
SIMULATION OF 2-DIMENSIONAL HEAT CONDUCTION
WITH PHYSICS-INFORMED NEURAL NETWORKS

By Samman Aryal
Matriculation Nr.: 34867

A thesis submitted in partial fulfillment of the requirements for the degree of
Bachelor of Science in

Electrical Engineering and Information Technology

Supervisors
Prof. Dr.-Ing. Lothar Berger
M. Sc. Stephan Scholz

Hochschule Ravensburg Weingarten University of Applied Sciences
April 2024

Abstract

Heat conduction is a fundamental process that affects countless aspects of our daily lives, from
how we heat our homes to the efficiency of industrial systems. In this thesis, I explore an inno-
vative approach to simulating two-dimensional heat conduction using Physics-Informed Neural
Networks (PINNs).I begin by laying the groundwork in heat conduction principles, explaining
the key concepts and the importance of boundary conditions which will be relevant to this the-
sis. As I delve into how neural networks can solve differential equations, I highlight the training
process and techniques that improve model performance, making these advanced concepts ap-
proachable.

The heart of this work is a PINN framework that incorporates the laws of physics directly
into the neural network design. This ensures that the simulations adhere closely to the governing
equations of heat conduction. Through engaging case studies, I evaluate the effectiveness of
this approach, testing it under various heat sources and boundary conditions.The results are
promising: not only does this method accurately capture heat distribution, but it also emerges
as a strong alternative to traditional techniques like the Finite Difference Method (FDM) and
Finite Element Method (FEM). These findings underscore the potential of PINNs to enhance
computational efficiency and flexibility, opening doors for future research in more complex
thermal systems.In summary, this thesis adds to the growing dialogue between machine learning
and engineering, offering valuable insights into how we can harness the power of PINNs to
tackle practical heat conduction challenges. I hope this work inspires further exploration in this
exciting intersection of fields.

Contents
Abstract I

List of Figures III

List of Tables IV

1 Introduction 1

2 Theoretical Background 2

2.1 Introduction to Heat Conduction . 2
2.1.1 Fundamental Principles of Heat Conduction 2

2.2 Introduction to Neural Networks . 5
2.2.1 Types of Neural Networks . 6
2.2.2 Training Process . 7
2.2.3 Regularization Techniques . 8

2.3 Introduction to Physics-Informed Neural Networks (PINNs) 10

2.4 2D Heat Conduction Equation . 13

2.5 Boundary Conditions in Heat Conduction Problems 16
2.5.1 Dirichlet Boundary Condition . 17
2.5.2 Robin Boundary Condition . 17
2.5.3 Periodic Boundary Condition . 18
2.5.4 Neumann Boundary Condition . 18

2.6 PyTorch Framework for PINNs . 20

3 Case Studies 22

3.1 2D Heat Conduction with Center Heat Source 22
3.1.1 Governing Equation . 22
3.1.2 Domain and Boundary Conditions . 23
3.1.3 Heat Source . 24
3.1.4 Initial Condition . 24
3.1.5 PINN Implementation . 25
3.1.6 Training Process . 30
3.1.7 Visualization . 32
3.1.8 Simulation Results . 34
3.1.9 Simulation Analysis . 35
3.1.10 Dirichlet Boundary Condition: Central Source Heating 38

I

CONTENTS II

3.1.11 Comparison of Neumann and Dirichlet Boundary Conditions 43

3.2 2D Heat Conduction: Redistribution of Heat . 45
3.2.1 Governing Equation . 45
3.2.2 Domain and Boundary Conditions . 45
3.2.3 Initial Condition . 46
3.2.4 PINN Implementation . 46
3.2.5 Visualization and Results . 48
3.2.6 Analysis of Simulation Results . 49

3.3 Uniformly Hot Square Plate with Neumann Boundry 52
3.3.1 Problem Statement . 52
3.3.2 Mathematical Formulation . 52
3.3.3 Initial Condition . 53
3.3.4 Boundary Conditions . 53
3.3.5 Analytical Solution . 53
3.3.6 Numerical Simulation . 54
3.3.7 Simulation Results . 55
3.3.8 Error Analysis . 55
3.3.9 Discussion . 55

4 Conclusion 57

References . 57

List of Figures

2.1 General Heat Conduction Process . 2
2.2 Neural Network architecture . 5
2.3 Standard Neural Network and Physics-Informed Neural Network (PINN) . . . 10
2.4 Schematic representation of a Physics-Informed Neural Network 11
2.5 Boundary Conditions in Heat Conduction . 16

3.1 2D Heat Conduction with Center Heat Source 22
3.2 Schematic diagram of the square domain showing insulated boundary conditions

and centralized heat source. 23
3.3 Neural network architecture for the 2D heat conduction. 25
3.5 Simulations at Different Time Frames: Central heat source 35
3.6 2D Heat Conduction with Center Heat Source and Dirichlet Boundary Condition 38
3.7 Simulation: Dirichlet boundary condition . 41
3.8 Redistribution of heat with non-uniform initial temperature 45
3.9 Heat redistribution process at different time steps. 50
3.10 A square plate with uniform initial temperature T0 52
3.11 Temperature distribution Uniformly Hot Square Plate 55

III

List of Tables

2.1 Comparative Analysis of Traditional Methods and PINNs 12

3.1 Key observations for the center temperature evolution. 36
3.2 Key observations for the edge temperature evolution. 36
3.3 Temperature Evolution : Dirichlet boundary condition 42
3.4 Comparison of Temperature Behavior . 43
3.5 Implications of Boundary Conditions for Applications 44
3.6 Summary of Temperature Distribution Observations 49

IV

1 Introduction

The study of heat transfer phenomena plays a crucial role in various engineering and scientific
disciplines, including thermal management, material design, and energy systems. Among the
different modes of heat transfer, conduction is a fundamental process that governs the transfer
of thermal energy within a medium or between multiple media in direct contact. Understanding
and accurately modeling heat conduction is essential for optimizing thermal performance, en-
suring safety, and improving energy efficiency in numerous applications.Traditional numerical
methods, such as the finite element method (FEM) and the finite difference method (FDM), have
been widely employed to solve heat conduction problems. However, these methods often re-
quire extensive computational resources, particularly for complex geometries or time-dependent
problems. Additionally, they rely on discretization techniques that can introduce numerical er-
rors and stability issues, which may compromise the accuracy of the solutions.

In recent years, the field of machine learning has witnessed remarkable advancements, with
neural networks emerging as powerful tools for solving complex problems across various do-
mains. Physics-Informed Neural Networks (PINNs) represent a novel approach that combines
the flexibility of neural networks with the principles of physics-based modeling. By incorporat-
ing governing equations and boundary conditions directly into the neural network architecture,
PINNs can learn the underlying physical laws and provide accurate solutions without extensive
discretization or mesh generation. This thesis focuses on the simulation of two-dimensional
(2D) heat conduction problems using PINNs, aiming to develop a robust PINN-based frame-
work to simulate 2D heat conduction with Neumann boundary conditions, thereby leveraging
the capabilities of neural networks to integrate physical laws into the learning process.

The study will explore various heat distribution scenarios, including a plate with a localized
hot region, a square plate with a constant central heating element, heat redistribution, and the
natural cooling of a hot plate. To validate the PINN model, its solutions will be compared with
analytical solutions and traditional numerical methods to evaluate accuracy and efficiency. Ad-
ditionally, the computational performance of the PINNmodel will be assessed in terms of speed,
resource usage, and scalability. Finally, the research aims to identify potential applications of
the developed PINN model in real-world scenarios, such as thermal management systems and
material design, highlighting its relevance and impact in engineering and scientific domains.

The successful implementation of PINNs for simulating 2D heat conduction problems can
potentially revolutionize the way thermal analysis is performed, offering a more efficient and
accurate approach compared to traditional methods. By leveraging the power of neural networks
and incorporating physical laws, PINNs have the potential to provide accurate solutions while re-
ducing computational complexity and enabling real-time simulations.This thesis is structured to
provide a comprehensive understanding of the research topic, covering theoretical background,
problem definition, methodology, simulation results, discussion, and conclusions. It aims to
contribute to the growing field of Physics-Informed Neural Networks and their applications in
solving partial differential equations, with a specific focus on heat conduction problems.

1

2 Theoretical Background

This section introduces the fundamental concepts and theories that underpin the research on sim-
ulating two-dimensional heat conduction using Physics-Informed Neural Networks (PINNs). It
covers the principles of heat conduction, the mathematical formulation of the problem, and
an overview of neural networks and their application in solving partial differential equations
(PDEs). By embedding the physics directly into the neural network architecture, PINNs of-
fer a novel approach to modeling complex thermal processes, leveraging both data-driven and
physics-based strategies to achieve accurate predictions.

2.1 Introduction to Heat Conduction

Heat conduction is a fundamental process of heat transfer, where energy is transferred from
a region of higher temperature to a region of lower temperature within a medium or between
different media in direct physical contact.It is one of the three basic modes of thermal energy
transport (convection and radiation being the other two) and is involved in virtually all process
heat-transfer operations.

Hot
Side

Cold
Side

Heat Conduction

High T Low TTemperature

Figure 2.1: General Heat Conduction Process

This process occurs at the molecular level, where kinetic energy is transferred through col-
lisions between neighboring particles. Heat conduction is an important phenomenon in various
fields, including engineering, physics, and everyday life. It plays a crucial role in designing
efficient thermal management systems, understanding natural processes, and improving energy
efficiency across numerous applications.[1]

2.1.1 Fundamental Principles of Heat Conduction

The rate of heat conduction depends on several factors, including the temperature gradient, the
material properties, and the geometry of the medium. These factors collectively determine how
effectively heat is transferred through a substance, influencing both the speed and efficiency of
the process.

2

2.1.1. FUNDAMENTAL PRINCIPLES OF HEAT CONDUCTION 3

The basic law governing heat conduction is Fourier’s law, which states that the heat flux
(rate of heat transfer per unit area) is proportional to the negative temperature gradient that is

q⃗ = −k∇T

where q⃗ is the heat flux vector, k is the thermal conductivity of the material (a measure of
its ability to conduct heat), and ∇T is the temperature gradient. Fourier’s law provides a fun-
damental framework for analyzing and predicting heat transfer in a wide array of applications,
from industrial processes to environmental phenomena.[2]

2.1.1.1 Thermal Conductivity and Material Properties

The thermal conductivity of a material is a crucial property that determines its ability to conduct
heat. Thermal conductivity is influenced by the material’s atomic structure and bonding, as
these factors dictate how easily energy can be transferred between particles. Materials with
high thermal conductivity, such as metals, are good heat conductors, while materials with low
thermal conductivity, such as insulators, are poor heat conductors. The thermal conductivity can
be influenced by various factors, including the material’s composition, density, and temperature.

Material Composition: Different materials exhibit varying levels of thermal conductivity. For
instance, metals such as copper and aluminum have high thermal conductivities due to their
free electrons, which facilitate efficient energy transfer. On the other hand, materials like wood,
rubber, and certain plastics have low thermal conductivities and act as insulators, trapping heat
and slowing its transfer.

Density: The density of a material can also affect its thermal conductivity. Denser materials
generally have higher thermal conductivities because the particles are closely packed, facilitating
energy transfer between them. However, this relationship is not always straightforward, as other
factors such as material structure and bonding also play significant roles.

Temperature Dependency: The thermal conductivity of a material can change with tempera-
ture. For example, the thermal conductivity of metals typically decreases with increasing tem-
perature due to increased lattice vibrations, which scatter heat-carrying electrons. Conversely,
the thermal conductivity of non-metals may increase with temperature as increased molecular
motion enhances energy transfer.[3]

2.1.1.2 Heat Conduction in Combination with Other Mechanisms

Heat conduction is often accompanied by other heat transfer mechanisms, such as convection
and radiation. These mechanisms interact with conduction to influence the overall heat trans-
fer process, particularly in complex systems where multiple phases and materials are involved.
Convection involves the transfer of heat through the motion of fluids, while radiation is the
transfer of energy through electromagnetic waves. In many practical applications, heat transfer
occurs through a combination of these mechanisms, and it is essential to consider their relative
contributions to the overall heat transfer process. [2]

Convection: This mechanism involves the bulk movement of fluid (liquid or gas) carrying heat
from one place to another. It can be natural (driven by buoyancy forces due to density differ-
ences) or forced (driven by external means like fans or pumps). Convection plays a significant
role in heat transfer in fluids and is often coupled with conduction at the boundary layer where
the fluid contacts a solid surface. Understanding convection is crucial for applications involving
fluid flow, such as HVAC systems, industrial cooling, and atmospheric processes.

