
Parameter Identification of Controlled
Heat Conduction

Bachelor Thesis

E-mobility and Green Energy (B.Eng)
Ravensburg-Weingarten University of Applied Sciences

Harshit Isamaliya
Matriculation Number: 33468

Prof. Dr.-Ing. Lothar Berger (First Reviewer)
Herr Stephan Scholz (M.Sc.) (Second Reviewer)

September 2024

Abstract

This thesis focuses on investigating the identification of parameters in controlled heat
conduction within one-dimensional rods. The main focus is on estimating thermal conduc-
tivity (𝜆) and controller gain (𝐾𝑝) through the utilization of open-loop and closed-loop
systems. A proportional controller (P-Controller) is utilized in the closed-loop setup to
achieve target temperatures.

The methodology involves solving the forward problem to model heat conduction and
solving the inverse problem to estimate the parameters. Three optimization techniques,
specifically Nelder-Mead, Conjugate Gradient, and Newton’s Method, are utilized for this
purpose. To address system noise, Gaussian noise is introduced to replicate real-world
industrial conditions, contrasting with noiseless, idealized simulations. The study compares
various sensor configurations to determine the necessary number of sensors to accurately
determine , particularly in the presence of noise.

The findings indicate that increasing the number of sensors and implementing suitable
optimization techniques significantly improves estimation accuracy in noisy environments.
This study provides valuable insights into sensor placement and optimization techniques,
making the proposed methodology highly applicable for improving the accuracy and
efficiency of industrial heat conduction systems.

Contents

DECLARATION ii

Abstract iii

Contents iv

1 Introduction 1

2 Mathematical Model and Problem Formulation 3
2.1 Description of the Physical System . 3

2.1.1 Heat Equation . 3
2.1.2 Neumann boundary condition . 4

2.2 Spatial Discretization . 5
2.2.1 Discretization Approach . 5
2.2.2 Central Difference Method . 5
2.2.3 Semi-Discrete Heat Equation . 6

2.3 Boundary Conditions . 6
2.4 Matrix Form of the Discretized System . 7
2.5 Initial Conditions . 8
2.6 The final matrix system . 9
2.7 Solvers . 9
2.8 Gaussian Noise . 10

3 Controller Design and System Dynamics 11
3.1 Open-loop System . 11

3.1.1 Open-Loop Dynamic . 11
3.1.2 System Behavior . 12
3.1.3 Limitations of Open-Loop Control 12

3.2 Closed Loop System with Proportional Control 13
3.2.1 Closed-Loop Dynamic . 13
3.2.2 P-Controller . 13
3.2.3 Behaviour of a P-Controller . 14

4 Parameter Identification Using Inverse Methods 16
4.1 Inverse Problem Formulation . 16

4.1.1 Forward and Inverse Problem . 16
4.1.2 Loss Function . 18

4.2 Optimization Methods . 20
4.2.1 Nelder Mead Method . 20
4.2.2 Conjugate Gradient Method . 21
4.2.3 Newton’s Method . 22

4.3 Automatic differentiation . 23
4.3.1 Concept of Automatic Differentiation 23
4.3.2 Chain Rule . 23
4.3.3 Forward Mode Automatic Differentiation 24
4.3.4 Example: Forward Mode AD . 24

5 Implementation and Results 26
5.1 Open-Loop Results . 26
5.2 Closed-Loop Results . 33
5.3 Evaluating Sensor Requirements for Robust Parameter Estimating in Noisy

Environments . 39
5.4 Conclusion . 41

Bibliography 42

List of Tables

5.1 Closed-Loop System: Conjugate Gradient Method for estimation of parameters 40

List of Figures

1.1 Schematic Representation of Sensor Placement in a Controlled Heat Conduction
System . 2

2.1 Schematic diagram . 3

3.1 P-Controller . 14

4.1 Forward Problem . 17
4.2 Inverse Problem . 17
4.3 Loss function of MSE . 18
4.4 Loss function of MAE . 19
4.5 Forward Mode Automatic Differentiation . 25

5.1 Temperature Distribution Over Time in the Open-Loop Heat Conduction System 27
5.2 Nelder-Mead Method with open loop . 29
5.3 Conjugate Gradient Method with open loop 31
5.4 Newton’s Method with open loop . 32
5.5 Temperature Distribution Over Time in the Closed Loop Heat Conduction System 34
5.6 Nelder Mead Method with closed loop . 35
5.7 Conjugate Gradient Method with closed loop 37
5.8 Newton’s Method with closed loop . 38

Introduction 1
Heat transfer through conduction is a critical phenomenon in engineering and applied
physics. It plays a key role in numerous technological processes, from small-scale mi-
croelectronic devices to large industrial systems. The accurate control and prediction of
thermal energy transfer is essential for maximizing performance, ensuring operational
safety, and improving energy efficiency [1, 2]. Successful thermal control relies on precisely
defining the factors that impact heat transfer, a challenging task due to the complexities of
real-world systems [3].

Heat conduction, the transfer of thermal energy between neighboring atoms and molecules,
is driven by temperature differences. This process involves particles with more kinetic
energy transferring their energy to particles with lower kinetic energy, resulting in heat
flow from regions of higher to lower temperatures [4]. However, in practical applications,
this process is complicated by material properties, boundary conditions, and external
controls [5]. Understanding how these elements influence heat conduction dynamics is
crucial for developing effective thermal management systems.

Measuring the parameters that control heat conduction directly is often challenging
due to cost and practical limitations. To address these difficulties, techniques for identifying
parameters provide a solution by estimating system variables that are unknown to measure
based on measurable data, such as temperature distributions over time. These techniques
enable the resolution of inverse problems, leading to more accurate modeling and control
of heat conduction in various applications [6].

This thesis is specifically focused on the identification of two unknown parameters within
a controlled heat conduction system: the thermal conductivity (𝜆)of the material and the
gain (𝐾𝑝) of a proportional controller used to regulate the system temperature. The system
under study is a one-dimensional rod with a heating element at one end and distributed
temperature sensors along its length. A primary sensor at the opposite end of the rod
monitors the target temperature, and the P-Controller adjusts the heat input to reach this
target. The challenge lies in identifying 𝜆 and 𝐾𝑝 using inverse methods, both in open-loop
and closed-loop scenarios, with the latter involving active temperature regulation through
feedback control.

This study’s crucial focus is to maximize parameter estimation accuracy by determining the
best number and spatial arrangement of sensors. The quality of the estimated parameters is
directly influenced by the placement and density of sensors, requiring a trade-off between
computational efficiency and estimation precision [7]. Various optimization techniques,
including the Nelder-Mead Method, Conjugate Gradient Method, and Newton’s Method,
are employed in this study, along with automatic differentiation to enhance gradient
calculations. This is especially crucial in the closed-loop scenario, where the dynamics of
the P-Controller add complexity to the inverse problem.

1 Introduction 2

Figure 1.1: Schematic Representation of Sensor Placement in a Controlled Heat Conduction System

The study extensively examines identifying parameters in controlled heat conduction
systems by integrating theoretical modeling with practical considerations. In addition
to tackling the technical obstacles, it considers sensor noise and time delays to more
accurately reflect real-world situations. The results have implications for industries where
precise temperature regulation is critical, such as industrial heat management and climate
control systems. Ultimately, this investigation enhances the understanding of parameter
identification and offers valuable insights into improving sensor placement for increased
accuracy in controlled heat conduction systems.

Mathematical Model and Problem
Formulation 2

The following chapter will create a mathematical framework to depict heat transfer through
a rod. We heat the rod from the left-hand side and mount temperature sensors at many
locations along its length in order to measure the flow of heat. We will set up the problem,
convert it into a form suitable for numerical solutions, and specify the initial and boundary
conditions.

2.1 Description of the Physical System

The problem is set in a physical system consisting of a metallic rod of length (L), which
starts at a temperature of 300 K (Kelvin). The system is shown in Fig.2.1. The heating
element is located at 𝑥1 on the left side of the rod. The heat propagates along the rod from
the heating source towards the insulated end. The idea is to take a look at how the heat
diffuses, using sensors across the rod from 𝑥1 through 𝑥20.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

Metal rodu

L

Insulation

Figure 2.1: Schematic diagram

The heating element introduces energy into the system, causing the temperature at
each point on the rod to change over time. To understand and predict this temperature
distribution, we implement a mathematical model called the heat equation. This model
explains the movement of heat from hotter to cooler regions of the rod.

2.1.1 Heat Equation

The heat equation, a Parabolic partial differential equation (PDE), describes the heat
distribution in a given region over time [8]. For a one-dimension rod, the heat equation
simplifies,

𝜕𝑇(𝑥 , 𝑡)
𝜕𝑡

=
𝜆

𝜌 · 𝑐
𝜕2𝑇(𝑥 , 𝑡)

𝜕𝑥2 . (2.1)

This equation models the temperature distribution in a rod over time, where 𝑇(𝑥 , 𝑡)
represents the temperature at position ”𝑥” along the rod at time ”𝑡”. The left-hand side
of the equation, 𝜕𝑇(𝑥 ,𝑡)

𝜕𝑡 , is the partial derivative of the temperature concerning time,
representing the temperature change rate over time at a given position.

2 Mathematical Model and Problem Formulation 4

On the right-hand side of the equation, 𝜆 represents the material’s thermal conductivity,
which quantifies how well the material conducts heat. The symbols 𝜌 and 𝑐 refer to the
material’s density and specific heat capacity, respectively. The product 𝜌 · 𝑐 is the volumetric
heat capacity, indicating the material’s ability to store heat.

The second spatial derivative of the temperature, 𝜕2𝑇
𝜕𝑥2 , represents the curvature of the

temperature profile along the rod. The concept is essential for our analysis as it shows how
the temperature at a specific location varies from its surrounding positions.

The temperature evolution in a rod is elegantly described by the heat equation, which
establishes a relationship between the temperature’s rate of change over time and the heat
diffusion throughout the rod. The thermal diffusivity, represented by the parameter 𝛼 (
i.e., the ratio of 𝜆

𝜌·𝑐), is vital in determining how rapidly heat propagates within the material.

However, defining the conditions at the rod’s boundaries is imperative to solve this
equation entirely and accurately. These boundary conditions offer essential information for
determining whether heat can flow into or out of the system.

2.1.2 Neumann boundary condition

The boundary conditions determine how heat flow behaves at the boundaries. In this
particular case, the right side of the rod is insulated, preventing heat from escaping through
that boundary. This insulation is indicated by a Neumann boundary condition, which
states that the heat flux at the boundary is zero [9],

𝜕𝑇
𝜕𝑥

�����
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

= 𝑞.

For an insulated boundary, when 𝑞 = 0, no heat leaves the system at this boundary, which
reflects the physical condition of insulation and enables a complete description of the
temperature distribution along the rod. In order to solve the heat equation and monitor
temperature changes using numerical methods, we need to represent the continuous
spatial domain by dividing the rod into discrete points where temperature values can be
computed.

