Cuda programming in julia.” (2021), [Online]. Available: https://
cuda.juliagpu.org/stable/tutorials/introduction/.

[25] T. Besard. “Cuda.jl 3.3.” (2021), [Online]. Available: https://www.juliabloggers.
com/cuda-jl-3-3/.

[26] C. Rackauckas. “Differentialequations.jl: Scientific machine learning (sciml)
enabled simulation and estimation.” (2022), [Online]. Available: https://
diffeq.sciml.ai/stable/#DifferentialEquations.jl:- Scientific-

Machine-Learning-(SciML)-Enabled-Simulation-and-Estimation.

[27] A. Koskela. “Ode solvers.” (2015), [Online]. Available: https://diffeq.
sciml.ai/stable/solvers/ode_solve/.

[28] ChrisRackauckas. “Diffeqgpu.” (2015), [Online]. Available: https://github.
com/SciML/DiffEqGPU.jl.

54 Chapter A

Simulation of two-dimensional heat conduction in Julia programming language using CUDA

[29] T. Lienart. “Welcome to makie.” (2022), [Online]. Available: https://makie.
juliaplots.org/stable/.

[30] E. Kreyszig. “Advanced engineering mathematics.” (2001), [Online]. Avail-
able: https://www.academia.edu/36591990/Kreyzig_12th_Advanced_
Engineering_Mathematics_10th_Edition_pdf.

[31] F. A.Haight. “Mathematics in science and engineering.” (1971), [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/S007653920863012X.

[32] F. I. M.A. Demba. “A four-stage third-order symplectic explicit trigonometrically-
fitted runge–kutta–nystrom¨ method for the numerical integration of oscil-
latory initial-value problems.” (2016), [Online]. Available: https : / / www .

researchgate . net / publication / 311571860 _ A _ four - stage _ third -

order_symplectic_explicit_trigonometrically-fitted_Runge-Kutta-

Nystrom_method_for_the_numerical_integration_of_oscillatory_

initial-value_problems.

[33] P. BOGACKI and L. F. SHAMPINE. “An efficient runge-kutta (4,5) pair.”
(1996), [Online]. Available: https://core.ac.uk/download/pdf/81941641.
pdf.

[34] D. Boffi. “Computers mathematics with applications.” (2022), [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/S0898122111004706.

[35] D. I. K. Sigal Gottlieb and Chi-Wang. “Strong stability preserving runge-
kutta and multistep time discretizations.” (2011), [Online]. Available: https:
//books.google.de/books?id=MHmAINTBIkQC&printsec=frontcover&dq=

explicit+strong+stability+preserving&hl=ar&sa=X&redir_esc=y#v=

onepage&q=explicit%20strong%20stability%20preserving&f=false.

[36] E. Hairer. “Solving ordinary differential equations i nonstiff problems.” (2008),
[Online]. Available: https://www.google.de/books/edition/Solving_
Ordinary_Differential_Equations/cfZDAAAAQBAJ?hl=en&gbpv=0.

55 Chapter A