2.1.1. FUNDAMENTAL PRINCIPLES OF HEAT CONDUCTION 4

Radiation: Unlike conduction and convection, radiation does not require a medium and can
occur in a vacuum. It involves the transfer of energy through electromagnetic waves, primar-
ily in the infrared spectrum. All objects emit and absorb radiative heat energy based on their
temperature, with hotter objects emitting more radiation. Radiation is a key consideration in
high-temperature applications, such as furnaces, solar energy systems, and thermal insulation
for spacecraft.

Understanding these mechanisms is crucial for accurately modeling and predicting heat
transfer in various applications, from industrial processes to everyday scenarios like heating
a room or cooking food. By considering the interplay between conduction, convection, and ra-
diation, engineers and scientists can develop more efficient and effective thermal management
solutions.

2.1.1.3 Practical Applications and Importance

Heat conduction is pivotal in numerous practical applications across various fields:

Engineering: In mechanical and civil engineering, understanding heat conduction is essential
for designing and analyzing systems like heat exchangers, thermal insulation for buildings, and
cooling systems for electronic devices. Efficient thermal management is critical for optimizing
performance, ensuring safety, and extending the lifespan of engineered systems.

Environmental Science: Heat conduction plays a role in natural processes such as geothermal
energy transfer, soil temperature regulation, and the thermal behavior of natural water bodies.
Understanding these processes is vital for assessing environmental impacts, predicting climate
changes, and managing natural resources.

Everyday Life: Common activities like cooking, using thermal insulation in clothing, and heat-
ing or cooling living spaces all rely on principles of heat conduction. By understanding these
principles, individuals can make informed decisions about energy usage and efficiency, con-
tributing to sustainability and comfort in daily life.[4]

By studying heat conduction, we can optimize the efficiency and effectiveness of thermal man-
agement in various systems, leading to advancements in technology and improvements in qual-
ity of life. Understanding the principles of heat conduction also supports innovation in emerg-
ing fields such as nanotechnology, renewable energy, and advanced materials science.In sum-
mary, heat conduction is a vital process that underpins many natural and engineered systems.
The principles governing heat conduction, such as Fourier’s law, along with material proper-
ties like thermal conductivity, are fundamental to understanding and optimizing heat transfer in
diverse applications. By integrating these principles into Physics-Informed Neural Networks,
researchers can leverage machine learning techniques to solve complex heat conduction prob-
lems with greater accuracy and efficiency.

2.2. INTRODUCTION TO NEURAL NETWORKS 5

2.2 Introduction to Neural Networks

Neural networks (NNs) are a foundational technology in the field of artificial intelligence, con-
sisting of interconnected units or neurons that work together to perform complex computations.
These networks have revolutionized how we approach problem-solving in various domains,
from image recognition to natural language processing. By mimicking the structure and func-
tion of the human brain, neural networks have the ability to learn patterns and representations
from vast amounts of data, making them indispensable tools in the realm of machine learning
and deep learning.

Neural networks are composed of layers of neurons, each performing mathematical trans-
formations of their inputs to solve complex problems. These networks are extensively used in
deep learning and machine learning, which are subfields of artificial intelligence. A typical arti-
ficial neural network (ANN) consists of an input layer, one or more hidden layers, and an output
layer, as illustrated in Figure 2.2. The network is composed of nodes arranged in parallel layers,
where each node is connected to nodes in the adjacent layer, with each connection having an
associated weight w(l)

ij ∈ R.[5]

The architecture of a neural network is crucial for its performance, with each layer serving
a specific purpose in the transformation of input data into meaningful output. The input layer
receives the raw data, which is then processed by the hidden layers. These hidden layers are
where the network learns to recognize patterns and features through the use of weights and bi-
ases. Finally, the output layer provides the final prediction or classification based on the learned
representations.

Figure 2.2: Neural Network architecture

Each node in the network computes a weighted sum of its inputs and produces an output
based on its associated activation function σ, as depicted in equation (2). Here, Nl represents
the number of nodes in layer l, {xi}Nl−1

i=1 is the set of inputs from the nodes in the previous layer
l− 1, and bl is the bias associated with layer l. The bias is introduced at each node to adjust the
activation function, thereby helping to produce the desired output. The final prediction of the
network is denoted by ŷ. This process is commonly referred to as forward propagation and is
given by

ŷ = σ

(
Nl∑
j=1

(
Nl−1∑
i=1

w
(l)
ij xi + b

(l)
j

))

The activation function introduces non-linearity into the network, enabling it to approximate
complex nonlinear functions. These functions are crucial in determining the accuracy of a model

2.2.1. TYPES OF NEURAL NETWORKS 6

and the computational efficiency of training a model. They have a significant effect on the
network’s ability to converge, i.e., to find the optimal weights w and biases b. Without this non-
linearity, a multilayered network would essentially perform as a single-layered network, since
it would only be capable of linear combinations of the input functions.[5]

Common activation functions include the sigmoid, hyperbolic tangent (tanh), and rectified
linear unit (ReLU). Each function has its own advantages and is suitable for different types of
tasks. For instance, the ReLU function is widely used in deep networks due to its ability to
mitigate the vanishing gradient problem, which can occur with sigmoid and tanh functions in
deep architectures.[6]

2.2.1 Types of Neural Networks

Beyond standard feedforward networks, other important types include:

1. Convolutional Neural Networks (CNNs): Designed for processing grid-like data (e.g.,
images). The convolution operation is defined as

(f ∗ g)(x, y) =
∑
m

∑
n

f(m,n)g(x−m, y − n)

where f is the input (e.g., an image) and g is the kernel (or filter). CNNs utilize layers of
convolutions followed by pooling layers to reduce dimensionality while preserving spatial hier-
archies. These networks are particularly effective for tasks involving visual data, such as image
classification, object detection, and image segmentation.

2. Recurrent Neural Networks (RNNs): It is designed for processing sequential data using
hidden states and is give by

ht = σ(Wxhxt +Whhht−1 + bh)

where ht is the hidden state at time t, and xt is the input at time t. RNNs maintain a hidden state
that captures information from previous time steps, making them suitable for tasks involving se-
quences, such as language modeling and time series prediction. Their ability to handle temporal
dependencies makes them ideal for applications like speech recognition, machine translation,
and video analysis.

3. Generative Adversarial Networks (GANs): Comprising a generator and a discriminator,
GANs are designed to generate new, synthetic instances of data that can pass for real data. The
generator creates fake data, while the discriminator evaluates its authenticity and is given by

minGmaxDV (D,G) = Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))]

where G(z) produces samples from a random noise distribution z, and D is the discriminator
that classifies samples as real or fake. GANs have gained popularity for their ability to generate
high-quality synthetic data, making them useful for applications such as image generation, style
transfer, and data augmentation.[6]

These specialized architectures are tailored for specific data types and problems, offering
improved performance over standard feedforward networks in their respective domains. Each
type of architecture leverages unique structural properties to optimize learning for particular
tasks, showcasing the versatility of neural networks in solving diverse problems across various
fields. By understanding the strengths and limitations of each architecture, practitioners can
select and design neural networks that best suit their specific needs and challenges.

2.2.2. TRAINING PROCESS 7

2.2.2 Training Process

The training of neural networks is primarily accomplished through the backpropagation algo-
rithm, which efficiently computes the gradient of the loss function with respect to the network
parameters. This process involves several key steps which are mentioned below.

1. Forward Pass
In this step, we compute the output for each layer l = 1, . . . , L of the neural network. The for-
ward pass involves propagating the input through the layers, where each layer applies a trans-
formation using weighted connections and biases, followed by a non-linear activation function.
This process allows the network to learn complex representations of the input data. The trans-
formation is expressed as

a(l) = σ(z(l)) = σ(W (l)a(l−1) + b(l))

In this equation, a(l) represents the activations of the l-th layer, W (l) denotes the weight ma-
trix, b(l) is the bias vector, and σ is the activation function. The transformation captures the
interactions between features and enables the network to extract meaningful patterns from the
input.

2. Compute the Output Error
After obtaining the output from the final layer, we need to assess how far off the predictions are
from the actual target values. This is done by calculating the output error, which quantifies the
difference between the predicted and actual outputs. The output error is calculated as

δ(L) = ∇aC ⊙ σ′(z(L))

Here, ∇aC represents the gradient of the cost function with respect to the output activations.
The term σ′(z(L)) is the derivative of the activation function at the output layer, indicating how
sensitive the output is to changes in the input. The element-wise multiplication ⊙ allows us to
compute the error at the output layer, which is essential for assessing the network’s performance
and guiding the subsequent updates.

3. Backpropagate the Error
To optimize the network, we must propagate the output error back through the layers. This step
involves calculating the error for each layer starting from the output layer and moving backward.
The error for each layer can be expressed as

δ(l) =
(
(W (l+1))T δ(l+1)

)
⊙ σ′(z(l))

Here, δ(l) represents the error for the l-th layer. The error from the subsequent layer is weighted
by the transpose of the weight matrix, and the derivative of the activation function is applied
to maintain the correct direction of the gradient. This process is crucial for determining how
each neuron contributed to the final error, allowing for targeted adjustments in the network’s
parameters.

4. Compute the Gradients
After calculating the errors for each layer, we need to compute the gradients of the cost function
with respect to the weights and biases. The gradients are given by

∂C

∂W (l)
= δ(l)(a(l−1))T ,

∂C

∂b(l)
= δ(l)

In this step, the gradients of the cost function with respect to weights and biases are computed.
These gradients will be used to update the weights and biases in the next step. The computation

2.2.3. REGULARIZATION TECHNIQUES 8

of gradients is a central aspect of the training process, as it directly influences the network’s
ability to learn from data.

Optimization techniques like gradient descent and its variants are used to update the network
parameters. The standard gradient descent update rule is

θt+1 = θt − η∇θJ(θt)

where η is the learning rate, controlling how much to adjust the weights with respect to the
gradient, and J(θ) is the cost function representing the error of the model. The choice of learning
rate is critical, as it affects the speed and stability of the training process. A learning rate that is
too high can cause the model to diverge, while a learning rate that is too low can result in slow
convergence.

Variants of gradient descent include :

1. Stochastic Gradient Descent (SGD)
In this approach, the weights are updated using the gradient calculated from a single training
example. The update rule for this method is

θt+1 = θt − η∇θJi(θt)

In SGD, the weights are updated using the gradient calculated from a single training example
Ji, allowing for faster updates but with more noise. This approach is advantageous in scenarios
with large datasets, as it allows the model to update more frequently and potentially escape local
minima.

2. Adam (Adaptive Moment Estimation)
Adam is an advanced optimization algorithm that combines the benefits of two extensions of
stochastic gradient descent. The equations for Adam are

mt = β1mt−1 + (1− β1)∇θJ(θt)

vt = β2vt−1 + (1− β2) (∇θJ(θt))
2

θt+1 = θt −
η

√
vt + ϵ

mt

Adam utilizes moving averages of both the gradients mt and the squared gradients vt to
adapt the learning rate for each parameter, effectively incorporating momentum and scaling
based on past gradients. This method is particularly effective for handling sparse gradients and
non-stationary objectives, making it a popular choice for training deep networks.[6]

2.2.3 Regularization Techniques

Regularization techniques are crucial for preventing overfitting in neural networks, which occurs
when the model learns noise in the training data rather than the underlying distribution. Over-
fitting can lead to poor generalization performance, where the model performs well on training
data but poorly on unseen data. Key methods include following.

1. L1/L2 Regularization
This technique involves adding a penalty term to the loss function to discourage overly complex
models. The penalty varies based on the type of regularization used, either promoting sparsity
or smaller weights.It is given by

J(θ) = J0(θ) + λR(θ)

2.2.3. REGULARIZATION TECHNIQUES 9

where R(θ) is the regularization term. The regularization parameter λ controls the strength of
the penalty. - L1: R(θ) = ∥θ∥1 =

∑
i |θi| promotes sparsity in the parameter space, effectively

reducing the complexity of the model by encouraging many parameters to be zero. - L2: R(θ) =
∥θ∥22 =

∑
i θ

2
i promotes smaller weights and smoothens the model, which can help in reducing

the model’s sensitivity to small fluctuations in the data.

2. Dropout
This regularization technique involves randomly setting a fraction p of input units to 0 during
training. By doing this, dropout prevents neurons from co-adapting too much, leading to more
robust feature learning. It is expressed as

y = f(Wx) → y = f(W (x⊙ r))

where r ∼ Bernoulli(p). This technique prevents co-adaptation of neurons, thereby making the
network more robust. By randomly dropping units during training, dropout introduces noise that
forces the network to learn more distributed representations, improving its ability to generalize.

3. Early Stopping
This method involves monitoring the validation error during training and stopping the process
when the validation error begins to increase. This approach helps prevent overfitting by ensuring
that the model does not train for too long. It is expressed as

Eval(t+ 1) > Eval(t) for t > t∗

where t∗ is the optimal stopping point. This helps to ensure that training is halted before the
model begins to overfit to the training data. By using a separate validation set to monitor perfor-
mance, early stopping provides a simple yet effective way to determine the best model iteration.