2 Mathematical Model and Problem Formulation 5

2.2 Spatial Discretization

To solve the heat equation numerically, we partition the spatial domain into smaller
components. The rod is discretized into 𝑁𝑥 equally distant points, which represent the
positions of sensors for calculating temperature values. By dividing the rod into discrete
intervals, we can estimate the temperature distribution and numerical techniques to predict
heat transfer over time.

2.2.1 Discretization Approach

The rod is divided into 𝑁𝑥 evenly spaced points when we discretize it. The distance between
adjacent points is denoted as Δ𝑥, which is calculated as

Δ𝑥 =
𝐿

𝑁𝑥 − 1
.

The rod’s total length is denoted as 𝐿, and the number of points, including those at both
ends of the rod, is represented by 𝑁𝑥 . This guarantees that the rod is divided into 𝑁𝑥 − 1
intervals of equal length Δ𝑥 [10].

2.2.2 Central Difference Method

After dividing the rod into points, we must find a method to estimate the spatial changes in
temperature at each point in the rod, as specified by the heat equation. A commonly used
method for this is the Central Difference Method, which involves using the temperature
values at adjacent points to compute an approximation of the derivative.

For a spatial grid with equally spaced points 𝑥0,𝑥1,𝑥3,....,𝑥𝑁 , the second derivative of
temperature concerning space at the point 𝑥𝑖 is approximated by,

𝜕2𝑇𝑛
𝜕𝑥2 ≈ 𝑇𝑛−1 − 2𝑇𝑛 + 𝑇𝑛+1

Δ𝑥2 .

In this case, the temperatures at neighboring points, 𝑇𝑛−1, 𝑇𝑛 , 𝑇𝑛+1, are used to estimate the
curvature of the temperature profile through the central difference approximation, which
makes use of the temperature at the points on either side of 𝑇𝑛 .

2 Mathematical Model and Problem Formulation 6

2.2.3 Semi-Discrete Heat Equation

By substituting this central difference approximation into the heat equation, we can derive
the semi-discrete heat equation. The given equation describes how the temperature changes
at every point inside the rod.

𝑑𝑇𝑛
𝑑𝑡

= 𝛼
𝑇𝑛−1 − 2𝑇𝑛 + 𝑇𝑛+1

Δ𝑥2 .

The spatial domain has been divided into points, leaving time as a continuous variable.
Hence, this method is called ’Semi-Discrete.’ Consequently, there is a set of Ordinary
Differential Equations (ODEs) in the temperature evolution at each spatial point in the rod.
To thoroughly explain the transfer of heat along the rod, it is important to establish the
characteristics of heat at the boundaries. These ODEs must be solved to accomplish this.

2.3 Boundary Conditions

The edges of the rod are crucial in determining how heat flows due to the boundary
conditions. These conditions are required to calculate the temperatures at the boundaries,
which is vital for solving the system of ODEs obtained from the spatial discretization.

▶ Left-side Boundary (Heating Source)
At the left boundary n = 1, a heat source is applied. Instead of a simple derivative
condition, we introduce a source term that adds heat to the system. The boundary
condition at n = 1 is modified as follows,

−𝜆𝜕𝑇
𝜕𝑥

����
𝑛=1

= 𝑢(𝑡),

The thermal conductivity of the material, denoted by 𝜆, is a key factor in this equa-
tion. The expression 𝜕𝑇

𝜕𝑥 |𝑛=1 = 𝑢(𝑡), signifies the temperature gradient at the left
boundary. The term 𝑢(𝑡) represents the heat flux, which may vary depending on the
specific heat source. This heat flux denotes the rate at which heat is introduced to the
system at the left boundary.

In the discrete system, this is approximated by a central difference at the left
boundary,

𝜕2𝑇1

𝜕𝑥2 = 𝛼
2𝑇2 − 2𝑇1

Δ𝑥2 + 2𝛼𝑢
𝜆Δ𝑥

.

The term 2𝑇2−2𝑇1
Δ𝑥2 represents the second derivative using an imaginary point outside

the boundary, 2𝛼𝑢
𝜆Δ𝑥 represents the heat added from the heat source.

2 Mathematical Model and Problem Formulation 7

▶ Right-side Boundary (Neumann Boundary Condition)
At the right boundary n=N, a Neumann boundary condition is applied. A Neumann
boundary condition specifies the derivative of the temperature at the boundary,
which can represent a fixed heat flux. For example, if the boundary is insulated (no
heat flow), the condition is,

𝜕𝑇
𝜕𝑥

�����
𝑛=𝑁

= 𝑞 ,

For example, if q=0 (insulated boundary), this becomes

𝑇𝑁 = 𝑇𝑁−1,

This implies that the temperature at the last node is the same as that at the previous
node, maintaining the insulation condition.

The discrete system approximates this by a central difference at the right boundary.

𝜕2𝑇𝑁
𝜕𝑥2 =

2𝑇𝑁−1 − 2𝑇𝑁
Δ𝑥2 .

Now that we have established the boundary conditions, we have a complete set of equations
that control the temperature at the interior and boundary points of the rod. The conversion
of these equations into matrix form allows for the efficient numerical solution of the
system.

2.4 Matrix Form of the Discretized System

The semi-discrete heat equation can be solved numerically by transforming the system of
equations into matrix form, which can be written as the equation below. This enables us
to calculate the temperature evolution at each spatial point effectively using numerical
techniques. The matrix form makes condensing the equations obtained from the central
difference approximation and the boundary conditions into a solvable system possible,

𝑑𝑇𝑛
𝑑𝑡

= 𝑀 · 𝑇 + 𝐹,

The vector𝑇𝑛 represents the temperatures at each spatial point, where𝑇𝑛 = [𝑇1,𝑇2, . . . ,𝑇𝑁]𝑇 ,
and 𝑁 represents the number of spatial grid points. The matrix 𝑀 corresponds to the finite
difference approximation of the second derivative concerning space, derived using a central
difference scheme. This scheme calculates the second temperature derivative by considering
differences between adjacent points, resulting in a tridiagonal matrix representing heat
conduction between neighboring nodes. In a one-dimensional domain, the matrix 𝑀
contains entries that illustrate interactions between neighboring points, and its typical

2 Mathematical Model and Problem Formulation 8

structure includes coefficients that multiply temperature differences based on the spatial
discretization step size Δ𝑥 and the thermal diffusivity 𝛼,

𝑀 =
𝛼

Δ𝑥2

−2 1 0 0 0 · · · 0
1 −2 1 0 0 · · · 0
0 1 −2 1 0 · · · 0
0 0 1 −2 1 · · · 0
...

...
...

...
0 0 0 0 · · · 1 −2

[10]. (2.2)

Furthermore, vector 𝐹 considers the impact of external heat sources, especially at the
domain boundaries. In this instance, 𝐹 illustrates a heat source applied to the left boundary,
with the first entry being non-zero and the rest being zero. The following expression
represents the heat source term,

𝐹 =
𝛼
Δ𝑥

2𝑢
𝜆
0
...
0

.

Now that we have the heat equation expressed in matrix form, including boundary
conditions and external heat sources(𝑢), we can proceed to solve the system numerically.
Before calculating the temperature changes over time, it’s necessary to define the initial
temperature distribution along the rod, given by the initial conditions.

2.5 Initial Conditions

The initial conditions at the beginning of the heating process define the temperature
distribution in the rod. This initial temperature profile is used as the initial point for
solving the system of ODEs obtained from the matrix representation of the heat equation.
Regardless of whether the rod begins at a consistent ambient temperature or with a
pre-heated profile, the initial conditions are crucial for precisely simulating the temperature
changes,

𝑇(𝑥 , 0) = 𝑇0 = 300𝐾 ,

for 𝑥 ∈ [0, 𝐿]. After specifying the initial temperature distribution, the system can be
completely described in its matrix form. The matrix system captures changes in temperature
along the rod by considering heat diffusion and the impact of boundary conditions. The
matrix form allows for an efficient and compact representation to solve the system
numerically.

2 Mathematical Model and Problem Formulation 9

2.6 The final matrix system

The final matrix system is given below,

𝑑
𝑑𝑡

𝑇1
𝑇2
...

𝑇𝑁−1
𝑇𝑁

=

𝛼

Δ𝑥2

−2 2 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
0 0 1 −2 · · · 0
...

...
...

...
0 0 0 · · · 2 −2

𝑇1
𝑇2
...
𝑇𝑁

+ 𝛼
Δ𝑥

2𝑢
𝜆
0
...
0

. (2.3)

The heat diffusion through the internal points,
The heat source applied at the left boundary,
The Neumann boundary condition applied at the right boundary.

The heat diffusion and boundary conditions are included in the ultimate matrix sys-
tem, but an effective numerical solver is required to calculate the temperature changes over
time. Considering the potential stiffness of the heat equation, we decided on advanced
solvers such as Rodas5, which are particularly skilled at effectively and accurately handling
stiff systems.

2.7 Solvers

Rodas5 is particularly suited for stiff problems like the heat equation because it efficiently
handles the stiffness often present in the time evolution of heat distribution [11]. A high-order
method can achieve accurate results with more significant time steps than straightforward
methods such as the Runge-Kutta method [12].

When we utilize the Rodas5 solver to solve the system, it precisely predicts the tem-
perature changes, but actual measurements in the real world are rarely perfect. To account
for the uncertainty present in real-world data, we add Gaussian noise to the system. This
variability emulates the uncertainty in temperature readings, ensuring our model closely
mimics real-life conditions.

2 Mathematical Model and Problem Formulation 10

2.8 Gaussian Noise

Introducing Gaussian noise into the system introduces uncertainty and variation to the
data. Adding the noise term, 𝜖, affects the temperature vector T, resulting in a new vector,

𝑇𝑛𝑜𝑖𝑠𝑦 = 𝑇𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝜖.

This noise term, sampled from a Gaussian distribution (N(0, 𝜎2))with zero mean and
variance 𝜎2 (𝜎 = 3), plays a crucial role in capturing the uncertainty in measurements,
thereby enhancing the precision of our modeling and simulations [13, 14].

In our computational model, we include a stochastic noise term 𝜖, which accounts for
measurement uncertainty. This 𝜖 is selected from a Gaussian distribution with zero mean
and variance 𝜎2, represented as (𝜖 ∼ N(0, 𝜎2)), where 𝜎 = 3. The addition of this noise
component accounts for the inherent variability in measured data, thereby improving the
statistical fidelity and robustness of our simulations. Our model’s accuracy and predictive
capability are enhanced by explicitly incorporating the random variations measured in
experimental results.

Incorporating this noise alters the system’s heat equation of the heat conduction pro-
cess. The system with noise is represented as,

𝑑
𝑑𝑡
𝑇noisy = 𝑀 · 𝑇noisy + 𝐹 + 𝜖,

here 𝑀 denotes the matrix for the discretized spatial derivatives, 𝐹 is the vector that
considers external heat sources, and 𝜖 introduces stochastic variation to the system.