These techniques help prevent overfitting by reducing model complexity, introducing noise,
or limiting training time, respectively. By incorporating regularization methods, practitioners
can achieve models that generalize well to new, unseen data, enhancing the reliability and ro-
bustness of neural network applications.[7]

2.3. INTRODUCTION TO PHYSICS-INFORMED NEURAL NETWORKS (PINNS) 10

2.3 Introduction to Physics-Informed Neural Networks (PINNs)

Physics-Informed Neural Networks (PINNs) are an advanced type of neural network that incor-
porate known physical laws into the learning process, enabling the model to adhere to these laws
when making predictions. This integration is particularly useful in scenarios where traditional
data-driven models may fail due to data scarcity or the complex nature of physical systems.

Input Layer Hidden
Layers

Output
Layer

Standard Neural Network

Input Layer Hidden
Layers

Output
Layer

Physics-
Based Loss

Physics-Informed Neural Network (PINN)

Governing Equations Boundary Conditions

Figure 2.3: Standard Neural Network and Physics-Informed Neural Network (PINN)

The foundational principle of PINNs is to embed physical laws, typically expressed as dif-
ferential equations, directly into the architecture of neural networks. This is achieved by con-
structing a custom loss function that not only penalizes the prediction error but also the deviation
from the physical laws that is

L = Ldata + λLphysics

where Ldata is the loss due to prediction error, Lphysics is the loss due to deviation from
physical laws, and λ is a regularization parameter that controls the trade-off between these two
losses [8].

Figure 2.4 illustrates the architecture of a Physics-Informed Neural Network. The network
takes input coordinates (x) and outputs predictions (u). The key feature of PINNs is the incor-
poration of physical laws into the loss function. This is achieved by computing gradients of the
network’s output with respect to its input (∂u/∂x, ∂2u/∂x2, etc.) and using these to evaluate the
residual of the underlying differential equation. This residual is then added as an extra term in
the loss function, ensuring that the learned solution is consistent with the known physics [9].

2.3. INTRODUCTION TO PHYSICS-INFORMED NEURAL NETWORKS (PINNS) 11

Figure 2.4: Schematic representation of a Physics-Informed Neural Network

PINNs have been applied across various domains, including fluid dynamics, quantum me-
chanics, and material science, to solve problems that are otherwise computationally expensive
or infeasible to solve with traditional numerical methods. The ability of PINNs to use both data
and laws of physics makes them uniquely capable of solving inverse problems, where parame-
ters within the laws need to be inferred from observational data. One of the key advantages of
PINNs is their ability to handle complex, nonlinear partial differential equations (PDEs) that are
often challenging for traditional numerical methods. By encoding the PDE into the loss function,
PINNs can find solutions that satisfy both the data and the governing equations simultaneously.

To demonstrate the effectiveness of PINNs, consider a simple example of a damped har-
monic oscillator. The underlying physics can be described by the following differential equation

m
d2u

dt2
+ µ

du

dt
+ ku = 0

where m is the mass of the oscillator, µ is the coefficient of friction, and k is the spring
constant. For a PINN to solve this problem, we would construct the following loss function

L =
1

N

N∑
i=1

|u(ti)− ui|2 + λ
1

Nf

Nf∑
j=1

|md2u

dt2
(tj) + µ

du

dt
(tj) + ku(tj)|2

where the first term represents the mean squared error between the network’s predictions
and the available data points, and the second term enforces the physics of the damped harmonic
oscillator [9].

Physics-Informed Neural Networks (PINNs) offer significant advantages in terms of com-
putational efficiency. Unlike traditional numerical methods that often require fine spatial and
temporal discretization, PINNs can provide continuous solutions in both space and time. This
continuous representation allows for efficient evaluation of the solution at any point in the do-
main without the need for interpolation. Moreover, PINNs have shown remarkable capabilities
in handling inverse problems and parameter estimation. In many scientific and engineering
applications, the parameters of the governing equations are unknown and need to be inferred
from data. PINNs can naturally handle such scenarios by treating these unknown parameters as
trainable variables within the network.

Traditional numerical methods, including the Finite Difference Method (FDM) and Finite
Element Method (FEM), are widely employed for solving partial differential equations (PDEs)
that arise in numerous fields such as fluid dynamics, structural analysis, and heat conduction.
These methods operate by discretizing the governing equations and the computational domain
into a mesh or grid.

2.3. INTRODUCTION TO PHYSICS-INFORMED NEURAL NETWORKS (PINNS) 12

FDM approximates derivatives using difference equations, which can lead to straightfor-
ward implementations for simple geometries. On the other hand, FEM subdivides the domain
into smaller, manageable elements, allowing for greater flexibility in handling complex geome-
tries and varying material properties. While these traditional methods are well-established and
provide reliable solutions, they often require fine spatial and temporal discretization to achieve
high accuracy, which can lead to significant computational costs. Additionally, they necessi-
tate specialized techniques for boundary and initial conditions and may struggle with problems
involving sharp gradients or discontinuities. Despite these limitations, traditional methods re-
main a cornerstone in numerical analysis due to their rigorous mathematical foundations and
extensive error quantification techniques.

The following table summarizes the advantages and limitations of traditional methods (FDM
and FEM) and PINNs for heat conduction problems.

Criteria Traditional Methods
(FDM, FEM)

PINNs

Mesh Requirement Requires explicit mesh gen-
eration

Mesh-free approach

Physics Integration Implicit in discretization Explicit through loss func-
tion

Boundary Conditions Handled separately for each
case

Unified handling within loss
function

Flexibility Less adaptable to complex
geometries

Highly flexible for various
conditions

Error Quantification Established techniques avail-
able

Still under research

Computational Efficiency Can be optimized for speed May be computationally in-
tensive

Handling of Discontinuities May struggle with sharp
changes

Can struggle without adap-
tive techniques

Table 2.1: Comparative Analysis of Traditional Methods and PINNs

2.4. 2D HEAT CONDUCTION EQUATION 13

2.4 2D Heat Conduction Equation

The two-dimensional heat conduction equation is a pivotal partial differential equation (PDE)
in the field of thermal physics and engineering. This equation serves as a mathematical model
to describe the temporal and spatial distribution of temperature in a two-dimensional medium.
It is crucial for understanding how heat propagates within materials and across various systems,
impacting a wide range of applications from industrial processes to environmental science.

The origin of the 2D heat conduction equation lies in the principles of energy conservation
and Fourier’s law of heat conduction. Energy conservation dictates that the rate of change of
internal energy within a body must equal the net rate of heat entering the body. Fourier’s law, on
the other hand, establishes that the heat flux through a material is proportional to the negative
gradient of temperature, meaning that heat naturally flows from hotter to cooler regions. This
foundational understanding is pivotal in formulating the equation that governs heat conduction
in two dimensions.[10]

For a homogeneous and isotropic medium—where the material properties are uniform and
identical in all directions—and assuming constant thermal properties, the 2D heat conduction
equation is expressed as

∂u

∂t
= α

(
∂2u

∂x2
+

∂2u

∂y2

)
(2)

where

• u(x, y, t) represents the temperature at a specific position (x, y) and time t. This function
captures the thermal state of the medium and its evolution over time, providing a compre-
hensive view of how temperature changes in response to internal and external factors.

• α denotes the thermal diffusivity of the medium, a crucial parameter that quantifies how
rapidly heat diffuses through the material. It is a measure of the material’s ability to
conduct heat relative to its ability to store heat.

• ∂u
∂t
signifies the rate of change of temperature with respect to time, indicating the dynamic

evolution of the thermal state. This term is essential for understanding transient heat
conduction, where temperature changes occur over time.

• ∂2u
∂x2 and ∂2u

∂y2
are the second-order partial derivatives of temperature with respect to the

spatial coordinates x and y, respectively. These derivatives capture the curvature of the
temperature distribution, reflecting how temperature gradients influence heat flow within
the medium.[11]

The thermal diffusivity α is defined as

α =
k

ρcp

where k is the thermal conductivity, ρ is the density, and cp is the specific heat capacity of
the material. This relation underscores that thermal diffusivity is influenced by the material’s
ability to conduct heat, its density, and its capacity to store thermal energy. A higher thermal
diffusivity indicates that the material can quickly adjust its temperature in response to changes,
leading to faster heat distribution throughout the medium.

2.4. 2D HEAT CONDUCTION EQUATION 14

Equation 2 encapsulates the fundamental principle that the rate of change of temperature at
any point within the medium is proportional to the spatial curvature of the temperature field at
that point. This relationship enables the prediction of heat flow and distribution within a two-
dimensional medium over time. More specifically, it implies that regions of high temperature
will transfer heat to adjacent cooler regions, thereby promoting a more uniform temperature
distribution as time progresses. This smoothing effect, characteristic of diffusion processes, is
central to the analysis of thermal systems and plays a crucial role in numerous applications.

In situations where the temperature distribution reaches a steady state and does not change
with time (∂u

∂t
= 0), the heat conduction equation simplifies to the Laplace equation which is

given by

∂2u

∂x2
+

∂2u

∂y2
= 0

The Laplace equation is particularly useful in analyzing long-term thermal behavior in sys-
tems where transient effects have dissipated. In the steady state, the heat conduction process
stabilizes, and the temperature distribution can be analyzed without the complicating factor of
time dependence. This simplification is invaluable in scenarios where systems have reached
equilibrium, such as in many engineering applications where constant boundary conditions are
maintained over extended periods.

The 2D heat conduction equation finds applications across a wide spectrum of fields, each
presenting unique challenges and opportunities.

1. Thermal Management in Electronic Devices: Effective thermal management is criti-
cal in the design and operation of electronic devices, such as microprocessors, batteries,
and power electronics, where excessive heat can lead to reduced performance, reliability
issues, or even catastrophic failure. Understanding heat conduction allows engineers to
design cooling systems, such as heat sinks and thermal interfaces, that maintain compo-
nents within safe temperature limits.[10]

2. Building Insulation and Energy Efficiency Studies: In the context of sustainable ar-
chitecture and energy conservation, analyzing heat conduction through building materials
is essential for optimizing thermal performance. By understanding how heat is lost or
gained through walls, roofs, and windows, architects and engineers can design structures
that minimize energy consumption while maximizing comfort for occupants.

3. Geothermal Energy Systems: In geothermal energy applications, the 2D heat equation
helps model the transfer of thermal energy from the Earth’s subsurface to the surface,
informing the design and optimization of geothermal power plants. Accurate modeling
of heat conduction in geological formations enhances the efficiency of energy extraction
techniques and supports the development of sustainable energy sources.

4. Climate Modeling and Weather Prediction: Simulating temperature distributions in
the atmosphere and oceans is vital for understanding climate dynamics and forecasting
weather patterns. The 2D heat equation plays a crucial role in climate models that predict
temperature changes and their impacts on global and regional scales, providing valuable
insights for environmental policy and planning.

5. Materials Science and Manufacturing Processes: In materials science, heat treatment
processes such as annealing, quenching, and welding are used to alter material properties.
Understanding heat conduction is essential for controlling these processes and achieving

2.4. 2D HEAT CONDUCTION EQUATION 15

desired outcomes, such as improved mechanical properties, reduced internal stresses, or
enhanced microstructural characteristics.[11]

Various methods can be employed to solve the 2D heat equation, each offering distinct ad-
vantages and limitations:

1. Analytical Methods: Techniques such as separation of variables provide exact solutions
for simple geometries and boundary conditions. These methods often involve transform-
ing the PDE into a set of ordinary differential equations that are solvable under given con-
ditions. While analytical solutions offer precise results, they are typically limited to cases
with simple geometries, homogeneous material properties, and straightforward boundary
conditions.

2. Numerical Methods: Numerical approaches, including finite difference, finite element,
and finite volume methods, discretize the spatial domain and approximate the solution at
grid points. These methods are versatile and well-suited for complex geometries, hetero-
geneousmaterials, and intricate boundary conditions. Numerical methods are widely used
in practice due to their flexibility and ability to handle real-world complexities, although
they often require significant computational resources and careful attention to numerical
stability and convergence.