In the chapter, we laid the groundwork for creating a theoretical framework simulating heat
conduction in a rod. We formulated a discretized model using matrices and incorporated
external heat sources and Gaussian noise to mirror real-world scenarios. However, this
theory provides a solid understanding of the system’s behavior, the later application in
chapter 5. This will involve simulations, visual representations, and pseudocode to facilitate
a step-by-step understanding.

Controller Design and System Dynamics 3
This chapter discusses the development of a control mechanism that regulates the heating
component located on the left side of the rod to maintain a specific temperature at the
opposite end. We will initially outline the system in open-loop and closed-loop setups
and then explain the functionality of the proportional controller within the closed-loop
setup.

3.1 Open-loop System

The heating element on the left side of the rod is controlled independently without
taking feedback from temperature sensors along the rod into account. The heat input is
applied based on a predetermined value, and the system’s behavior is not modified based
on actual temperature measurements. An Open-loop system does not have automatic
adjustment, which can lead to significant inaccuracies if external conditions, such as heat
loss or variations in thermal properties, change [15]. This underscores the urge for a more
advanced control mechanism.

3.1.1 Open-Loop Dynamic

In an Open-loop system, the heating element at the left end of the rod operates without
any feedback from the temperature sensors. The heat input is administered based on a
pre-established plan, which relies on system behavior estimations. The system does not
adjust the heat input based on the measured temperature at the insulated end or in the
middle of the rod.

The heat input, 𝑞𝑖𝑛(𝑡), is applied according to a fixed function of time,

𝑞𝑖𝑛(𝑡) = 𝑓 (𝑡).

The function of 𝑓 (𝑡) can vary depending on the use. For instance, 𝑓 (𝑡) might denote a
consistent heat input over time, like 𝑓 (𝑡) = 𝐶, where 𝐶 stays constant throughout the
process. Alternatively, it could represent a function dependent on time, such as 𝑓 (𝑡) = 𝐶+𝑎𝑡,
with the heat input gradually increasing over time, mirroring a situation where the heating
intensity ramps up as the process advances. In other instances, 𝑓 (𝑡) might represent a
more intricate, cyclical function, like 𝑓 (𝑡) = 𝐴𝑠𝑖𝑛(𝜔𝑡), where the heat input oscillates
periodically, simulating a scenario with controlled thermal cycling.

In all these scenarios, the system follows a predetermined heating variable. It lacks the
capability to adapt to real-time temperature changes or external disturbances, consequently
limiting its adaptability and precision.

3 Controller Design and System Dynamics 12

3.1.2 System Behavior

The rod experiences changes in temperature distribution over time due to both external
heat input and the thermal properties of the material, such as thermal diffusivity (𝛼). If
there is no feedback control, any disruptions, like external cooling or variations in material
properties, are not countered. As a result, these factors may hinder the system from reaching
the intended temperature at the insulated end of the rod, possibly causing failure to achieve
the desired thermal state.

3.1.3 Limitations of Open-Loop Control

The main drawback of an Open-loop system is its inability to adapt to changes or uncer-
tainties [16]. For example, if the system fails to reach the target temperature at the right
end, there is no mechanism to adjust the heat input and correct the error.

While Open-loop systems have limitations, they are still extensively used in specific
applications due to various benefits. Their simplicity in design and implementation, as
they do not require sensors, feedback loops, or complex algorithms, makes them advan-
tageous when system complexity needs to be minimized. Moreover, Open-loop systems
are generally more cost-effective because they require fewer components and reduced
maintenance.

In stable environments, Open-loop systems perform well as they can function reliably
without feedback if external conditions are predictable and controlled. They also provide
faster response times, ideal for applications where quick action is necessary, as they do not
depend on feedback to adjust their input. Additionally, they are less prone to instability
since there is no feedback loop, eliminating the risk of instability caused by poorly tuned
feedback mechanisms.

Open-loop systems can be sufficient for applications where high precision is not essential.
In scenarios where minor deviations in performance are acceptable, the added complexity
of a feedback-based system may not be necessary. These factors make Open-loop systems a
practical solution for many applications, particularly in stable, predictable environments.
However, for critical situations where adaptability and precise control are essential, a
Closed-loop system provides a more effective and reliable solution.

3 Controller Design and System Dynamics 13

3.2 Closed Loop System with Proportional Control

The Closed-loop system incorporates a feedback mechanism for operation [17]. This feed-
back mechanism is implemented by continuously measuring the temperature with a sensor
on the right side of the rod. Based on this measurement, the controller then adjusts the
heat source on the left side to achieve the desired target temperature (setpoint) on the right
side, denoted as r.

The closed-loop system benefits from using feedback because it enables more precise
responses to environmental changes or disturbances, enhancing its adaptability and
reliability compared to an open-loop system. This is achieved by implementing a Propor-
tional Controller (denoted as P-Controller) to maintain precision in reaching the desired
temperature target.

3.2.1 Closed-Loop Dynamic

The P-Controller, a crucial element of the closed-loop system, offers significant adaptability
in managing the temperature profile of the rod. It optimizes sensor temperature measure-
ments, particularly at critical points along the rod’s insulated right end, and adjusts the
heat input at the left end accordingly. Continuously assessing the current temperature
against the desired temperature (𝑟), the controller adjusts the heat input to reduce the
difference between the two.

The primary goal of this Closed-loop setup is to ensure that the temperature at the
end of the rod consistently reaches and maintains a specific desired target temperature,
denoted as r.

3.2.2 P-Controller

The P-Controller is a primary type of feedback controller used in control systems to
minimize the difference between a desired target point and the system’s output [18]. Let us
break down how the P-controller operates according to the principles detailed.

The system consistently measures and evaluates the current output against the intended
setpoint. The discrepancy between the setpoint and the current output is known as the
error,

𝑒(𝑡) = 𝑟 − 𝑦(𝑡).
The P-Controller modifies the control input 𝑢(𝑡) relative to the error. The following formula
can be used to determine the control input, giving a detailed explanation of how the
P-controller functions based on the principles explained earlier,

𝑢(𝑡) = 𝐾𝑝 · 𝑒(𝑡) = 𝐾𝑝 · (𝑟 − 𝑦(𝑡)). (3.1)

3 Controller Design and System Dynamics 14

The proportional gain represented as (𝐾𝑝) adjusts the heat input based on the measured
temperature of the target. When the measured temperature falls below the target, the
control action increases the heat input, and when it surpasses the target, it reduces the heat
input. The correction made is proportional to the size of the error, ensuring that the system
continuously adapts to maintain the desired temperature [19].

P-Controllers find widespread use in industrial settings, such as HVAC systems, ovens, and
manufacturing processes, where the maintenance of a stable temperature is essential for
achieving peak performance. This straightforward but efficient control approach guarantees
that the system can promptly adjust to deviations, gradually diminishing the error until
the targeted temperature is reached.

Figure 3.1: P-Controller

The system receives the control signal 𝑢(𝑡) and adjusts its behavior, such as heating the
rod. The modified output is then looped back into the system to recalculate the error. The
system uses a feedback loop to constantly adjust the input to reduce errors over time.

3.2.3 Behaviour of a P-Controller

The value of the controller gain 𝐾𝑝 has a significant impact on the implementation of a
P-Controller. A higher 𝐾𝑝 results in a more assertive reaction to errors, leading to swift
corrections to steer the system toward the desired temperature. This assertiveness can
result in overshooting and oscillations.

Conversely, a low 𝐾𝑝 results in a more cautious response, where the P-Controller makes
slower adjustments to prevent overshooting. However, this caution may lead to slower
convergence to the target temperature, highlighting the need for a balanced approach.

Finding the right balance for 𝐾𝑝 is crucial for optimal system performance. The response
of the system to disturbances can be significantly impacted, as well as its effectiveness in
maintaining the desired temperature.

3 Controller Design and System Dynamics 15

Selecting the correct value for 𝐾𝑝 is crucial in maintaining a balance between responsiveness
and stability, which is necessary for the system to reach the target temperature without
excessive oscillations or delays.

The P-Controller is crucial for regulating the system’s temperature, and accurately deter-
mining the parameters 𝐾𝑝 and 𝜆 is vital for maximizing performance. In the upcoming
chapter, we will investigate how inverse techniques are employed to establish these critical
parameters using temperature data from the system .

Parameter Identification Using Inverse
Methods 4

Inverse techniques are used when there is output data, such as temperature measurements,
and the objective is to determine the underlying parameters, like 𝐾𝑝 and 𝜆, that impact the
system’s behavior. These methods are commonly used in systems where direct measurement
of the parameters is not feasible or practical.

Inverse methods are crucial in identifying unknown parameters in a system when only the
output data, such as temperature measurements, are accessible. In our scenario, parameters
such as the proportional gain 𝐾𝑝 and thermal conductivity𝜆, which impact the performance
of the P-Controller and the heat equation, must be precisely determined to ensure optimal
system behavior. These techniques enable us to reverse engineer the measured data to
reveal the values that best describe the underlying dynamics of the system.

The parameters 𝐾𝑝 , which controls the responsiveness of the P-Controller, and 𝜆, the
thermal conductivity that determines heat conduction in the rod, are crucial for accurate
control and temperature regulation. Discovering these parameters through inverse methods
ensures the system can maintain desired thermal conditions under various environmental
factors.

This chapter details how to use inverse methods for parameter identification, offering
a straightforward approach from collecting temperature data to estimating parameters.
Implementing these methods will enhance the control system’s performance, ensuring
stability and responsiveness in practical situations.

4.1 Inverse Problem Formulation

Our setup has a rod featuring a heating unit and multiple temperature sensors positioned
at various locations. The objective is to utilize the temperature data obtained from these
sensors to estimate the proportional gain 𝐾𝑝 of the controller and the thermal conductivity
𝜆 of the rod material.

This will be accomplished through inverse techniques, which entail solving the inverse
problem of adjusting the unknown parameters to fit the measured data to a model.

4.1.1 Forward and Inverse Problem

When dealing with heat conduction problems, we can consider the system from two
approaches: the forward problem and the inverse problem [20]. The forward problem
entails using known system parameters to predict the system’s behavior. On the other
hand, the inverse problem involves using monitored system behavior to derive unknown
parameters.

4 Parameter Identification Using Inverse Methods 17

▶ Forward Problem: The forward problem aims to predict the system’s result, particu-
larly the temperature profile along the rod, by relying on identified system parameters
such as 𝐾𝑝(the gain of the P-Controller) and 𝜆(thermal conductivity).
The setup entails simulating the physical system using established equations like the
heat conduction equation in this situation. We use these known parameters to predict
the temperature evolution over time given the input (e.g., applied heat). The expected
outcome is the predicted temperature distribution T(x,t) along the rod, based on the
input data and the established model parameters.

Model
Parameters

Physical
System

Measured
Data

Figure 4.1: Forward Problem

Reproducing the physical system through simulation is possible using well-defined
system parameters like 𝐾𝑝 and 𝜆. Through the mathematical formulation of the
system, for example, by utilizing established equations such as the heat equation to
model the rod, it becomes feasible to compute the temperature progression based on
the input provided (heat). The result of this simulation is the predicted temperature
distribution 𝑇(𝑥 , 𝑡).

▶ Inverse Problem: In the inverse problem, we lack knowledge of the system parameters
and seek to calculate these parameters based on the measured system data. Our
configuration involves gathering temperature readings from sensors positioned
throughout the rod. The goal is to ascertain the most suitable values for 𝐾𝑝 and 𝜆
that can account for the measured temperature distribution.

Measured
Data

Physical
System

Estimation
of Parameters

Figure 4.2: Inverse Problem

The process starts with gathering the real-time data obtained from the system, such as
the temperature readings at various locations on the rod as measured by the sensors.
Using the system’s model, for instance, the heat equation, efforts are made to identify
the most suitable parameters that would effectively account for the collected data.
The model is iteratively run with parameter adjustments to minimize the variance
between the projected temperatures and the actual measurements.

The solution to this problem necessitates a method for assessing how accurately the model’s
projected temperatures correspond to the actual measurements taken from the system.
This is where the loss function becomes significant.

4 Parameter Identification Using Inverse Methods 18

4.1.2 Loss Function

In order to solve the inverse problem and determine the unknown parameters 𝐾𝑝 and 𝜆, it
is crucial to assess the degree to which the simulated results match the actual temperature
readings from the system. This comparison is measured using a loss function, which
indicates the difference between the predicted temperature profiles and the measured data.
We can assess the degree to which the parameter estimate matches the actual system.

A loss function usually offers a mathematical structure for measuring the difference between
the predicted outcomes obtained from solving the forward problem and the actual data
gathered from temperature sensors. Minimizing this variance enhances the accuracy of
parameter estimates. Commonly used loss functions include the Mean Squared Error (MSE)
and Mean Absolute Error (MAE) [21].

Mean Squared Error (MSE)
It is a widely used statistical measure for assessing model accuracy. This is achieved by
computing the average of the squared variances between the actual and predicted values by
the model. When dealing with inverse problems and predictive modeling, MSE is valuable
for evaluating the alignment between the model predictions and real-world data. The MSE
formula is

𝐽(𝐾 ,𝜆) = 1
𝑁

𝑛X
𝑖=1

(𝑇measured(𝑥𝑖 , 𝑡) − 𝑇model(𝑥𝑖 , 𝑡;𝐾 ,𝜆))2 [22].

The total number of measurements is represented by N in this equation. 𝑇measured(𝑥𝑖 , 𝑡)
denotes the temperature measured by sensors, while 𝑇model(𝑥𝑖 , 𝑡;𝐾 ,𝜆) represents the
temperature predicted by the model. The parameters K and 𝜆 pertain to the proportional
gain and other model parameters, respectively. The objective of minimizing MSE is to
decrease the total squared error between the model’s predictions and the actual data.

The shape of the MSE loss function obtained from the simulation setup is illustrated in
Figure 4.3, which demonstrates how MSE behaves as the model parameters are adjusted. It
also shows the behavior of the error surface when testing different parameter values.

Figure 4.3: Loss function of MSE

4 Parameter Identification Using Inverse Methods 19

Mean Absolute Error (MAE)
Model performance evaluation involves using another measure known as Mean Absolute
Error (MAE) [23]. In contrast to MSE, which involves squaring the disparities between
predicted and actual values, MAE determines the mean of the absolute disparities, making
it less affected by significant substantial errors. Regardless of their magnitude, MAE treats
all errors equally. The formula for MAE is

𝐽(𝐾 ,𝜆) = 1
𝑁

𝑛X
𝑖=1

|𝑇measured(𝑥𝑖 , 𝑡) − 𝑇model(𝑥𝑖 , 𝑡;𝐾 ,𝜆)| [24].

Again,𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑥𝑖 , 𝑡)denotes the temperature measured by sensors, while𝑇𝑚𝑜𝑑𝑒𝑙(𝑥𝑖 , 𝑡;𝐾 , 𝑙𝑎𝑚𝑏𝑑𝑎)
represents the temperature predicted by the model. The objective of MAE is to offer a more
even evaluation of prediction inaccuracies while avoiding amplifying larger differences.

Figure 4.4 below illustrates the relationship between the MAE loss function and the error
values produced by your simulation setup. It is evident that the actual value of 𝜆 = 50 is
located at the lowest point of the U-shaped curve, confirming that the utilization of MAE
effectively attains the desired balanced error distribution for your system. Therefore, it is
optimal for minimizing the absolute error between the predicted and measured values.

Figure 4.4: Loss function of MAE

The use of MAE involves absolute variances, but the resulting loss function may behave
similarly to a quadratic function near the minimum, particularly as it approaches the true
parameter value.

4 Parameter Identification Using Inverse Methods 20

4.2 Optimization Methods

After establishing the loss function, such as the Mean Absolute Error (MAE), our next
objective is to minimize this function to determine the optimal estimates for the unknown
parameters 𝜆and 𝐾𝑝 . The aim is to identify the parameter values that ensure the model-
predicted temperature profile closely matches the measured data, thereby addressing the
inverse problem.

To accomplish this minimization, we utilize optimization methods, which are also referred
to as optimizers [25]. This method iteratively modifies the parameters 𝜆and 𝐾𝑝 , seeking
the combination of values that minimize the MAE and reduce the variation between the
model’s predictions and the actual measurements.

4.2.1 Nelder Mead Method

The Nelder-Mead algorithm is precious when calculating derivatives is challenging, as is
often encountered in real-world problems. It falls into the category of "derivative-free"
techniques. It utilizes a simplex, a geometric form such as a triangle or tetrahedron, to
navigate the parameter space and locate the best solution [26].

How it works? Unlike many other methods, the algorithm refrains from directly as-
cending or descending by following the steepest gradient. Instead, it alters the simplex by
expanding, contracting, or reflecting its points to reach a configuration that minimizes the
loss function.

Mathematical Formulation:

1. Simplex Vertices: Let 𝑝1, 𝑝2,, 𝑝𝑛+1 be the vertices of the simplex, where each
𝑝𝑖 = [𝐾𝑖 , 𝛼𝑖] is a vector of 𝜆 and 𝐾𝑝 parameters .

2. Objective Function Ordering: Compute and order the objective function 𝐽(𝑝𝑖) at
each vertex:

𝐽(p1) ≤ 𝐽(p2) ≤ · · · ≤ 𝐽(p𝑛+1)
In this case, 𝑝1 represents the optimal point with the lowest loss, while 𝑝𝑛+1 represents
the point with the highest loss.

3. Centroid Calculation: Taking the information provided, we can find the centroid c of
the points by excluding the lowest vertex 𝑝𝑛+1. The centroid represents the "average"
of the top points and can be computed in the following manner

c =
1
𝑛

𝑛X
𝑖=1

p𝑖 .

4 Parameter Identification Using Inverse Methods 21

4. Reflection: Reflect the worst vertex through the centroid

p𝑟 = c + 𝛼𝑟(c − p𝑛+1),

where 𝛼𝑟 > 0 is the reflection coefficient.

Expansion/Contraction/Reduction: Depending on the value of 𝐽(𝑃𝑟), decide whether to
expand, contract, or reduce the simplex to reach the minimum.

Advantages: It is helpful for optimization problems where the loss function is not smooth
or where derivatives are unavailable [27].

Application in Parameter Identification: Nelder-Mead can adjust 𝐾𝑝 and 𝜆 iteratively,
comparing the predicted and measured temperatures and modifying the simplex until the
error is minimized.

4.2.2 Conjugate Gradient Method

The method of Conjugate Gradient is utilized to optimize functions by minimizing them,
especially when dealing with a large number of parameters. It represents an enhancement
over the conventional gradient descent approach by incorporating insights from previous
iterations to adapt the search direction for the minimum, thereby increasing its effective-
ness[28].

Mathematical Formulation:

1. Initialization: Start with an initial guess p0 =
�
𝐾0,𝜆0

�
and compute the initial

gradient g0:
g0 = ∇𝐽(p0)

Set the initial search direction as d0 = −g0.(negative of the gradient)
2. Parameter Update: At each iteration 𝑘, update the parameter vector:

p𝑘+1 = p𝑘 + 𝜆𝑘d𝑘

where 𝛼𝑘 is the step size found by a line search that minimizes 𝐽(p𝑘 + 𝜆d𝑘).
3. Gradient Update: Compute the new gradient g𝑘+1 at p𝑘+1:

g𝑘+1 = ∇𝐽(p𝑘+1)

4. Conjugate Direction: Update the search direction using the conjugate gradient
formula:

d𝑘+1 = −g𝑘+1 + 𝛽𝑘d𝑘

where 𝛽𝑘 is given by:

𝛽𝑘 =
g𝑇𝑘+1g𝑘+1

g𝑇𝑘 g𝑘

4 Parameter Identification Using Inverse Methods 22

5. Iteration: Continue iterating until the norm of the gradient ∥g𝑘+1∥ is sufficiently
small, indicating that the minimum has been reached.

Advantages: The Conjugate Gradient Method is advantageous because it has the potential
to converge more rapidly than regular gradient descent, particularly in scenarios with
numerous parameters. As a result, it is the preferred approach for tackling extensive
problems, such as optimizing parameters in a system with multiple variables [29].

Application in Parameter Identification: When it comes to estimating parameters such as
𝑘𝑝 and 𝜆, the Conjugate Gradient Method has the ability to iteratively modify these values
in order to minimize the discrepancy between predicted and measured temperatures.
This method improves the optimization procedure, making it easier to reach the right
parameters more quickly than traditional approaches.

4.2.3 Newton’s Method

Newton’s Method, being a second-order optimization technique, utilizes both the gradient
(first derivative) of the loss function and the Hessian matrix (second derivative) [30]. This
characteristic endows it with the capability to rapidly find the minimum of a function, par-
ticularly when the function exhibits smooth and well-behaved behavior near the minimum.

Mathematical Formulation:

1. Gradient and Hessian Calculation: At each iteration 𝑘, compute the gradient g𝑘 and
the Hessian matrix H𝑘 :

g𝑘 = ∇𝐽(p𝑘), H𝑘 = ∇2𝐽(p𝑘)

2. Newton Step: Update the parameter vector using the Newton step:

p𝑘+1 = p𝑘 − H−1
𝑘 g𝑘

Here, H−1
𝑘 is the inverse of the Hessian matrix.

3. Iteration: Continue iterating until the parameter updates ∥p𝑘+1 − p𝑘∥ become suffi-
ciently small, indicating that convergence has been achieved.

Matrix Representation:

▶ The update step in matrix form is:

p𝑘+1 = p𝑘 − H−1
𝑘 g𝑘 .

▶ The Hessian matrix H𝑘 for two parameters (e.g., 𝐾 and 𝜆) is,

H𝑘 =

"
𝜕2𝐽
𝜕𝐾2

𝜕2𝐽
𝜕𝐾𝜕𝜆

𝜕2𝐽
𝜕𝜆𝜕𝐾

𝜕2𝐽
𝜕𝜆2

#
[31].

4 Parameter Identification Using Inverse Methods 23

Advantages: Newton’s method demonstrates rapid convergence compared to gradient-
based methods, particularly near the minimum, owing to its utilization of second-order
information (the Hessian) for making more precise steps.