3. Transform Methods: Techniques such as Fourier and Laplace transforms are effective
for certain types of problems with specific boundary or initial conditions. These meth-
ods convert the PDE into algebraic equations, which can be solved more easily and then
transformed back to obtain the solution in the original domain. Transform methods are
particularly useful for problems with periodic or semi-infinite domains, allowing for ef-
ficient analysis of systems with repetitive or large-scale features.[11]

In this thesis, we focus on solving the 2D heat equation using Physics-Informed Neural
Networks (PINNs), particularly with Neumann boundary conditions. PINNs represent a novel
approach that combines the flexibility of neural networks with the physical constraints imposed
by the heat equation, offering a powerful tool for solving complex heat conduction problems.
The use of PINNs enables the incorporation of physical laws directly into the training process,
allowing the model to learn from both data and the governing equations simultaneously. This
integration of data-driven and physics-based methodologies provides a robust framework for ad-
dressing the challenges of heat conduction in heterogeneous and complex media.Understanding
and solving the 2D heat equation is crucial for accurately predicting temperature distributions
and heat flow in complex systems. This knowledge enables better design and optimization of
thermal processes and technologies, leading to more efficient and effective solutions in various
engineering and scientific domains. By leveraging advanced computational techniques and in-
novative modeling approaches like PINNs, we aim to enhance our ability to model and control
thermal phenomena, ultimately advancing our capacity to develop cutting-edge technologies and
sustainable energy solutions. Through this comprehensive exploration of the two-dimensional
heat conduction equation, we gain valuable insights into the fundamental principles govern-
ing heat transfer, the mathematical tools available for analysis, and the wide array of practi-
cal applications that benefit from a deeper understanding of thermal dynamics. This expanded
perspective empowers researchers and practitioners to tackle complex thermal challenges with
confidence and creativity, paving the way for innovations that enhance our quality of life and
address pressing global issues.

2.5. BOUNDARY CONDITIONS IN HEAT CONDUCTION PROBLEMS 16

2.5 Boundary Conditions in Heat Conduction Problems

Boundary conditions are fundamental components in the analysis of heat conduction problems,
as they define the thermal behavior at the boundaries of the domain under consideration. These
conditions, together with the governing differential equation and initial conditions, form a com-
plete mathematical framework for the heat transfer problem. They are crucial for accurately
representing how a system exchanges heat with its surroundings and for predicting the temper-
ature distribution within the domain.[12]

In the context of the two-dimensional heat conduction equation, multiple types of boundary
conditions can be applied, each corresponding to different physical scenarios and constraints.
These conditions are essential for ensuring that the solution to the heat conduction equation
aligns with the physical reality of the problem being modeled. By understanding and correctly
implementing these boundary conditions, one can achieve a realistic and reliable simulation of
heat transfer processes.

Heat Source

(0,0) (L,0)

(0,L) (L,L)

D
iri
ch
le
tB

C
u
=

u
0

C
on
ve
ct
io
n
B
C

−
k
∂
u

∂
x
=

h
(u

−
u
∞
)

Neumann BC (Heat Flux)
−k ∂u

∂y
= q0

Neumann BC (Insulated)
∂u
∂y

= 0

Figure 2.5: Boundary Conditions in Heat Conduction

Figure 2.5 presents a schematic representation of various boundary conditions, including
the Neumann condition, applicable to a heat conduction problem. To study the these bound-
ary conditions, particularly Neumann conditions, is vital for effectively modeling heat trans-
fer processes and developing solutions using advanced computational techniques like Physics-
Informed Neural Networks (PINNs).

2.5.1. DIRICHLET BOUNDARY CONDITION 17

2.5.1 Dirichlet Boundary Condition

The Dirichlet boundary condition, also known as the first-type boundary condition, specifies the
temperature at the boundary of the domain. It is mathematically expressed as

u(x, y, t) = f(x, y, t)

where f(x, y, t) is a known function that defines the temperature along the boundary over
time. This condition is particularly useful when the surface temperature is controlled or known,
such as in situations where the boundary is in direct contact with a thermal reservoir or a regu-
lated heat source.

In practical applications, Dirichlet boundary conditions are extensively used in engineering
and environmental systems where precise temperature control is necessary. For example, in
the design and operation of HVAC (Heating, Ventilation, and Air Conditioning) systems, main-
taining a constant temperature on interior walls is often required to ensure thermal comfort and
energy efficiency. Similarly, in electronic cooling systems, components such as heat sinks are
designed tomaintain specific temperatures to ensure the reliability and performance of electronic
devices.

The Dirichlet condition is straightforward to implement in both analytical and numerical
solutions, as it directly specifies the temperature values at the boundaries. This simplicity makes
it a preferred choice in many scenarios where the boundary temperature is a known quantity.

2.5.2 Robin Boundary Condition

The Robin boundary condition, also known as the mixed or third-type boundary condition, com-
bines elements of both Dirichlet and Neumann conditions. It is typically used to model convec-
tive heat transfer at a boundary and is mathematically expressed as

−k
∂u

∂n
= h(u− u∞)

In this expression, k is the thermal conductivity of the material, h is the convective heat
transfer coefficient, and u∞ is the ambient temperature of the surrounding fluid. The Robin
condition is applicable in scenarios where heat transfer at the boundary involves both conduction
and convection, such as a solid surface exposed to a moving fluid.[13]

This condition is essential in many industrial and environmental applications where con-
vective heat transfer plays a significant role. For instance, in the design of heat exchangers,
the Robin condition can model the thermal exchange between the fluid and the solid surfaces,
providing insights into the efficiency and effectiveness of the heat transfer process. Similarly,
in climate modeling, the Robin condition can represent heat transfer between the Earth’s sur-
face and the atmosphere, allowing for the simulation of temperature changes due to natural and
anthropogenic factors.

Implementing Robin boundary conditions in numerical models requires careful consider-
ation of both conductive and convective heat transfer mechanisms, making it a versatile yet
complex condition to apply.

2.5.3. PERIODIC BOUNDARY CONDITION 18

2.5.3 Periodic Boundary Condition

Periodic boundary conditions are used when the domain exhibits cyclic or repeating behavior,
such as in the analysis of heat transfer in a rotating or repetitive system. These conditions ensure
that the temperature and its gradient are continuous across the periodic boundary, effectively
modeling systems where the geometry or thermal behavior repeats itself.

In practical applications, periodic boundary conditions are applied in simulations of ma-
terials with repeating structures, such as crystals, composites, or textiles. They are also used
in computational fluid dynamics (CFD) to model flow patterns in rotating machinery, such as
turbines and compressors, where the thermal and flow behaviors are periodic.

Applying periodic boundary conditions can significantly reduce the computational complex-
ity of a problem by allowing the analysis of a representative section of the domain rather than
the entire system. This approach is particularly advantageous in large-scale simulations where
computational resources are limited.

2.5.4 Neumann Boundary Condition

The Neumann boundary condition, or second-type boundary condition, specifies the heat flux
at the boundary of the domain. It is mathematically represented as

−k
∂u

∂n
= q(x, y, t)

In this equation, k is the thermal conductivity, ∂u
∂n

is the temperature gradient normal to the
boundary, and q(x, y, t) is the specified heat flux. The Neumann condition is particularly rele-
vant in scenarios where the heat flow at the boundary is known or controlled, such as insulated
surfaces or areas with constant heat input.

In this thesis, we primarily focus on Neumann boundary conditions due to their wide appli-
cability in various engineering and scientific problems. The Neumann condition is especially
useful in cases where heat flux, rather than temperature, is the known or controlled parameter
at the boundaries.[12]

Key aspects of Neumann boundary conditions include

1. Physical Interpretation: The Neumann condition represents a specified heat flux at the
boundary, which can model various real-world scenarios such as insulated surfaces (zero heat
flux), constant heat input, or radiative heat transfer. For instance, in electronic devices, under-
standing the heat dissipation rate on the surface is crucial for effective thermal management.

2. Mathematical Formulation: The condition is expressed in terms of the normal derivative
of temperature at the boundary, aligning with Fourier’s law of heat conduction. This law relates
heat flux to the temperature gradient, providing a direct link between the physical process of
heat transfer and its mathematical representation.

4. Applications: Neumann conditions are widely used in the thermal management of elec-
tronic devices, building energy analysis, geothermal studies, and materials processing. For ex-
ample, in the analysis of heat dissipation in electronic components, the heat flux at the surface
of a chip can be specified as a Neumann condition. Similarly, in geothermal energy systems, the
heat flux at the Earth’s surface can be modeled to understand subsurface temperature dynamics.

5. Importance in Physics-Informed Neural Networks: When implementing PINNs for heat

2.5.4. NEUMANN BOUNDARY CONDITION 19

conduction problems, incorporating Neumann boundary conditions requires careful considera-
tion in the loss function formulation. The network must learn to satisfy these flux conditions
at the boundaries while also solving the heat equation in the interior of the domain. This in-
volves designing loss functions that appropriately balance the physics-based constraints with
data-driven insights, ensuring that the model accurately represents the underlying physical pro-
cesses.

2.6. PYTORCH FRAMEWORK FOR PINNS 20

2.6 PyTorch Framework for PINNs

The implementation of Physics-Informed Neural Networks (PINNs) can be significantly en-
hanced using the PyTorch framework, which offers a flexible and efficient platform for develop-
ing deep learning models. As an open-source machine learning library, PyTorch is distinguished
by its dynamic computational graph, allowing for seamless integration of neural network com-
ponents and automatic differentiation capabilities. This feature is particularly advantageous for
PINNs, where the computation of derivatives is essential for incorporating governing physical
laws directly into the network.

One standout feature of PyTorch is its dynamic graph structure, which enables easy modifi-
cation of the network architecture during runtime. This capability is crucial for rapid experimen-
tation and prototyping of PINN models, allowing researchers to tailor the networks to specific
problem domains effectively. Researchers can adjust various parameters, such as the number
of layers to capture the complexity of the problem, the number of neurons to optimize per-
formance and improve accuracy, and the choice of activation functions to introduce necessary
non-linearity for specific applications. Furthermore, PyTorch’s extensive library of pre-built
modules and functions simplifies the implementation of complex neural network architectures,
making the framework accessible to both researchers and practitioners.

The integration of PINNs with PyTorch is further bolstered by specialized libraries like
PINNs-Torch, which provide essential tools and utilities that streamline the development pro-
cess. These libraries facilitate efficient data handling, allowing for the organization and pre-
processing of datasets. Additionally, they support customizable loss functions, enabling users
to encode physical laws, initial conditions, and boundary constraints directly into the training
process. They also offer support for various types of boundary and initial conditions, making
it easier to model complex physical scenarios. Such capabilities allow researchers to focus on
core aspects of their investigations, minimizing the complexities typically associated with neural
network implementation.

Another notable advantage of the PyTorch framework is its built-in support for GPU accel-
eration, which ensures that PINN models can be trained efficiently on large datasets or complex
simulations. This feature significantly reduces computation time, enhancing scalability and al-
lowing researchers to tackle high-dimensional problems or those requiring extensive computa-
tional resources. Applications of this capability span across fields such as fluid dynamics, where
researchers simulate the behavior of fluid flows under various conditions, and structural anal-
ysis, where they assess the integrity and performance of materials under stress. The ability to
leverage GPU resources is essential for effectively solving computationally intensive problems
in various scientific and engineering fields.

Physics-Informed Neural Networks have demonstrated remarkable versatility in addressing
a wide range of physical problems, such as heat conduction in multiple dimensions. They are
particularly effective in managing:

1. Steady-state problems, where systems reach a stable temperature distribution over time.

2. Transient problems, where temperature varies with both time and space.

3. Complex boundary conditions, including Neumann conditions that specify heat flux at
the boundaries.

4. Source terms or forcing functions that model external influences on the system.

2.6. PYTORCH FRAMEWORK FOR PINNS 21

By enabling the flexible formulation of custom loss functions, PINNs effectively encode
these physical laws, initial conditions, and boundary constraints. Additionally, when combined
with modern visualization techniques, PINNs can provide insightful representations of how so-
lutions evolve over time and space. This visualization capability is crucial for understanding the
dynamics of the modeled phenomena and effectively conveying results to stakeholders.

In summary, the PyTorch framework serves as a robust and versatile platform for imple-
menting PINNs. Its dynamic graph structure, comprehensive library, and GPU support con-
tribute significantly to enhancing both the speed and usability of these models. Consequently,
PyTorch has become an ideal choice for researchers aiming to develop and deploy sophisticated
PINN-based solutions across various scientific and engineering domains [14].

3 Case Studies

3.1 2D Heat Conduction with Center Heat Source

This case study explores the application of Physics-Informed Neural Networks (PINNs) to ad-
dress a challenging two-dimensional heat conduction problem characterized by a localized heat
source. The investigation is set within a well-defined square domain, chosen for its symmetry
and simplicity, which allows for a focused study of heat dynamics. Within this domain, the
boundaries are assumed to be perfectly insulated, meaning that no heat can escape or enter from
the edges. This setup is akin to a closed thermal system where energy transformation occurs
internally without external influence. A centralized heat source is introduced at the heart of the
domain, simulating conditions where heat is generated from a point or region of interest, such
as in electronic circuit hotspots or localized heating applications.