Application in Parameter Identification: In cases where the loss function, like MAE
or MSE, shows smooth behavior, Newton’s method can be highly effective for parameter
identification, such as finding 𝐾𝑝 and 𝜆. The method utilization of gradient and curvature
information enables it to rapidly fine-tune parameters to minimize the disparity between
predicted and actual measurements.

Suppose the Hessian can be efficiently computed or approximated. In that case, Newton’s
method can expedite the refinement of estimates for 𝐾𝑝 and 𝜆 compared to methodologies
that solely rely on the gradient.

4.3 Automatic differentiation

Automatic Differentiation (AD) is a method that reliably calculates the derivatives of
functions with precision and efficiency. This technique instills confidence in computing loss
function gradients concerning parameters in optimization, machine learning, and control
systems[32].

4.3.1 Concept of Automatic Differentiation

Automatic Differentiation involves decomposing a complicated function into basic opera-
tions like addition and multiplication and then using the calculus chain rule to calculate
derivatives. Unlike symbolic differentiation, which offers a symbolic representation of
the derivative, or numerical differentiation, which estimates the derivative using finite
differences, AD computes precise numerical derivatives at a specific point. AD consists of
two main modes:

▶ Forward Mode: Suited for cases where derivatives are needed for only a few inputs.
Derivatives are forwarded from the inputs to the outputs in forward mode.

▶ Reverse Mode: Efficient for situations with a small number of outputs, such as a
single loss function, and a large number of inputs, which are parameters. The reverse
mode is frequently utilized in machine learning to propagate derivatives from the
outputs to the inputs, such as gradients in backpropagation.

4.3.2 Chain Rule

The chain rule is an important aspect of automatic differentiation (AD) because it enables
the propagation of derivatives through a series of intermediate operations. In the case of a

4 Parameter Identification Using Inverse Methods 24

composite function 𝑦 = 𝑓 (𝑔(ℎ(𝑥))), the chain rule specifies the following,

𝑑𝑦
𝑑𝑥

=
𝑑𝑦
𝑑𝑔

· 𝑑𝑔
𝑑ℎ

· 𝑑ℎ
𝑑𝑥

.

When using forward mode AD, the chain rule calculates function values and their derivatives
as they move from the input to the output.

4.3.3 Forward Mode Automatic Differentiation

In the forward mode of automatic differentiation (AD), derivatives are calculated simulta-
neously with evaluating functions. The computation is divided into intermediate variables
when dealing with a general function 𝑦 = 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛).

1. Define intermediate variables,

𝑤1 = ℎ1(𝑥),𝑤2 = ℎ2(𝑤1), . . . ,𝑤𝑚 = ℎ𝑚(𝑤𝑚−1).

2. The derivative is propagated using the chain rule,

𝜕𝑦
𝜕𝑥

=
𝜕𝑤𝑚

𝜕𝑤𝑚−1
· 𝜕𝑤𝑚−1
𝜕𝑤𝑚−2

· · · · · 𝜕𝑤1
𝜕𝑥

.

The process in forward mode involves propagating derivatives from independent variables
through intermediate operations, with calculations made at each step.

4.3.4 Example: Forward Mode AD

Let’s consider the function 𝑦 = 𝑥1𝑥2 + sin(𝑥1) We want to compute the function’s value
and its derivatives concerning 𝑥1and 𝑥2.

Break the function into intermediate variables.
Breaking the computation into smaller steps involves using intermediate variables to
compute derivatives. In our example, we can express the function by using intermediate
variables,

𝑤1 = 𝑥1,

𝑤2 = 𝑥2,

𝑤3 = 𝑤1𝑤2 = 𝑥1𝑥2,

𝑤4 = sin(𝑤1) = sin(𝑥1),
𝑤5 = 𝑤3 + 𝑤4 = 𝑥1𝑥2 + sin(𝑥1)

Here, 𝑤5 = 𝑦 is the final output of the function, which is 𝑦.

4 Parameter Identification Using Inverse Methods 25

Figure 4.5: Forward Mode Automatic Differentiation

We have examined the application of Forward Mode Automatic Differentiation (AD)
for calculating the function’s value and its derivatives concerning the input variables.
Efficiently computing derivatives is a crucial aspect of the optimization process because
many optimization techniques, such as Conjugate Gradient and Newton’s Method, depend
on gradient information to facilitate the search for optimal parameters. Forward mode AD
optimizes this process by automating derivative computation, enabling more precise and
efficient parameter identification.

After establishing the groundwork in theory and providing the necessary tools to tackle
the inverse problem and refine the loss function, our focus now shifts to applying these
principles practically in heat conduction. In Chapter 5, we will put these optimization
methods into action and evaluate their efficiency in identifying the unknown parameters
𝐾𝑝 and 𝜆. Furthermore, we will explore incorporating automatic differentiation (AD) into
the optimization procedure to enhance the calculations’ accuracy. Through the outcomes
of this implementation, including visual representations and numerical comparisons, we
aim to illustrate the system’s response to various optimization methods and restrictions.

Implementation and Results 5
In this chapter, the results of the parameter identification approach for heat conduction in
the rod system are detailed. Various optimization methods, including the Nelder-Mead,
Conjugate Gradient, and Newton’s method, are used to determine thermal conductivity (𝜆)
and proportional controller gain (𝐾𝑝). The parameters are evaluated based on precision,
stability, and computational efficiency.

5.1 Open-Loop Results

This part will evaluate how well an open-loop heat conduction system performs using
forward problem formulation. This setup delivers heat without utilizing feedback control
to test the system’s capability to maintain a consistent temperature and recognize its
constraints. The main emphasis is on applying a constant heat source for the initial 10
seconds and then monitoring the thermal behavior after deactivating the heat source for
the remaining duration of the simulation.

The simulation models a rod that is 0.2 meters long, with a thermal conductivity (𝜆) of
50 [𝑊

𝑚·𝐾]. The density (𝜌) is 10,000 kg/m³ and its specific heat capacity (𝑐) is 1 [𝐽
𝐾𝑔·𝐾].The

spatial discretization (Δ𝑥) is set to 0.01 meters, dividing the rod into 21 spatial points.
Initially, the temperature across the entire rod is uniformly distributed at 300 K. For the
first 10 seconds; the heat input is applied constantly at a rate of1 × 104 W. Afterward, the
heat input is turned off, and the system transitions into a cooling phase for the remainder
of the 20-second simulation.

Solving the heat equation will involve using the Rodas5 solver, which is a stiff ODE solver,
and this process should be completed within 20 seconds. The heat conduction equation is
discretized using the finite difference method, with 21 spatial points along the rod, and the
resulting ODE system is solved using Rodas5.

As shown in Figure 5.1, the temperature dynamics of the open-loop system demonstrate a
transparent gradient during the heating phase, followed by uniform cooling after the heat
input is removed. The left side of the rod is subject to a constant heat source during the initial
10 seconds of the simulation. As expected, the area nearest to the heat source experiences
a rapid temperature rise while heat conduction gradually spreads toward the right side
of the rod. This results in a temperature gradient along the rod’s length, with positions
farther from the heat source heating up more slowly. Figure 5.1 shows a swift temperature
rise near the heat source during the first 10 seconds, followed by slower heat propagation
toward the rod’s right end. The color variation signifies the temperature changes over time,
showcasing the effective temperature regulation and stability maintenance provided in the
open-loop system.

5 Implementation and Results 27

After 10 seconds, the system enters the cooling phase once the heat input is turned off. The
temperatures at points nearest the heat source decrease rapidly, while points farther away
cool slower. This natural heat dissipation returns the rod to a temperature near its initial
state by the end of the 20-second simulation.

Figure 5.1: Temperature Distribution Over Time in the Open-Loop Heat Conduction System

The primary setback of the open-loop system is its inability to adjust to changing conditions.
Once the heat input stops, the system cannot sustain high temperatures, making it ineffective
for applications that require precise thermal regulation. In real-world applications—such as
industrial processes or climate control maintaining stability and consistency in temperature
control is crucial; this limitation underscores the need for advanced feedback mechanisms.

The starting point for the inverse problem is the temperature data obtained from the
open-loop system. In the inverse problem, the main focus is estimating the unknown

5 Implementation and Results 28

system parameters, particularly the thermal conductivity 𝜆, which cannot be measured
directly. To address this, we compare the actual measured temperatures from the open-loop
system to the predicted temperatures from a model generated using the forward problem.
The Mean Absolute Error (MAE) loss function assesses the difference between these two
data sets.

In the 4 Chapter, we analyzed how the Mean Absolute Error (MAE) loss is mathematically
represented. In the last chapter, we investigated the application of the Mean Absolute
Error (MAE) loss function and the Nelder-Mead optimization technique as mathematical
instruments for solving inverse problems.

The Code 1 demonstrates the MAE loss function in Julia programming. It calculates the
discrepancy between the predicted temperatures and the actual temperatures. The variable
data_ml contains the predicted temperatures, whereas data_orig contains the original data
obtained from the simulation. The MAE is determined by averaging the absolute variances
between these two data sets. As stated in Equation 4.2, the MAE calculates the mean
difference between the forecasted and real temperatures, which assists the optimization
algorithm in modifying 𝜆 to reduce this discrepancy.

The following code initially defines the MAE loss function, which assesses the error for
a specified thermal conductivity (𝜆). Subsequently, the optimize function utilizes the
Nelder-Mead method to progressively refine the initial guess for 𝜆 (10.0), adapting it to
minimize the MAE and determine the most precise value of 𝜆. The conclusive outcome is
preserved in optimal_𝜆, indicating the thermal conductivity most accurately corresponds
to the measured data.� �

1 # Define the mean absolute error (MAE) loss function
2 function mae_loss(𝜆)
3 p_ml = 𝜆
4 sol = solve(prob, alg, p=p_ml, saveat=tsave)
5 data_ml = Array(sol[1:end,:])
6 err = (abs.(data_orig - data_ml))
7 mae_loss = mean(err)
8 return mae_loss
9� �

Code 1: Julia’s implementation of the MAE Loss Function.

Nelder-Mead Method

The Nelder-Mead optimization method is applied to iteratively adjust the value of 𝜆 in
order to minimize the MAE. This algorithm efficiently searches for the optimal 𝜆 using the
measured temperature data as a reference. The goal of running the optimization process
is to determine the value of 𝜆 that leads to the most minor error between the model
predictions and the real-world data.

5 Implementation and Results 29

� �
1 # Initial guess for the parameter 𝜆 (starting value for optimization)
2 initial_𝜆 = [10.0]
3 # Perform the optimization using the Nelder-Mead method to minimize the MAE
4 result = optimize(mae_loss, initial_𝜆, NelderMead())
5 # Extract the optimal value of 𝜆 that minimizes the MAE
6 optimal_𝜆 = Optim.minimizer(result)
7� �

Code 2: Nelder-Mead Optimization Method to estimate the thermal conductivity 𝜆.