Heat Source

(0,0) (L,0)

(0,L) (L,L)

Figure 3.1: 2D Heat Conduction with Center Heat Source

Through this study, we aim to demonstrate the capability of PINNs to solve complex, time-
dependent partial differential equations (PDEs) that incorporate specific boundary conditions
and source terms. PINNs leverage the strengths of neural networks to embed the governing
physical laws into the learning process, efficiently approximating solutions even in challenging
scenarios. Understanding the dynamics of heat diffusion from a localized source is crucial across
various domains.

3.1.1 Governing Equation

The heat conduction process in this scenario is governed by the following partial differential
equation, whichmathematically describes how the temperature field evolves over time and space
within the domain and is expressed as

∂u

∂t
= ϵ

(
∂2u

∂x2
+

∂2u

∂y2

)
+ f(x, y, t)

22

3.1.2. DOMAIN AND BOUNDARY CONDITIONS 23

where, the function u(x, y, t) denotes the temperature distribution across the spatial coordi-
nates x and y at any given time t. The parameter ϵ, representing thermal diffusivity, is set to 0.1
in this problem. Thermal diffusivity is a keymaterial property that characterizes the rate at which
heat spreads through a material. A higher diffusivity indicates that heat is conducted quickly,
while a lower value suggests slower conduction. In our study, setting ϵ to 0.1 reflects a moderate
rate of heat diffusion, suitable for capturing the nuanced interplay between conduction and lo-
calized heating. The term f(x, y, t) represents the heat source, which introduces energy into the
system. This source term adds complexity to the model by providing localized energy input that
influences the temperature distribution. The PDE effectively combines the classical parabolic
heat equation, which describes the natural diffusion of heat throughout a medium, with a source
term that accounts for the direct thermal input from the localized heat source. This formula-
tion is essential for accurately modeling scenarios where heat is not uniformly distributed but
rather concentrated at specific points or regions, reflecting real-world conditions encountered in
various applications, from industrial manufacturing processes to natural systems.

3.1.2 Domain and Boundary Conditions

The problem is defined within a square domain Ω = [0, L] × [0, L], where L = 1.0 denotes
the length of each side, establishing a confined space for the heat conduction analysis. This
choice of a square domain simplifies the computational setup while allowing for a comprehen-
sive study of heat distribution and boundary interactions. To accurately model this physical
scenario, Neumann boundary conditions are applied to all sides of the domain, representing
insulated boundaries as

∂u

∂n
= 0 on ∂Ω

Here, n represents the outward normal vector to the boundary ∂Ω. These Neumann boundary
conditions imply that there is no net heat flux across the boundaries of the domain, effectively
simulating a perfectly insulated system where heat cannot escape or be absorbed at the bound-
aries.

(0,0) (L,0)

(0,L) (L,L)

Heat Source∂u
∂x

= 0 ∂u
∂x

= 0

∂u
∂y

= 0

∂u
∂y

= 0

Figure 3.2: Schematic diagram of the square domain showing insulated boundary conditions
and centralized heat source.

This assumption is crucial for many real-world applications where thermal insulation is de-
sired, such as in building envelopes, heat exchangers, and electronic packaging, ensuring that

3.1.3. HEAT SOURCE 24

heat generated within the domain remains confined without loss to the surroundings. By main-
taining these boundary conditions, the model accurately reflects scenarios where external factors
do not influence the internal thermal dynamics, allowing for a focused study on the effect of the
internal heat source and the material properties governing conduction.

3.1.3 Heat Source

The heat source, a critical component of this study, is strategically positioned at the center of
the domain (0.5, 0.5). It is modeled using a Gaussian function to represent the localized energy
input which is expressed as

f(x, y, t) = S exp
(
−(x− xc)

2 + (y − yc)
2

2r2

)
[15] In this equation, S = 500 indicates the strength of the heat source, effectively quantify-

ing the intensity or rate at which heat is introduced into the system. The coordinates (xc, yc) =
(0.5, 0.5) specify the central location of the heat source within the domain, aligning with the
geometric center of the square. This precise positioning ensures a symmetrical influence on the
temperature field, simplifying the analysis while allowing for a clear observation of the heat
diffusion pattern. The parameter r = 0.1 serves as the characteristic radius of the heat source,
defining the spatial extent over which the heat is concentrated. The Gaussian profile chosen
for this model offers a smooth and mathematically tractable representation of localized heat
input, which is commonly encountered in real-world applications such as laser heating, spot
welding, or microchip hotspots. This approach ensures that the heat distribution is realistic and
continuous, accurately mimicking how energy from a point source diffuses into the surround-
ing medium. The Gaussian function’s parameters can be adjusted to simulate different source
strengths and sizes, providing flexibility and adaptability in modeling various scenarios.

3.1.4 Initial Condition

The initial condition specifies the temperature distribution at the onset of the simulation, estab-
lishing a baseline from which the system evolves. In this study, the initial temperature distribu-
tion is uniformly set to a room temperature of 25°C across the entire domain i.e

u(x, y, 0) = 25°C ∀(x, y) ∈ Ω

This uniform initial condition signifies that the system begins from a state of thermal equi-
librium, with no temperature gradients present before the activation of the heat source. Such
a setup is typical in many thermal analyses, providing a controlled environment to observe the
effects of a newly introduced heat source. By starting from a uniform temperature, the study
can clearly delineate the impact of the localized heating, facilitating an understanding of how the
temperature field evolves over time as influenced by both diffusion and the central heat source.
This scenario is particularly relevant for applications where systems are initially at rest or in
a steady state before experiencing thermal perturbations. The choice of room temperature as
the baseline reflects common ambient conditions, making the results applicable and relatable
to practical situations. By carefully controlling the initial state, the study isolates the effects of
the heat source, providing insights into the fundamental processes governing heat conduction in
insulated systems.

3.1.5. PINN IMPLEMENTATION 25

3.1.5 PINN Implementation

The implementation of a Physics-Informed Neural Network (PINN) for solving the 2D heat con-
duction problem with a center heat source is centered around the governing partial differential
equation (PDE) which is

∂u

∂t
= ϵ

(
∂2u

∂x2
+

∂2u

∂y2

)
+ f(x, y, t)

where, u(x, y, t) represents the temperature distribution across the spatial coordinates x and
y, and time t. The parameter ϵ is the thermal diffusivity, a material property that quantifies
the rate at which heat diffuses through the material. It is a crucial factor in many engineering
applications, where the efficiency of heat conduction is a determinant of material performance
and safety. The term f(x, y, t) denotes the heat source, capturing the localized energy input that
drives the thermal dynamics within the domain. The goal of the PINN is to approximate the so-
lution u(x, y, t) by learning the underlying physics directly from the PDE, initial conditions, and
boundary conditions. This approach leverages the expressive power of neural networks while
embedding the physical laws governing the system, offering an efficient and flexible alternative
to traditional numerical methods, which often involve discretization and can be computationally
intensive.

Neural Network Architecture

x

y

t

Tanh Tanh Tanh Tanh Tanh

uInput

Hidden Layers (50 neurons each)

Output

Linear
+ 25°C

Figure 3.3: Neural network architecture for the 2D heat conduction.

The PINN is implemented using PyTorch, a popular deep learning library, with the following
architecture.

3.1.5. PINN IMPLEMENTATION 26

class PINN(nn.Module):
def __init__(self, layers, neurons, activation=nn.Tanh()):

super(PINN, self).__init__()
self.activation = activation
self.layers = nn.ModuleList()
self.layers.append(nn.Linear(3, neurons))
for _ in range(layers - 1):

self.layers.append(nn.Linear(neurons, neurons))
self.layers.append(nn.Linear(neurons, 1))

def forward(self, x, y, t):
inputs = torch.cat([x, y, t], dim=1)
output = inputs
for layer in self.layers[:-1]:

output = self.activation(layer(output))
output = self.layers[-1](output) + 25
return output

The architecture of this Physics-Informed Neural Network (PINN) is specifically designed
to approximate the solution u(x, y, t). The key components of this architecture include the input
layer, which accommodates three neurons corresponding to the spatial and temporal inputs, x,
y, and t. By handling these inputs directly, the network is able to learn the spatial and temporal
dependencies inherent in the heat conduction problem, which is crucial for capturing the dy-
namic behavior of the system as it evolves over time and space.In addition to the input layer, the
network comprises five hidden layers, each containing 50 neurons. The number of layers and
neurons are hyperparameters that can be adjusted to balance the model’s capacity and compu-
tational efficiency. While more layers and neurons can increase the network’s ability to capture
complex patterns, they may also require more data and computational power to train effectively.
These hidden layers function as the network’s feature extractors, transforming the input data into
higher-level representations that facilitate the learning of complex relationships.

The activation function utilized for the hidden layers is the hyperbolic tangent (tanh) func-
tion. This choice is motivated by the smoothness and non-linearity of the tanh function, which
maps inputs to the range (−1, 1). This property helps in stabilizing gradients during training and
provides a smooth approximation of the temperature field. The tanh function’s ability to han-
dle varying data distributions makes it suitable for capturing the subtle variations in temperature
across the domain.The output layer consists of a single neuron, which outputs the predicted tem-
perature value for the given input coordinates. This scalar output represents the solution to the
heat equation at specific points in space and time. By focusing on a single output, the network
is streamlined for solving scalar field problems characteristic of many physical systems.

Finally, a constant bias term of 25 is added to the output of the network to initialize pre-
dictions around room temperature (25°C). This addition helps to center the network’s initial
predictions around a realistic baseline, reflecting the initial condition of the system. This bias
acts as a corrective measure, anchoring the network’s predictions to a known starting condition,
which can facilitate faster and more stable convergence during training.The forward method
defines how input data flows through the network to produce an output, encapsulating the trans-
formations applied at each layer. The use of torch.cat concatenates the input tensors, and the
loop through self.layers applies each layer transformation, followed by the activation func-
tion, to propagate the input through the network. This method effectively orchestrates the data
processing pipeline, ensuring that each input is systematically transformed into a meaningful
prediction.

3.1.5. PINN IMPLEMENTATION 27

Loss Function Components

The total loss function for the PINN is constructed as a weighted sum of three distinct com-
ponents, each enforcing different aspects of the problem’s constraints and conditions which can
be written as

Ltotal = w1Lpde + w2Linitial + w3Lboundary

In this implementation, the weights w1 = w2 = w3 = 1.0 are chosen to balance the con-
tributions of each loss component, reflecting equal importance in satisfying the PDE, initial
conditions, and boundary conditions. These weights can be tuned to emphasize different as-
pects of the problem, allowing for flexibility in addressing specific challenges or emphasizing
certain conditions over others.

3.1.5.1 PDE Residual Loss (Lpde)

This component of the loss function is crucial as it enforces the satisfaction of the heat equation
throughout the domain.

def pde_loss(model, x, y, t, epsilon, f):
u = model(x, y, t)
u_t = torch.autograd.grad(u, t, grad_outputs=torch.ones_like(u),

create_graph=True)[0]
u_x = torch.autograd.grad(u, x, grad_outputs=torch.ones_like(u),

create_graph=True)[0]
u_y = torch.autograd.grad(u, y, grad_outputs=torch.ones_like(u),

create_graph=True)[0]
u_xx = torch.autograd.grad(u_x, x, grad_outputs=torch.ones_like(u_x),

create_graph=True)[0]
u_yy = torch.autograd.grad(u_y, y, grad_outputs=torch.ones_like(u_y),

create_graph=True)[0]

residual = u_t - epsilon * (u_xx + u_yy) - f
return torch.mean(residual ** 2)

This function computes the residual of the heat equation using automatic differentiation,
which is a key feature of PyTorch that allows for efficient computation of gradients. Auto-
matic differentiation is essential for training PINNs because it enables the precise calculation
of all necessary derivatives, facilitating the enforcement of PDE constraints directly in the loss
function. Here are the key aspects

• u_t, u_x, u_y: These represent the first-order derivatives of the temperature field with
respect to time t, and spatial coordinates x and y, respectively. These derivatives capture
the rate of change of temperature in both time and space, which are critical for modeling
the dynamic evolution of the system.

• u_xx, u_yy: These represent the second-order spatial derivatives, providing information
about the curvature of the temperature field in the x and y directions. These terms are
essential for capturing the diffusion aspect of the heat equation, as they describe how
temperature gradients change, leading to heat flow.

• residual: This represents the difference between the left and right sides of the PDE. A
zero residual indicates that the PDE is perfectly satisfied by the network’s predictions.

3.1.5. PINN IMPLEMENTATION 28

The residual captures the extent to which the network’s predictions deviate from the true
physical behavior dictated by the PDE.

• The mean squared error of the residual is returned as the loss, quantifying the extent to
which the network’s predictions deviate from satisfying the PDE. This loss component is
minimized during training, compelling the network to produce solutions that align closely
with the physical laws governing the heat conduction process.

This loss component is minimized during training, forcing the network to learn solutions that
adhere closely to the physical law described by the heat equation. By accurately capturing the
PDE constraints, the network can generalize well to new data points, maintaining consistency
with the underlying physics.

3.1.5.2 Initial Condition Loss (Linitial)

This component ensures that the initial temperature distribution predicted by the networkmatches
the specified initial condition at t = 0.
def initial_loss(model, x, y, t, u0):

u = model(x, y, t)
return torch.mean((u - u0) ** 2)

This function computes the mean squared error between the predicted initial temperature
and the specified initial temperature u0, which is set to 25°C for this problem. By minimizing
this loss component, the network is constrained to produce accurate initial conditions, ensuring
that the simulation begins from a realistic starting point. The initial condition loss is crucial
as it establishes the baseline state of the system, from which all subsequent thermal dynamics
evolve. By accurately capturing this initial state, the PINN can more effectively model the tem-
poral evolution of the temperature field. This component ensures that the network respects the
initial temperature distribution, providing a solid foundation for the subsequent time-dependent
analysis.

3.1.5.3 Boundary Condition Loss (Lboundary)

In addition to the other components, it’s important to enforce the boundary conditions, ensuring
that the network’s predictions respect the insulation constraints imposed on the domain’s edges.
Although not fully detailed in the provided code, this component would typically involve com-
puting the mean squared error between the predicted and expected boundary values, similar
to the approach used for initial conditions. This would involve using the Neumann boundary
condition to ensure no heat flux across the boundaries.
def boundary_loss(model, x_boundary , y_boundary , t):

u = model(x_boundary , y_boundary , t)
u_n = torch.autograd.grad(u, x_boundary , grad_outputs=torch.ones_like(u

), create_graph=True)[0] #
Assuming normal is in x-direction

return torch.mean(u_n ** 2)

This boundary loss function would calculate the first derivative normal to the boundary, en-
suring it is zero (no heat flux). Ensuring that the boundary conditions are accurately respected is
critical for maintaining the physical integrity of the simulation, particularly in scenarios where

3.1.5. PINN IMPLEMENTATION 29

insulation plays a key role in system behavior. By accurately capturing these boundary con-
straints, the PINN ensures that the model’s predictions remain consistent with the assumed ther-
mal insulation, preventing unrealistic heat exchanges at the domain edges.

By combining these loss components, the PINN is trained to produce solutions that faithfully
represent the physical phenomena described by the heat conduction problem, providing insights
into temperature distributions over time and space. The integration of these components into
a unified loss function allows the network to balance various physical constraints, leading to a
robust solution that generalizes well across the domain.

3.1.5.4 Boundary Condition Loss (Lboundary)

The boundary condition loss is designed to enforce the Neumann boundary conditions, which
represent insulated boundaries where no heat flux occurs across the domain’s edges. This con-
dition is mathematically expressed as

∂u

∂n
= 0 ()

where n is the normal vector to the boundary. This condition implies that the derivative of the
temperature u normal to the boundary is zero, indicating that there is no change in temperature
across the boundary, effectively simulating insulation.

The function defined below implements this loss component.
def boundary_loss(model, x, y, t, length):

u = model(x, y, t)

x_boundary = (x <= 1e-6) | (x >= length - 1e-6)
y_boundary = (y <= 1e-6) | (y >= length - 1e-6)

u_x = torch.autograd.grad(u, x, grad_outputs=torch.ones_like(u),
create_graph=True)[0]

u_y = torch.autograd.grad(u, y, grad_outputs=torch.ones_like(u),
create_graph=True)[0]

loss_x = torch.mean(u_x[x_boundary]**2)
loss_y = torch.mean(u_y[y_boundary]**2)

return loss_x + loss_y

This function enforces the Neumann boundary conditions by computing the gradients of the
predicted temperature with respect to the spatial coordinates and penalizing any non-zero values
at the boundaries.

• x_boundary, y_boundary: These are booleanmasks used to identify points on the bound-
aries of the domain. The conditions x ≤ 1e− 6 or x ≥ length− 1e− 6 (similarly for y)
effectively capture the edges of the domain, ensuring the boundary conditions are applied
correctly.

• u_x, u_y: These represent the gradients of the temperature field uwith respect to x and y.
These gradients are computed using automatic differentiation, a powerful feature of Py-
Torch that allows for efficient calculation of derivatives necessary for enforcing physical
constraints.

3.1.6. TRAINING PROCESS 30

• The loss penalizes non-zero gradients at the boundaries by calculating the mean squared
value of these gradients. Specifically, loss_x and loss_y are computed as the mean
squared gradients at the x and y boundaries, respectively. This penalization ensures that
the network’s predictions respect the insulated boundary condition, maintaining physical
consistency across the domain.

By implementing this loss, the PINN can accurately enforce boundary conditions critical for
modeling scenarios where insulation plays a significant role, such as in thermal management
systems and insulated enclosures.

3.1.6 Training Process

The training process of the PINN involves several key components, each playing a crucial role in
ensuring the network learns an accurate and physically consistent solution to the heat conduction
problem.

3.1.6.1 Data Generation

Training points are generated on-the-fly using the generate_data function. In the PINN ap-
proach, we don’t rely on pre-existing datasets. Instead, we generate data points dynamically
during the training process. This method allows for adaptive sampling of the problem domain,
ensuring a comprehensive exploration of the spatial and temporal dimensions. The data genera-
tion process includes creating points for the interior domain, boundaries, and initial conditions,
each contributing uniquely to the training process.

This function generates three types of points.

1. Interior points: These points are randomly sampled within the domain [0, L] × [0, L]
and time interval [0, T]. They are crucial for enforcing the PDE throughout the domain,
capturing the bulk behavior of the heat conduction process.

2. Boundary points: Sampled on the edges of the domain to enforce boundary conditions.
These points are key to ensuring that the predicted solution respects the insulated bound-
aries, maintaining the physical constraints of the problem. The specific boundary condi-
tions for this heat conduction problem with insulated boundaries are

∂u

∂x
(0, y, t) = 0 ∀y ∈ [0, L], t > 0

∂u

∂x
(L, y, t) = 0 ∀y ∈ [0, L], t > 0

∂u

∂y
(x, 0, t) = 0 ∀x ∈ [0, L], t > 0

∂u

∂y
(x, L, t) = 0 ∀x ∈ [0, L], t > 0

These equations represent Neumann boundary conditions, also known as ”no-flux” or
”insulated” boundary conditions. They ensure that there is no heat flow across the bound-
aries, which is consistent with insulated edges.

3.1.6. TRAINING PROCESS 31

3. Initial condition points: Implicitly included by setting t = 0 for a subset of the generated
points. These points ensure that the initial condition loss is accurately enforced, providing
a baseline for the network’s predictions.

The number of boundary points is set to 10%of the total number of points, ensuring sufficient
coverage of the boundary conditions without overwhelming the training with boundary-specific
data. All generated points are assigned the requires_grad=True attribute, which is crucial for
computing gradients during the training process.

By generating data in this manner, we ensure a good coverage of the problem domain and
boundaries, which is essential for the PINN to learn the correct solution to the heat equation. The
on-the-fly generation also allows for easy adjustment of the sampling density and distribution as
needed during the training process, providing flexibility in addressing specific areas of interest
or complexity.

def generate_data(n_points , length, total_time):
x = torch.rand(n_points , 1, requires_grad=True) * length
y = torch.rand(n_points , 1, requires_grad=True) * length
t = torch.rand(n_points , 1, requires_grad=True) * total_time

n_boundary = n_points // 10
x_boundary = torch.cat([torch.zeros(n_boundary , 1), torch.full((

n_boundary , 1), length)], dim
=0)

y_boundary = torch.cat([torch.zeros(n_boundary , 1), torch.full((
n_boundary , 1), length)], dim
=0)

t_boundary = torch.rand(2 * n_boundary , 1, requires_grad=True) *
total_time

x = torch.cat([x, x_boundary , torch.rand(2 * n_boundary , 1) *
length], dim=0)

y = torch.cat([y, torch.rand(2 * n_boundary , 1) * length,
y_boundary], dim=0)

t = torch.cat([t, t_boundary , t_boundary], dim=0)

return x.to(device), y.to(device), t.to(device)

This function efficiently generates the necessary data points, facilitating the comprehensive
training of the PINN. By dynamically adjusting the points based on the current epoch’s needs,
the network is better equipped to learn complex patterns and behaviors within the domain.

3.1.6.2 Optimizer

: The Adam optimizer is used with a learning rate of 0.001. Adam is a widely used optimization
algorithm in deep learning, combining the advantages of two other extensions of stochastic
gradient descent, namely AdaGrad and RMSProp. It is well-suited for problems with noisy
gradients or when dealing with large datasets and parameters, making it ideal for training neural
networks in physics-informed contexts.

optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

The choice of optimizer and learning rate significantly impacts the convergence and stability
of the training process. Adam’s adaptive learning rate adjustments and momentum components
help in navigating the loss landscape effectively, reducing the risk of getting stuck in local min-
ima.

3.1.7. VISUALIZATION 32

3.1.6.3 Training Loop

: The network is trained for 3000 epochs. Each epoch represents a complete pass through the
training data, duringwhich the network parameters are updated based on the computed gradients.

for epoch in range(epochs):
x, y, t = generate_data(n_points, length, total_time)
u0 = torch.full_like(x, 25) # Initial condition (room temperature)
f = heat_source(x, y, center_x, center_y, heat_radius ,

heat_strength , t)

optimizer.zero_grad()
loss_residual = pde_loss(model, x, y, t, epsilon, f)
loss_initial = initial_loss(model, x, y, torch.zeros_like(t), u0)
loss_boundary = boundary_loss(model, x, y, t, length)
loss = weight_residual * loss_residual + weight_initial *

loss_initial +
weight_boundary *
loss_boundary

loss.backward()
optimizer.step()

In each epoch, new data is generated, losses are computed and backpropagated, and the
model parameters are updated. This iterative process allows the network to progressively refine
its predictions, learning to satisfy the PDE, initial conditions, and boundary conditions simulta-
neously. The dynamic generation of data ensures that the network is exposed to a diverse set of
scenarios, promoting robust learning and generalization.

3.1.6.4 GPU Acceleration

The implementation leverages GPU acceleration when available. GPUs offer significant com-
putational power, particularly for parallelizable tasks such as matrix operations and gradient
calculations, which are common in neural network training.

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = PINN(layers, neurons).to(device)

By utilizing GPU resources, the training process can be significantly accelerated, enabling
the handling of larger datasets and more complex models. This capability is particularly benefi-
cial for physics-informed neural networks, where the computational demands can be substantial
due to the integration of complex physical laws and constraints.

3.1.7 Visualization

This visualization step is crucial for interpreting and communicating the results of the trained
PINN model. By creating an animated heatmap, we can effectively display the temporal evolu-
tion of the temperature distribution across the domain:

• A grid of points is created for visualization, providing a structured representation of the
spatial domain. This grid serves as the basis for evaluating the model’s predictions and
generating the heatmap.

3.1.7. VISUALIZATION 33

• The update function computes the temperature distribution for each frame of the anima-
tion. This function is called repeatedly to update the heatmap with the predicted tempera-
ture values at different time steps, creating a dynamic visualization of the heat conduction
process.

• The animation shows 51 frames (equivalent to 5 seconds) of the heat conduction process.
Each frame corresponds to a specific time step, allowing for a detailed examination of
how the temperature field evolves over time.

• Center and edge temperatures are displayed for each frame, providing key metrics that
offer insights into the heat distribution dynamics. Monitoring these temperatures helps in
assessing the effectiveness of the heat source and the influence of the insulated boundaries
on the overall temperature profile.

The results are visualized using an animated heatmap created with matplotlib, a widely used
plotting library in Python. This visualization not only aids in understanding the model’s pre-
dictions but also serves as a powerful tool for communicating the results to stakeholders and
collaborators.
fig, ax = plt.subplots(figsize=(8, 7))
x_plot = np.linspace(0, length, n_points_plot)
y_plot = np.linspace(0, length, n_points_plot)
x_plot, y_plot = np.meshgrid(x_plot, y_plot)
x_plot = torch.tensor(x_plot.flatten(), dtype=torch.float32).unsqueeze(1).

to(device)
y_plot = torch.tensor(y_plot.flatten(), dtype=torch.float32).unsqueeze(1).

to(device)

def update(frame):
t_plot = torch.full_like(x_plot, frame * 0.1).to(device)
with torch.no_grad():

u_plot = model(x_plot, y_plot, t_plot).cpu().numpy().reshape(
n_points_plot , n_points_plot)

im.set_array(u_plot)
ax.set_title(f'2D Heat Conduction with Center Heat Source at t={frame *

0.1:.1f}s')

center_temp = u_plot[n_points_plot//2, n_points_plot//2]
edge_temp = (u_plot[0, 0] + u_plot[0, -1] + u_plot[-1, 0] + u_plot[-1,

-1]) / 4
temp_text.set_text(f'Center Temp: {center_temp:.2f}\textdegree C, Edge

Temp: {edge_temp:.2f}\textdegree
C')

return [im, temp_text]

anim = FuncAnimation(fig, update, frames=51, interval=200, blit=True)
anim.save('heat_conduction_center_source_diffusion.gif', writer='pillow',

fps=10)

This implementation demonstrates how PINNs can effectively solve the 2D heat conduc-
tion problem by incorporating the governing PDE, initial conditions, and boundary conditions
directly into the neural network training process. By leveraging advanced visualization tech-
niques, the results are presented in a clear and engaging manner, facilitating a deeper under-
standing of the complex thermal dynamics at play.