Throughout the optimization process, the convergence of the MAE can be visually observed
in the plot presented in Figure 5.2. The plot clearly illustrates the reduction in error over
time as the algorithm approaches the true value of 𝜆.

In conclusion of the optimization process, the calculated value of 𝜆 converges to 50, which
aligns with the actual value employed in the system, confirming the precision of our inverse
technique.

Figure 5.2: Nelder-Mead Method with open loop

The information above indicates that the Nelder-Mead method has provided an estimated
value for 𝜆 close to the true value of 50. This confirms the precision of the inverse method,
as the model’s predictions closely align with the temperature measurements from the open-
loop system. Through the successful estimation of 𝜆, we have showcased the effectiveness
of the inverse method in determining unknown system parameters using measured data.

5 Implementation and Results 30

Conjugate Gradient Method

The Conjugate Gradient Method is frequently utilized as an optimization algorithm,
particularly for handling large-scale problems and smooth loss functions. Its application is
aimed at reducing the Mean Absolute Error (MAE) between predicted temperatures and
real data.

Code 3 represents the implementation of the Conjugate Gradient Method. The optimization
process is guided by computing the gradient of the loss function, which is accomplished
using ForwardDiff, a Julia package that automatically calculates derivatives. The gradient
of the MAE loss function is computed and then supplied to the optimized function, along
with an initial guess for𝜆 (set to 25.0). The optimize function then iteratively adjusts𝜆 using
the Conjugate Gradient algorithm, searching for the value that minimizes the MAE.

� �
1 # Compute the gradient of the MAE loss function with respect to 𝜆
2 # ForwardDiff.gradient() automatically computes the gradient, helping the

optimizer
3 function gradient_mae_loss!(g, 𝜆)
4 g .= ForwardDiff.gradient(mae_loss, 𝜆)
5 end
6
7 # Initial guess for the parameter \(\lambda\), chosen as 25.0 based on

preliminary assumptions
8 initial_𝜆 = [25.0]
9 # Perform the Conjugate Gradient Method with a line search to ensure efficient

progress toward minimizing the loss
10 # Use BackTracking Line Search to ensure effective step sizes
11 result = optimize(mae_loss, gradient_mae_loss!, initial_𝜆, Optim.

ConjugateGradient(linesearch=LineSearches.BackTracking()))
12 # optimal_𝜆 contains the best estimate for 𝜆, minimizing the MAE
13 optimal_𝜆 = Optim.minimizer(result)
14� �

Code 3: Gradient-Based Optimization Using Conjugate Gradient Method for Thermal
Conductivity Estimation.

The initial estimate for 𝜆 is established at 25.0, and the gradient of the MAE loss function is
utilized in each iteration to guide the most suitable 𝜆. The BackTracking Line search is a
technique that ensures each iteration progresses toward minimizing the loss, preventing
large or inefficient steps during optimization. After the optimization process is completed,
the optimal_𝜆 variable holds the finest approximation for 𝜆.

The results of the application of the Conjugate Gradient Method to estimate 𝜆 are presented
in Figure 5.3. The Figure illustrates the relationship between the loss function and different
values of 𝜆, with red circles along the curve representing the predicted values of 𝜆 as
the method progresses. The method effectively converges towards the true value of 𝜆, as
reflected by the decreasing loss.

5 Implementation and Results 31

Figure 5.3: Conjugate Gradient Method with open loop

As observed in the plot, the Conjugate Gradient Method identifies the 𝜆 that minimizes
the MAE, with the predicted values approaching the true value of approximately 50. This
showcases the algorithm’s ability to minimize the error between predicted and measured
temperatures, resulting in an accurate estimate of the thermal conductivity.

Newton’s Method

Newton’s Method is a robust optimization technique that leverages both the gradient and
the Hessian matrix of the loss function to determine the optimal parameter value. Unlike the
Conjugate Gradient Method, which relies solely on the gradient, Newton’s method takes
a step further by incorporating second-order derivative information (Hessian) to guide
the optimization process. This additional information often leads to quicker convergence,
especially for smooth and well-behaved problems.

The code provided below illustrates the application of Newton’s Method in Julia program-
ming. The hessian_mae_loss! function calculates the Hessian matrix of the MAE loss
function using the ForwardDiff package. This matrix depicts the second-order derivatives
of the loss function and offers valuable curvature information, aiding the algorithm in
making more informed updates to 𝜆.

The initial assumption for 𝜆 in the code is 10.0. Newton’s Method is then applied using the
optimize function, which incorporates both the gradient and Hessian matrix of the loss
function. The BackTracking line search is used to find the correct step size for every iteration.
The optimal value of 𝜆 is saved in optimal_𝜆, indicating the most accurate estimation for
the thermal conductivity.

5 Implementation and Results 32

� �
1 # Define a function to compute the Hessian (second-order derivative) of the MAE

loss function
2 # ForwardDiff.hessian() automatically computes the Hessian using the input 𝜆 and

the mae_loss function.
3 function hessian_mae_loss!(h, 𝜆)
4 h .= ForwardDiff.hessian(mae_loss, 𝜆)
5 end
6 # Set an initial guess for the parameter 𝜆. This starting point (10.0 in this

case) is required by the optimization algorithm.
7 initial_𝜆 = [10.0]
8 # Perform optimization using Newton's Method.
9 result = optimize(mae_loss, gradient_mae_loss!, hessian_mae_loss!, initial_𝜆

, Newton(linesearch = BackTracking())
10 # optimal_𝜆 contains the best estimate for 𝜆, minimizing the MAE
11 optimal_𝜆 = Optim.minimizer(result)
12� �

Code 4: Newton’s Method with Gradient and Hessian Calculation for Thermal
Conductivity Estimation.

The results of applying Newton’s Method can be visualized in Figure 5.4. The Figure
shows how the loss function (MAE) is plotted against different values of 𝜆, with red circles
representing the estimated 𝜆 values at each iteration of the optimization process. As the
algorithm advances, the loss function decreases, and the estimated 𝜆 approaches the true
value.

Figure 5.4: Newton’s Method with open loop

5 Implementation and Results 33

The method effectively minimizes the loss function, highlighting the advantage of in-
tegrating both the gradient and Hessian in the optimization process. In comparison to
gradient-based methods such as Conjugate Gradient, Newton’s Method often converges
more rapidly due to the additional curvature information provided by the Hessian matrix.
In this instance, the method accurately estimates 𝜆 with fewer iterations, as evidenced by
the significant reduction in the loss function.

Following the analysis of the open-loop system and the utilization of various optimization
techniques to estimate the thermal conductivity 𝜆, we now shift our focus to the closed-loop
system, which integrates feedback control to achieve more accurate temperature regulation.
Within the closed-loop configuration, a P-Controller is utilized to dynamically modify the
heat input based on real-time temperature readings. In contrast to the open-loop system,
where the heat input remains constant, the closed-loop system continuously adapts to
maintain the desired temperature, rendering it more flexible and suitable for real-world
scenarios where precision and stability are crucial.

The upcoming sections will explore the implementation of the P-Controller and showcase
its efficacy in regulating the system’s temperature.

5.2 Closed-Loop Results

The temperature of the rod in the closed-loop system is dynamically regulated using a
P-Controller to ensure it reaches a target temperature of 500 K at the right end. In contrast
to the open-loop system where the heat input was fixed and uncontrolled, the closed-loop
system adjusts the heat input in real-time based on temperature measurements, making it
adaptive and more responsive.

The P-controller functions by continually comparing the current temperature on the right
side of the rod to the reference target temperature of 500 K. If the measured temperature
is lower than this target, the controller increases the heat input at the left end of the rod
to raise the temperature. Conversely, if the temperature exceeds the target, the controller
decreases the heat input to stabilize the system. The system uses this feedback loop to keep
the temperature constant by adjusting to changes in a dynamic way.

In Figure 5.5, the temperature distribution along the length of the rod over time is
illustrated under the closed-loop system. The plot shows how the system rapidly approaches
the target temperature of 500 K, with heat being concentrated near the left side and
gradually dissipating along the rod as time progresses. The variation in color signifies
the temperature changes over time, showcasing the effective temperature regulation and
stability maintenance provided by the feedback mechanism in the closed-loop system.

5 Implementation and Results 34

Figure 5.5: Temperature Distribution Over Time in the Closed Loop Heat Conduction System

5 Implementation and Results 35

Nelder-Mead Method with Closed-Loop Control

In the closed-loop system, we utilize a P-Controller to dynamically manage the heat input
along the rod. The P-controller modifies the heat input depending on the variation between
the measured temperature and the target reference temperature of 500 K. However, for the
controller to operate efficiently, it is essential to adjust two key parameters: the thermal
conductivity 𝜆 and the controller gain 𝐾𝑝 .

To accomplish this, the Nelder-Mead optimization method is to determine the true values
for these parameters, which are referenced at 𝜆 = 50 and 𝐾𝑝 = 200. The objective is to
decrease the error between the system-measured temperatures and the desired reference
temperature by optimizing 𝜆 and 𝐾𝑝 .

This method is utilized in the code to optimize both𝜆 and 𝐾𝑝 for the closed-loop system. The
initial values for these parameters are assumed to be 𝜆 = 20 and 𝐾𝑝 = 100. The optimization
process iteratively modifies these values, reducing the system error with each iteration.� �

1 # 20.0 is the starting guess for the first parameter (𝜆) and 100.0 for the
second parameter (Kp).

2 initial_𝜆 = [20.0, 100.0]
3 # Perform the optimization using the Nelder-Mead method
4 result = optimize(loss, initial_𝜆, NelderMead())
5 # Extract the optimal values of 𝜆 that minimize the loss function
6 optimal_𝜆 = Optim.minimizer(result)
7� �

Code 5: Julia’s implementation of the Nelder-Mead Method with closed loop

Figure 5.6 illustrates that the blue curve indicates the optimization of the thermal con-
ductivity 𝜆, and the red curve shows the adjustment of the controller gain 𝐾𝑝 . As the
optimization advances, both parameters move closer to their true values of 𝜆 = 50 and
𝐾𝑝 = 200 across sequential iterations. The stability of the system and temperature control
depend on these Final values. The successful convergence of 𝜆 and 𝐾𝑝 to their correct
values shows that the Nelder-Mead method effectively minimizes the loss function and
optimizes the performance of the controller.

Figure 5.6: Nelder Mead Method with closed loop

5 Implementation and Results 36

Conjugate Gradient Method with Closed-Loop Control

The Conjugate Gradient Method to optimize the thermal conductivity 𝜆 and the controller
gain 𝐾𝑝 in the closed-loop system. Our objective, similar to the previous optimization
method, is to minimize the error between the system’s actual temperature and the desired
target temperature of 500 K. The algorithm aims to converge towards the true values of 𝜆 =
50 and 𝐾𝑝 = 200, which serve as reference points.

The Conjugate Gradient Method is well-suited for optimization problems involving smooth
loss functions and large parameter spaces. It efficiently explores the optimal parameters
using gradient information, and the line search approach ensures effective optimization
progress.