3.1.8. SIMULATION RESULTS 34

3.1.8 Simulation Results

3.1.9. SIMULATION ANALYSIS 35

Figure 3.5: Simulations at Different Time Frames: Central heat source

3.1.9 Simulation Analysis

This Physics-Informed Neural Network (PINN) simulation models two-dimensional heat con-
duction in a square plate, governed by the heat equation which is given by

∂T

∂t
= α

(
∂2T

∂x2
+

∂2T

∂y2

)
+Q(x, y, t)

In this equation, T represents temperature, t is time, α is the thermal diffusivity (set to
0.01 m²/s in our simulation), and Q is the heat source term. This partial differential equation
encapsulates the fundamental physics of heat transfer, describing how thermal energy diffuses
through the plate over time. The left-hand side represents the rate of change of temperature
at any point, while the right-hand side consists of two components: the spatial diffusion of
heat (represented by the second-order partial derivatives) and the additional heat input from the
source.

The simulation domain is a 1m x 1m square plate, chosen to represent a standard unit area for
ease of analysis. We simulate the heat conduction process for a duration of 5 seconds, providing
sufficient time to observe significant temperature changes while keeping computational costs
manageable. The initial temperature T0 is set to 25°C, representing a typical room temperature

3.1.9. SIMULATION ANALYSIS 36

condition. A central heat source provides continuous thermal energy input, creating a non-
uniform temperature distribution that evolves over time.

This setup allows us to investigate how heat propagates from a localized source through
a homogeneous material, providing insights into thermal management in various engineering
applications, from electronic device cooling to building insulation design.

3.1.9.1 Temperature Evolution Analysis

Center Temperature: We observed a substantial temperature increase at the center of the
plate, where the heat source is located. This central point experiences the most direct and intense
heating, resulting in the following key observations:

Observation Value
Initial temperature T (0, 0, 0) = 25°C
Final temperature T (0, 0, 5) ≈ 125°C

Total temperature rise ∆T ≈ 100°C
Average heating rate (∆T/∆t) ≈ 20°C/s

Table 3.1: Key observations for the center temperature evolution.

The temperature rise at the center follows an approximately exponential curve, which is
typical of heating processes approaching equilibrium, represented as

T (0, 0, t) ≈ 25 + A(1− e−kt),

where A ≈ 100°C represents the maximum temperature increase, and k ≈ 0.5 s−1 is the
heating rate constant. This equation captures the rapid initial heating that gradually slows as
the temperature approaches its maximum value. The exponential form arises from the balance
between the constant heat input and the increasing rate of heat loss to the surrounding cooler
regions as the temperature difference grows.

The high value of k indicates a rapid initial temperature rise, consistent with the localized
nature of the heat source. As time progresses, the rate of temperature increase slows, reflected in
the exponential decay term. This behavior is crucial in many engineering applications, such as in
the design of heat sinks for electronic components, where understanding the rate of temperature
rise is essential for preventing thermal damage.

Edge Temperature: The edges of the plate, located 0.5m from the center in each direction,
showed a more complex and nuanced temperature evolution.

Observation Value
Initial temperature T (±0.5,±0.5, 0) = 25°C

Minimum temperature Tmin ≈ 24.8°C (observed at t ≈ 0.1s)
Final temperature T (±0.5,±0.5, 5) ≈ 42°C

Overall temperature change ∆T ≈ 17°C
Average heating rate (after initial dip) ≈ 3.5°C/s

Table 3.2: Key observations for the edge temperature evolution.

3.1.9. SIMULATION ANALYSIS 37

Analysis of Temperature Behavior: The edge temperature behavior reveals interesting dy-
namics in the heat diffusion process, providing insights into the complex interplay of heat trans-
fer mechanisms. Notably, there is an initial temperature dip, with∆Tdip = Tmin−T0 ≈ −0.2°C.
This small but noticeable dip occurs within the first 0.1 seconds of the simulation and may be
attributed to several factors: the rapid central heating creates a strong temperature gradient, mo-
mentarily drawing heat from the edges towards the center; the finite speed of heat propagation
in the material results in a delayed response at the edges; and it could be an artifact of the PINN’s
initial predictions as the model refines its understanding of the physical system.

After this initial dip, the edge temperature rises steadily, approximated by

T (±0.5,±0.5, t) ≈ 25 + B(1− e−mt) for t > 0.1s,

where B ≈ 17°C is the total temperature increase at the edges, and m ≈ 0.3 s−1 is the
heating rate constant. This equation describes the gradual heating of the edges as heat diffuses
from the center. The lower value ofm compared to the center’s k reflects the slower heating rate
at the edges due to their distance from the heat source. The exponential form of this equation is
consistent with the solution to the heat equation for a system approaching thermal equilibrium.

At the end of the simulation (t = 5s), the temperature distribution across the plate can be
approximated by a two-dimensional Gaussian function which is

T (x, y, 5) ≈ 42 + 83e−(x2+y2)/2σ2

,

where σ ≈ 0.3m represents the spread of the heat distribution. This equation describes a
temperature peak of 125°C at the center, decreasing radially to about 42°C at the edges. The
Gaussian shape is characteristic of diffusion processes from a point source, reflecting the spread
of heat from the center to the edges of the plate.

This spatial distribution provides key insights: the heat source’s effect is most pronounced
at the center, creating a localized high-temperature region, while the temperature decreases non-
linearly with distance from the center. The rate of decrease is steeper near the center and more
gradual towards the edges. The parameter σ quantifies the spread of heat, with approximately
68

Understanding this spatial distribution is crucial for various applications, such as optimizing
the placement of components and designing heat sinks in electronic cooling, gaining insights into
how different materials conduct and distribute heat in material science, and aiding in planning
insulation and HVAC systems for efficient temperature control in building design. The Gaus-
sian approximation, while simplified, captures the essential features of the heat distribution and
provides a tractable mathematical model for further analysis and prediction.

3.1.10. DIRICHLET BOUNDARY CONDITION: CENTRAL SOURCE HEATING 38

3.1.10 Dirichlet Boundary Condition: Central Source Heating

In this variation of the heat conduction problem, we implement Dirichlet boundary conditions
while maintaining a central heat source. The key difference lies in how we treat the boundaries
of the domain.

Heat Source

(0,0) (L,0)

(0,L) (L,L)

u
=

25
◦

u
=

25
◦

u = 25◦

u = 25◦

Figure 3.6: 2D Heat Conduction with Center Heat Source and Dirichlet Boundary Condition

3.1.10.1 Boundary Condition

The Dirichlet boundary condition for this problem is expressed as

u(x, y, t) = Tb for (x, y) ∈ ∂Ω, t ≥ 0

where Tb is the fixed boundary temperature (set to 25°C in our implementation), and ∂Ω
represents the boundary of the domain.

3.1.10.2 Mathematical Formulation:

The complete initial-boundary value problem can be stated as

∂u

∂t
= ϵ

(
∂2u

∂x2
+

∂2u

∂y2

)
+ f(x, y, t) in Ω× (0, T]

u(x, y, 0) = T0 in Ω
u(x, y, t) = Tb on ∂Ω× [0, T]

where Ω is the spatial domain, T is the final time, T0 is the initial temperature (room tem-
perature), and f(x, y, t) is the heat source term.

3.1.10. DIRICHLET BOUNDARY CONDITION: CENTRAL SOURCE HEATING 39

3.1.10.3 Implementation

The Dirichlet boundary condition is enforced through an additional loss term in the PINN as

LBC =
1

Nb

Nb∑
i=1

(u(xi, yi, ti)− Tb)
2

whereNb is the number of boundary points, and (xi, yi, ti) are the coordinates of these points.

3.1.10.4 Implementation in Code

The code snippet provided shows how to implement the Dirichlet boundary condition using
the function applyDirichletBoundaryCondition. This function sets the temperature at each
boundary of the 2D temperature array to the specified constant TD, effectively maintaining that
fixed temperature throughout the simulation.
def applyDirichletBoundaryCondition(temperature , T_D=25):

Setting the boundary temperatures to T_D
temperature[0, :] = T_D # Top boundary
temperature[-1, :] = T_D # Bottom boundary
temperature[:, 0] = T_D # Left boundary
temperature[:, -1] = T_D # Right boundary

This implementation ensures that the boundaries maintain a constant temperature, regardless
of the internal heat distribution.

3.1.10.5 Physical Interpretation

Unlike the Neumann condition, which models insulated boundaries, the Dirichlet condition rep-
resents a scenario where the boundaries are maintained at a constant temperature. This could
model, for example, a heating plate surrounded by a temperature-controlled environment.

3.1.10.6 Expected Behavior

With Dirichlet boundary conditions, we anticipate a more rapid dissipation of heat towards the
boundaries. And a steady-state solution where the temperature at the center remains elevated
due to the continuous heat source, while the edges maintain the fixed boundary temperature.

3.1.10.7 Comparison with Neumann Boundary Condition

The key differences from the Neumann boundary condition implementation are:

• The boundary temperature is fixed rather than having a zero flux condition.

• The system is not closed in terms of energy, as heat can be lost or gained through the
boundaries.

• The long-term behavior will show a balance between the central heat source and the heat
loss at the boundaries, rather than an overall temperature increase.

3.1.10. DIRICHLET BOUNDARY CONDITION: CENTRAL SOURCE HEATING 40

For comparison, the Neumann boundary condition implementation would look like following.
def applyNeumannBoundaryCondition(temperature):

Assuming temperature is a 2D array
temperature[0, :] = temperature[1, :] # Top boundary
temperature[-1, :] = temperature[-2, :] # Bottom boundary
temperature[:, 0] = temperature[:, 1] # Left boundary
temperature[:, -1] = temperature[:, -2] # Right boundary

This Neumann implementation sets the temperature gradient to zero at the boundaries, indi-
cating that no heat is lost or gained through the boundary. This results in a fundamentally differ-
ent behavior compared to the Dirichlet condition. In the Neumann case, heat is conserved within
the system, which can potentially lead to an overall temperature increase over time. Conversely,
the Dirichlet case allows for heat exchange at the boundaries, maintaining a fixed temperature re-
gardless of internal heat generation. While the Neumann condition might result in more uniform
heating in the long term, the Dirichlet condition will preserve a temperature gradient between
the center and the edges.This Dirichlet boundary condition implementation provides insights
into heat redistribution in systems with fixed-temperature boundaries, offering a contrast to the
insulated boundary scenario and demonstrating the PINN’s versatility in handling different types
of boundary conditions.

3.1.10. DIRICHLET BOUNDARY CONDITION: CENTRAL SOURCE HEATING 41

3.1.10.8 Simulation results of Dirichlet boundary condition

(a) Time 0.1s (b) Time 2.1s

(c) Time 3.0s (d) Time 5.0s

Figure 3.7: Simulation: Dirichlet boundary condition

3.1.10. DIRICHLET BOUNDARY CONDITION: CENTRAL SOURCE HEATING 42

3.1.10.9 Analysis of Dirichlet Boundary Condition Simulation

Simulation Setup

This simulation models 2D heat conduction within a 1m x 1m square plate over a duration of
5 seconds, incorporating a central heat source to simulate localized heating. The framework uti-
lizes a Dirichlet boundary condition to maintain a constant temperature of 25°C along the edges
of the plate, ensuring that the boundary does not absorb or dissipate heat during the simulation.
This setup allows for the observation of temperature variations over time, particularly as heat
diffuses from the center towards the edges.

Temperature Evolution

Table 3.3: Temperature Evolution : Dirichlet boundary condition

Time in [s] Temp. in Center in [◦C] Temp. on Edge in [◦C]

0.1 53 25
2.1 102 20
3.0 103 20
5.0 102 21

The results indicate that the temperature at the center rises rapidly, reaching a peak of 103°C
at around 3.0 seconds. In contrast, the edge temperatures begin at the set boundary condition of
25°C but decline to around 20-21°C by the end of the simulation. This unexpected drop signifies
that heat transfer to the edges is not as effective as anticipated, suggesting that the central heating
source has a limited impact on the outer regions of the plate.