Code 6 below utilizes the Conjugate Gradient Method in Julia. The Optimization.AutoForwardDiff()
function is used to calculate gradients for the loss function automatically, ensuring that
the optimization method can access the required derivative information to direct the
optimization procedure.

� �
1 # Set the initial guess for the parameter vector 𝜆 (two parameters: [10.0,

100.0])
2 initial_𝜆 = [10.0, 100.0]
3 # AutoForwardDiff automatically computes the gradients during optimization.
4 adtype = Optimization.AutoForwardDiff()
5 # The function' loss(x)' computes the loss, and 'adtype' specifies the type of

automatic differentiation.
6 optf = Optimization.OptimizationFunction((x, initial_𝜆) -> loss(x), adtype)
7 # Create an optimization problem with the objective function and initial

parameter values
8 optprob = Optimization.OptimizationProblem(optf, initial_𝜆)
9 # Solve the optimization problem using the Conjugate Gradient method
10 # ConjugateGradient is used for the optimization algorithm, and BackTracking is

the line search method.
11 result_ode = Optimization.solve(optprob, Optim.ConjugateGradient(linesearch

=LineSearches.BackTracking()), maxiters = 20)
12� �

Code 6: Julia’s implementation of the Conjugate Gradient Method to estimate 𝜆 and 𝐾𝑝 .

In Figure 5.7, the optimization process of𝜆 (blue curve) and 𝐾𝑝 (red curve) over 20 iterations
is presented. Initially, the Conjugate Gradient Method explores various values for both
parameters, leading to fluctuations in the first few iterations. However, after around 5
iterations, both 𝜆 and 𝐾𝑝 start to converge towards their true values of 𝜆 = 50 and 𝐾𝑝 =
200.

The Conjugate Gradient Method rapidly stabilizes around these values, effectively min-
imizing the system error and ensuring efficient temperature regulation by the feedback
controller. By the 10th iteration, the algorithm essentially identifies the optimal values for
both parameters, as evidenced by the leveling off of both curves.

5 Implementation and Results 37

Figure 5.7: Conjugate Gradient Method with closed loop

While the Nelder-Mead and Conjugate Gradient methods were effective, Newton’s Method
offers a faster convergence by integrating both gradient and Hessian information which is
implemented in the upcoming section.

Newton’s Method with Closed-Loop Control

Newton’s Method is utilized for optimizing the parameters of the closed-loop system,
specifically the thermal conductivity 𝜆 and the controller gain 𝐾𝑝 . Similar to the other
optimization methods (Nelder-Mead and Conjugate Gradient), the objective is to minimize
the error between the system-measured temperatures and the desired target temperature of
500 K. The true values of 𝜆 = 50 and 𝐾𝑝 = 200 are used as the reference for the optimization
process.

Newton’s Method integrates both the gradient (first-order derivative) and the Hessian
(second-order derivative), which captures the curvature of the loss function. This allows
for more informed and rapid adjustments to the parameters, improving convergence speed
and precision.

Below is Code 7 showing how Newton’s Method is used in Julia programming to optimize
𝜆 and 𝐾𝑝 . The Optimization.AutoForwardDiff() function calculates the gradients auto-
matically, and the Newton optimizer adjusts the parameters using both the gradient and
Hessian.

5 Implementation and Results 38

� �
1 # Set the initial guess for the parameter vector 𝜆 (two parameters: [10.0,

150.0])
2 initial_𝜆 = [10.0, 150.0]
3 # Define the type of automatic differentiation to be used for gradient and

Hessian calculation.
4
5 adtype = Optimization.AutoForwardDiff()
6 # OptimizationFunction takes the parameter values (x) and the initial guess

(initial_𝜆) to calculate the loss.
7 # The loss function (loss(x)) computes the error based on the given values of 𝜆.
8 optf = Optimization.OptimizationFunction((x, initial_𝜆) -> loss(x), adtype)
9 # Create the optimization problem using the defined objective function and

initial values.
10 optprob = Optimization.OptimizationProblem(optf, initial_𝜆)
11 # Optimization.solve runs the optimization using Newton's method.
12 # Newton's method uses both the gradient and Hessian of the loss function for

faster convergence.
13 result_ode = Optimization.solve(optprob, Optim.Newton(), maxiters = 25)
14
15� �

Code 7: Julia implementation of the Newton’s Method to estimate 𝜆 and 𝐾𝑝 .

In Figure 5.8, the optimization process of thermal conductivity 𝜆 and controller gain 𝐾𝑝

is illustrated over 25 iterations using Newton’s Method. Initially, the algorithm explores
various values for both parameters, resulting in fluctuations during the early iterations.
However, after around 15 iterations, both parameters start to stabilize, with 𝜆 approaching
50 and 𝐾𝑝 approaching 200.

Upon reaching the 25th iteration, both parameters reach their optimal values, effectively
minimizing the error between the measured and target temperatures. This efficient con-
vergence underscores the effectiveness of Newton’s Method in optimizing closed-loop
systems.

Figure 5.8: Newton’s Method with closed loop

5 Implementation and Results 39

5.3 Evaluating Sensor Requirements for Robust Parameter
Estimating in Noisy Environments

After achieving parameter identification through the closed-loop system using the Conju-
gate Gradient method, the results are implemented in a real-world scenario accounting
for external factor Noise. An analysis of how the number and placement of sensors on the
rod affect the accuracy of estimates in both noiseless (simulation) and noisy (real-world)
conditions.

Table 5.1 presents the results of applying the Conjugate Gradient Method to estimate two
critical parameters in a controlled heat conduction system: thermal conductivity 𝜆 and
controller gain 𝐾𝑝 . These parameters are critical for achieving the desired temperature
using a P-controller.

In the case of the X1 setup, where only one sensor is positioned at the beginning of the rod,
the results could have been more accurate. In the absence of noise, the predicted value of 𝜆
deviated significantly from the true value of 50, indicating that a single sensor alone cannot
capture the complete heat distribution along the rod. Moreover, the controller gain 𝐾𝑝

also demonstrated substantial deviations from the true value of 200. The errors escalated
with the introduction of noise, as evidenced by the increase in MAE. A single sensor is
inadequate for parameter estimation in noisy conditions.

The results were unsatisfactory in the (X1:X2) or (X2:X3) setup, where two sensors are
positioned closely. In the absence of noise, the estimated value of 𝜆 was approximately
14.25, significantly deviating from the true value. The closeness of the sensors restricts the
ability to accurately capture the system dynamics, which results in an inaccurate estimation.
Noise further worsened the performance, leading to increased deviations in both 𝜆 and 𝐾𝑝

and a corresponding rise in MAE. This indicates that implementing two closely placed
sensors offers inadequate information for precise estimation. Conversely, the X1, X11, and
X21 configurations, utilizing three sensors distributed more widely along the rod’s length,
yielded significantly more precise estimates. In the noiseless scenario, the estimated 𝜆
was almost equal to the true value 50. They suggest that this arrangement effectively
captures the temperature distribution across the system. Even in the presence of noise, the
estimated 𝜆 remained close to 49.8, and 𝐾𝑝 stayed near 200, showcasing the resilience of
this setup. The broader sensor distribution enables a more comprehensive understanding
of the system’s thermal behavior, making the estimation process less vulnerable to noise.

The instances above demonstrate that setups with fewer sensors, such as X1 (one sensor) or
X1:X2 (two closely positioned sensors), produce imprecise parameter estimates and are
highly vulnerable to interference. On the other hand, the X1, X11, and X21 arrangement,
comprising three well-distributed sensors, produces stable and accurate estimates for both
𝜆 and 𝐾𝑝 , even in noisy surroundings. Hence, to attain accurate parameter estimation, a
minimum of three strategically positioned sensors is essential to counteract the impact of
interference and capture the complete system dynamics.

5 Implementation and Results 40

M
ea

su
re

po
in

ts
Ti

m
e
(𝑠)

M
A

E
[𝐾

]
𝜆

in
� 𝑊 𝑚

𝐾

�
𝐾
𝑝

M
A

E
(w

ith
no

is
e)
[𝐾

]
𝜆

in
� 𝑊 𝑚

𝐾

�
𝐾
𝑝

X
1:

X
21

20
.11

54
3

1.0
4
×1

0−
5

49
.9

99
85

99
8

19
9.

99
98

61
8

2.
34

99
74

25
6

49
.8

35
25

47
1

20
0.

72
22

37
2

X
2

:X
21

20
.5

51
55

6
2.

19
×1

0−
6

50
.0

00
04

30
6

20
0.

00
00

21
7

2.
40

30
22

71
7

50
.0

21
44

97
7

20
0.

32
38

63

X
3

:X
21

20
.2

21
79

2
3.

48
×1

0−
6

50
.0

00
07

27
2

20
0.

00
00

39
9

2.
41

13
52

07
5

51
.13

59
18

7
20

1.0
34

15
44

X
4

:X
21

19
.5

80
60

4
4.

96
×1

0−
7

50
.0

00
00

19
19

9.
99

99
96

8
2.

41
74

96
02

2
49

.3
17

60
60

9
19

9.
60

02
64

3

X
5

:X
21

20
.9

99
31

3
2.

68
×1

0−
6

50
.0

00
06

22
9

20
0.

00
00

24
6

2.
42

64
76

79
1

49
.9

58
34

33
5

20
0.

07
42

38
8

X
14

:X
21

19
.2

15
46

8
1.2

5
×1

0−
5

50
.0

00
28

05
5

20
0.

00
00

73
4

2.
41

16
44

71
6

48
.0

26
11

93
9

19
9.

16
18

33
5

X
15

:X
21

19
.4

77
07

9
1.5

9
×1

0−
4

50
.0

03
47

49
8

20
0.

00
08

54
4

2.
40

04
40

29
9

49
.7

59
06

89
1

20
0.

12
08

60
6

X
16

:X
21

20
.6

25
49

1.3
8
×1

0−
5

50
.0

00
27

51
5

20
0.

00
00

27
2.

33
02

21
99

5
48

.8
93

89
13

6
20

0.
65

93
06

1

X
17

:X
21

19
.2

43
87

5
7.

75
×1

0−
6

50
.0

00
14

23
2

20
0.

00
00

02
3

2.
33

52
51

99
2

52
.6

47
62

74
4

20
0.

46
43

71
9

X
18

:X
21

19
.2

49
86

2
1.5

5
×1

0−
5

50
.0

00
31

23
6

20
0.

00
00

5
2.

24
55

83
21

2
51

.9
46

64
40

4
19

8.
16

07
73

9

X
19

:X
21

19
.5

02
62

9
3.

17
×1

0−
6

50
.0

00
06

25
7

20
0.

00
00

08
2.

47
91

50
45

50
.6

38
08

73
9

19
9.

90
33

82
5

X
20

:X
21

20
.17

09
27

1.6
2
×1

0−
5

50
.0

00
32

33
2

20
0.

00
00

52
9

2.
46

86
50

56
3

51
.3

13
51

88
3

20
0.

93
90

22
8

X
21

19
.2

23
89

4
1.5

8
×1

0−
5

50
.0

00
31

95
7

20
0.

00
00

79
5

2.
26

05
16

05
1

48
.6

75
63

63
4

20
5.

84
64

83

X
11

19
.3

75
77

3
7.

46
×1

0−
6

50
.0

00
33

13
4

20
0.

00
01

32
2.

46
17

52
25

9
50

.3
74

90
62

6
20

1.6
56

49
33

X
1

18
.8

23
42

2
1.6

78
3

14
.6

83
37

53
9

10
1.7

42
39

3
2.

71
94

56
28

6
11

.2
53

01
58

3
83

.12
27

97
13

X
1:

X
2

20
.7

99
35

2
1.7

61
3

14
.2

54
13

80
9

10
2.

01
98

84
4

3.
41

93
22

21
9

14
.4

49
70

03
1

10
1.9

55
51

05

X
2

:X
3

19
.3

11
16

1.5
85

1
13

.4
02

72
71

2
10

3.
09

63
69

3
2.

70
46

14
25

2
13

.6
34

60
98

6
10

2.
97

22
65

8

X
3

:X
4

21
.4

35
81

8
1.2

80
7

17
.9

28
54

51
7

12
8.

68
46

71
9

2.
81

12
37

62
3

20
.2

17
91

65
8

13
6.

31
08

37

X
4

:X
5

20
.6

82
57

3
1.5

63
4
×1

0−
4

49
.9

93
57

13
8

19
9.

99
29

26
2.

45
14

05
90

7
25

.2
46

94
77

3
15

7.
59

62
78

2

X
1,

X
11

,X
21

19
.8

88
52

4
1.7

6×
10

−6
49

.9
99

98
05

8
19

9.
99

99
72

3
2.

53
26

84
38

6
50

.6
24

68
89

2
20

1.0
91

43
34

Table 5.1: Closed-Loop System: Conjugate Gradient Method for estimation of parameters

5 Implementation and Results 41

5.4 Conclusion

This thesis successfully demonstrated the effectiveness of parameter identification in a
one-dimensional heat conduction system using both open-loop and closed-loop control
approaches. The open-loop system, which is useful for collecting baseline temperature data,
was limited in maintaining the desired temperature due to the lack of feedback. In contrast,
the closed-loop system, integrated with a P-Controller, consistently achieved the target
temperature with superior adaptability and precision, even under changing conditions.

This study addressed the challenge of estimating key parameters, such as thermal conduc-
tivity (𝜆) and controller gain (𝐾𝑝), by using three optimization methods: Nelder-Mead,
Conjugate Gradient, and Newton’s Method. Among these methods, the Conjugate Gradient
Method was particularly effective in balancing speed and accuracy, making it adaptable for
real-world applications.

The Conjugate Gradient Method utilized gradient information to achieve faster convergence
without the complexity of second-order derivative calculations required by Newton’s
Method. Its efficiency and straightforward implementation make it highly suitable for
applications with moderate computational resources and accessible gradient information.
Therefore, it proved to be the most practical optimization method for parameter estimation,
particularly in cases where rapid and accurate identification is essential.

Although simpler and not dependent on gradients, Nelder-Mead required more iterations
to reach a solution. It is more suitable for non-smooth cost functions or situations where
gradient information is difficult to obtain. However, its slower convergence limited its
application in more demanding scenarios. On the other hand, Newton’s Method used
gradient and second-order derivative (Hessian) information, offering the highest precision
and the fewest iterations. While it provided the best performance in terms of speed and
accuracy, its reliance on complex derivative calculations makes it more computationally
intensive.

The choice of optimization method largely depends on the specific application require-
ments—whether the priority is simplicity, computational speed, or precision.

Furthermore, this study highlighted the significance of sensor configuration in parameter
estimation. It was observed that increasing the number of sensors above three, especially
in noisy environments, significantly improved the accuracy of parameter estimates. The
recommended configuration of more than three sensors offers a practical, cost-effective
solution for ensuring robust parameter identification in industrial applications.

In conclusion, this thesis demonstrated that closed-loop systems, combined with gradient-
based optimization methods like the Conjugate Gradient, provide a powerful approach to
parameter identification in heat conduction systems. The specific problem requirements
should guide the selection of an appropriate optimization method, whether they demand
computational simplicity, rapid convergence, or high precision. Future research could
explore hybrid optimization techniques or apply these methods to more complex systems
to enhance performance in challenging environments.

Bibliography

[1] Chandrasyah. nderstanding heat transfer: a fundamental phenomenon in engineering
and nature. 28 July. 2023. url: https://medium.com/@chandrasyah999/
understanding-heat-transfer-a-fundamental-phenomenon-in-
engineering-and-nature-fe267a25f8ec (cited on page 1).

[2] Piranha. What is Industrial Heat Transfer. 22 Feb. 2022. url: https://newsome.
ltd.uk/what-is-industrial-heat-transfer/ (cited on page 1).

[3] FRANK P. INCROPERA. , DeWitt, D. P., Bergman, T. L., Lavine, A. S. Fundamentals
of Heat and Mass Transfer, 96. url: https://hyominsite.wordpress.com/
wp-content/uploads/2015/03/fundamentals-of-heat-and-mass-
transfer-6th-edition.pdf (cited on page 1).

[4] Admin BYJUS. What Is Heat Transfer? Conduction, Convection, Radiation and FAQs.
Accessed 19 Sept. 2024. 28 Aug. 2018. url:https://byjus.com/physics/heat-
transfer-conduction-convection-and-radiation/ (cited on page 1).

[5] A. A. Minea. Advances in industrial heat transfer,1-3. 2013. url: https://api.
pageplace.de/preview/DT0400.9781439899083_A23974416/preview-
9781439899083_A23974416.pdf (cited on page 1).

[6] D. Sterian. , Alina-Ioana, C. Mathematical and numerical modeling of inverse heat conduction
problem. 2014. url: https://doi.org/10.13111/2066-8201.2014.6.4.3
(cited on page 1).

[7] A. V. Wouwer. , Point, N., Porteman, S., Remy, M. An approach to the selection of
optimal sensor locations in distributed parameter systems, 298. 2000. url: https://www.
wellesu.com/10.1016/s0959-1524(99)00048-7 (cited on page 1).

[8] Cornelis Vuik et al. Numerical Methods for Ordinary Differential Equations, 119-120.
TU Delft OPEN Textbook. 2023. doi: 10.5074/t.2023.001. url: https:
//doi.org/10.5074/t.2023.001 (cited on page 3).

[9] Admin. Solving the heat equation with Neumann boundary conditions. url: https://
math.stackexchange.com/questions/3928125/solving-the-heat-
equation-with-neumann-boundary-conditions (cited on page 4).

[10] F. (n.d.). Van Der Plas; Mikołaj Bochenski. Heat equation with Neumann boundary
conditions. url: https://elearning.rwu.de/pluginfile.php/221542/
mod_resource/content/2/neumann_numerical.jl.html (cited on
pages 5, 8).

[11] Admin. ODE Solvers · DifferentialEquations.JL. (n.d.). url: https://docs.sciml.
ai/DiffEqDocs/stable/solvers/ode_solve/ (cited on page 9).

[12] Wikipedia contributors. Runge–Kutta methods. Accessed 19 Sept. 2024. 2024, August
27. url: https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_
methods (cited on page 9).

Bibliography 43

[13] Admin. Thermocouple accuracies. url: https://www.thermocoupleinfo.com/
thermocouple-accuracies.htm (cited on page 10).

[14] Admin. Gaussian𝑁𝑜𝑖𝑠𝑒 .. url:https://www.sfu.ca/sonic-studio-webdav/
handbook/Gaussian_Noise.html (cited on page 10).

[15] Wikipedia contributors. Open-loop controller. 13 Mar. 2024. url: https://en.
wikipedia.org/wiki/Open-loop_controller (cited on page 11).

[16] Thdata. Closed-Loop vs. Open-Loop Production Control: Examples and Differences. url:
https://planeus-solutions.com/blog/en/closed-loop-vs-open-
loop-production-control-system/ (cited on page 12).

[17] Wikipedia contributors. Closed-loop controller. 15 Jan. 2024. url: https://en.
wikipedia.org/wiki/Closed-loop_controller (cited on page 13).

[18] Admin. Proportional (P) controller. url:https://x-engineer.org/proportional-
controller/ (cited on page 13).

[19] GeeksforGeeks. Proportional controller in control system. GeeksforGeeks. 20 Oct. 2023.
url: https://www.geeksforgeeks.org/proportional-controller-
in-control-system/ (cited on page 14).

[20] Xu K. Darve, E. Machine learning for inverse problems in computational engineering. url:
https://kailaix.github.io/ADCMESlides/2020_10_01.pdf (cited on
page 16).

[21] DataRobot. DataRobot. Introduction to loss functions. 15 FEb. 2024. url:https://www.
datacamp.com/tutorial/loss- function- in- machine- learning
(cited on page 18).

[22] Wikipedia contributors. Mean squared error. 11 June. 2024. url: https://en.
wikipedia.org/wiki/Mean_squared_error (cited on page 18).

[23] R. Alake. Loss functions in machine learning explained. 24 Nov. 2023. url:https://www.
datacamp.com/tutorial/loss- function- in- machine- learning
(cited on page 19).

[24] Wikipedia contributors. Mean absolute error. 2 April. 2024. url: https://en.
wikipedia.org/wiki/Mean_absolute_error (cited on page 19).

[25] J. Brownlee. How to choose an optimization Algorithm. 11 Oct. 2021. url: https://
machinelearningmastery.com/tour-of-optimization-algorithms/
(cited on page 20).

[26] Wikipedia contributors. Nelder–Mead method. 18 Sep. 2024. url: https://en.
wikipedia.org/wiki/Nelder%E2%80%93Mead_method (cited on page 20).

[27] S. Singer. , Nelder, J. Nelder-Mead algorithm. 2009. url: https://doi.org/10.
4249/scholarpedia.2928 (cited on page 21).

[28] Magnus R. Hestenes and Eduard Stiefel. Methods of Conjugate Gradients for Solving Lin-
ear Systems. 6, December 1952. url: https://nvlpubs.nist.gov/nistpubs/
jres/049/jresv49n6p409_A1b.pdf (cited on page 21).

Bibliography 44

[29] Wikipedia. Hestenes Stiefel. Conjugate gradient method. 2021. url: https://pages.
stat.wisc.edu/~wahba/stat860public/pdf1/cj.pdf (cited on page 22).

[30] Wikipedia contributors. Newton’s method in optimization. 12 Sep. 2024. url: https:
//en.wikipedia.org/wiki/Newton%27s_method_in_optimization
(cited on page 22).

[31] Admin. Newton’s Method. url: https://acme.byu.edu/00000180-6940-
dc15-abb6-f9df79240001/newtons-method (cited on page 22).

[32] Wikipedia contributors. Automatic differentiation. 24 Sep. 2024. url: https://en.
wikipedia.org/wiki/Automatic_differentiation (cited on page 23).