Spatial Heat Distribution

At t = 5 s, a distinct temperature distribution is observed throughout the plate. The central
region is characterized by a significantly elevated temperature, peaking at 102°C, which un-
derscores the influence of the central heat source. Conversely, a steep temperature gradient is
evident from the center to the edges, indicating a rapid decrease in temperature as one moves
outward. The edge temperatures stabilize slightly below the initial 25°C boundary condition—
hovering around 21°C. This phenomenon suggests that while the center is effectively heated,
the heat does not efficiently propagate to the edges, likely due to the constraints imposed by the
boundary conditions.

3.1.10.10 Key Observations

From the simulation results, several notable insights can be drawn. Initially, there is a rapid
heating phase at the center, which transitions into a stabilization period with temperatures hov-
ering around 102-103°C after approximately 2 seconds. This rapid increase indicates a swift
response of the system to the heat source, leading to a quasi-steady state in the central region.
Lastly, the slight deviation of edge temperatures from the set Dirichlet condition raises intrigu-
ing questions regarding the heat dynamics at play, suggesting that further investigation into heat
transfer mechanisms could provide deeper insights into thermal behavior in similar systems.

3.1.11. COMPARISON OF NEUMANN AND DIRICHLET BOUNDARY CONDITIONS 43

3.1.11 Comparison of Neumann and Dirichlet Boundary Conditions

Table 3.4: Comparison of Temperature Behavior

Aspect Neumann Dirichlet
Center Temperature Evolution Reached approxi-

mately 125°C by t =
5s

Plateaued at approx-
imately 102-103°C
from t = 2.1s onwards

Edge Temperature Gradually increased
to about 42°C by t =
5s

Slightly decreased to
20-21°C, deviating
from the set 25°C

Temperature Gradient (Spatial Distribution) More gradual gradi-
ent from center to
edges

Steeper gradient,
with a larger tem-
perature difference
between center and
edges

Heat Spread Wider spread of the
high-temperature re-
gion

More concentrated
high-temperature
region at the center

Rate of Temperature Change Continuous increase
in temperature
throughout the simu-
lation

Rapid initial increase
followed by stabiliza-
tion

Key Differences and Their Causes

1. Boundary Heat Transfer: Neumann has no heat flux across boundaries, leading to heat
accumulation. Dirichlet boundaries act as perfect heat sinks/sources, maintaining a con-
stant temperature.

2. Energy Balance: Neumann conserves energy within the system, while Dirichlet allows
for energy exchange with the environment through boundaries.

3. Steady-State Behavior: Dirichlet reaches steady state more quickly, as excess heat can
be removed. Neumann leads to continuous temperature increase.

4. Spatial Uniformity: Neumann promotes more uniform temperature distribution over
time. Dirichlet maintains stark temperature contrasts between center and edges.

5. Maximum Temperature: Dirichlet limits maximum achievable temperature due to con-
stant heat sink at boundaries. Neumann allows for higher peak temperatures.

6. Edge Behavior: Unexpected slight cooling at edges in Dirichlet case suggests potential
numerical issues or imperfect boundary condition implementation.

3.1.11. COMPARISON OF NEUMANN AND DIRICHLET BOUNDARY CONDITIONS 44

3.1.11.1 Implications for Applications

Boundary conditions play a critical role in determining thermal behavior in various systems. Un-
derstanding the differences between Dirichlet and Neumann conditions can significantly impact
the effectiveness and efficiency of applications. For instance, Dirichlet conditions are ideal for
scenarios requiring strict temperature control and localized heating, while Neumann conditions
are better suited for insulated systems where natural heat distribution is analyzed. The choice of
boundary condition not only affects thermal management but also influences energy efficiency
and system stability. Below, we summarize the implications of these boundary conditions for
practical applications.

Table 3.5: Implications of Boundary Conditions for Applications

Application Aspect Dirichlet Condition Neumann Condition
Thermal Management Suitable for strict temperature

control
Appropriate for insulated sys-
tems or natural heat distribution

Heat Containment More effective at containing heat
near the source

Less effective for localized heat-
ing applications

Energy Efficiency May represent more energy-
efficient scenarios

Models scenarios where heat re-
covery or retention is important

System Stability Suggests greater thermal stabil-
ity

May indicate less stability in
thermal conditions

3.2. 2D HEAT CONDUCTION: REDISTRIBUTION OF HEAT 45

3.2 2D Heat Conduction: Redistribution of Heat

This case study investigates the redistribution of heat in a two-dimensional domain using a
Physics-Informed Neural Network (PINN). The objective is to model the temporal evolution
of temperature distribution within a square region, highlighting the neural network’s ability to
solve complex partial differential equations (PDEs) that describe heat conduction.

x

y

(−1,−1) (1,−1)

(−1, 1) (1, 1)

In
su
la
te
d
(∂

u
∂
x
=

0)

In
su
la
te
d
(∂

u
∂
x
=

0)

Insulated (∂u
∂y

= 0)

Insulated (∂u
∂y

= 0)

Hot

Hot

Cold

Cold

Figure 3.8: Redistribution of heat with non-uniform initial temperature

3.2.1 Governing Equation

The heat conduction in this study is modeled using the two-dimensional heat equation, which
governs the diffusion of heat in a medium. The equation is expressed as

∂u

∂t
= α

(
∂2u

∂x2
+

∂2u

∂y2

)
where

• u(x, y, t) is the temperature field as a function of spatial coordinates x and y, and time t.

• α = 0.1 is the thermal diffusivity, a parameter that influences the rate of heat diffusion.

This PDE is central to the study, as it encapsulates both the temporal and spatial changes in
temperature within the domain.

3.2.2 Domain and Boundary Conditions

The study is conducted on a square domainΩ = [−1, 1]× [−1, 1], which represents a unit square
centered at the origin. The boundaries of this domain are assumed to be perfectly insulated,
meaning there is no heat exchange with the environment. Such Neumann boundary conditions
are mathematically represented as

3.2.3. INITIAL CONDITION 46

∂u

∂n
= 0 on ∂Ω

where n denotes the outward normal to the boundary ∂Ω.

3.2.3 Initial Condition

The initial temperature distribution within the domain is designed to create a non-uniform start-
ing point for the simulation. The initial condition is defined as

u(x, y, 0) = 25 + 25 · sign(x · y)

This configuration results in temperature of 50°C in the upper-right and lower-left quadrants
(where x and y have the same sign). And temperature of 0°C in the upper-left and lower-right
quadrants (where x and y have opposite signs). And finally a base temperature of 25°C

3.2.4 PINN Implementation

The Physics-Informed Neural Network is implemented to learn the solution to the heat equation
while respecting the initial and boundary conditions.

3.2.4.1 Neural Network Architecture

The PINN is implemented using a fully connected neural network with four hidden layers, each
containing 32 neurons. The hyperbolic tangent (tanh) activation function is employed to intro-
duce non-linearity.
class PINN(nn.Module):

def __init__(self, layers):
super(PINN, self).__init__()
self.layers = nn.ModuleList()
self.layers.append(nn.Linear(3, layers[0])) # Input: (x, y, t)
for i in range(len(layers) - 1):

self.layers.append(nn.Linear(layers[i], layers[i + 1]))
self.layers.append(nn.Linear(layers[-1], 1)) # Output: u(x, y, t)

def forward(self, x):
for i in range(len(self.layers) - 1):

x = torch.tanh(self.layers[i](x))
x = self.layers[-1](x)
return x

The network takes three inputs (x, y, t) and outputs the predicted temperature u(x, y, t). The
use of tanh activation functions allows the network to capture non-linear relationships in the
solution.

3.2.4.2 PDE Residual

The PDE residual is computed using automatic differentiation to ensure that the learned solution
satisfies the heat equation.

3.2.4. PINN IMPLEMENTATION 47

def pde_residual(model, x, y, t):
u = model(torch.cat([x, y, t], dim=1))
u_t = torch.autograd.grad(u, t, grad_outputs=torch.ones_like(u),

create_graph=True, retain_graph=
True)[0]

u_x = torch.autograd.grad(u, x, grad_outputs=torch.ones_like(u),
create_graph=True, retain_graph=
True)[0]

u_xx = torch.autograd.grad(u_x, x, grad_outputs=torch.ones_like(u_x),
create_graph=True, retain_graph=
True)[0]

u_y = torch.autograd.grad(u, y, grad_outputs=torch.ones_like(u),
create_graph=True, retain_graph=
True)[0]

u_yy = torch.autograd.grad(u_y, y, grad_outputs=torch.ones_like(u_y),
create_graph=True, retain_graph=
True)[0]

return u_t - alpha * (u_xx + u_yy)

This function computes the first and second-order partial derivatives of u with respect to t,
x, and y using PyTorch’s autograd functionality. The residual is then calculated as the difference
between u_t and α(uxx + u_y), which should be zero for a perfect solution to the heat equation.

3.2.4.3 Loss Function and Training

The training process involves minimizing a composite loss function.

Loss = 10× PDE Loss+ IC Loss+ 10× BC Loss

where PDELoss ensures the solution adheres to the heat equation.IC Loss enforces the initial
temperature distribution and BC Loss maintains the Neumann boundary conditions.

The network is trained using the Adam optimizer over 20,000 epochs.
optimizer = optim.Adam(model.parameters(), lr=1e-4)

for epoch in range(num_epochs):
optimizer.zero_grad()

PDE loss
pde_loss = torch.mean(pde_residual(model, x, y, t) ** 2)

Initial condition loss
u_pred_ic = model(torch.cat([x_ic, y_ic, t_ic], dim=1))
ic_loss = torch.mean((u_pred_ic - u_ic) ** 2)

Boundary condition loss
u_left = model(torch.cat([x_bc_left , y_bc, t_bc], dim=1))
u_right = model(torch.cat([x_bc_right , y_bc, t_bc], dim=1))
u_bottom = model(torch.cat([x_bc, y_bc_bottom , t_bc], dim=1))
u_top = model(torch.cat([x_bc, y_bc_top, t_bc], dim=1))

u_x_left = torch.autograd.grad(u_left, x_bc_left , grad_outputs=torch.
ones_like(u_left), create_graph=
True)[0]

u_x_right = torch.autograd.grad(u_right, x_bc_right , grad_outputs=torch
.ones_like(u_right), create_graph

3.2.5. VISUALIZATION AND RESULTS 48

=True)[0]
u_y_bottom = torch.autograd.grad(u_bottom , y_bc_bottom , grad_outputs=

torch.ones_like(u_bottom),
create_graph=True)[0]

u_y_top = torch.autograd.grad(u_top, y_bc_top , grad_outputs=torch.
ones_like(u_top), create_graph=
True)[0]

bc_loss = torch.mean(u_x_left**2 + u_x_right**2 + u_y_bottom**2 +
u_y_top**2)

Total loss
loss = 10 * pde_loss + ic_loss + 10 * bc_loss

loss.backward(retain_graph=True)
optimizer.step()

The boundary condition loss is computed by evaluating the gradients of u at the boundaries
and ensuring they are close to zero, in accordance with the Neumann boundary conditions. The
initial condition loss compares the predicted values at t=0 with the specified initial condition.

3.2.5 Visualization and Results

The trained neural network is used to simulate and visualize the temperature distribution over
time. An animated GIF is created to illustrate the dynamic redistribution of heat.
num_points = 100
num_timesteps = 50
x = torch.linspace(-1, 1, num_points)
y = torch.linspace(-1, 1, num_points)
x, y = torch.meshgrid(x, y, indexing='ij')
x, y = x.reshape(-1, 1), y.reshape(-1, 1)

frames = []
for t in np.linspace(0, 1, num_timesteps):

t_tensor = torch.ones_like(x) * t
input_tensor = torch.cat([x, y, t_tensor], dim=1)
with torch.no_grad():

u_pred = model(input_tensor).reshape(num_points , num_points).numpy
()

plt.figure(figsize=(10, 8))
plt.imshow(u_pred, extent=[-1, 1, -1, 1], origin='lower', cmap='hot',

vmin=0, vmax=100)
plt.colorbar(label='Temperature')
plt.title(f'Time = {t:.2f}')
plt.xlabel('x')
plt.ylabel('y')

frame_path = os.path.join(save_path , f'frame_{int(t*100):03d}.png')
plt.savefig(frame_path)
frames.append(imageio.v2.imread(frame_path))
plt.close()

imageio.mimsave(gif_path , frames, fps=5)

This visualization process creates a series of frames showing the temperature distribution at
different time steps. The frames are then combined into an animated GIF, providing a dynamic

3.2.6. ANALYSIS OF SIMULATION RESULTS 49

view of the heat redistribution process over time.

This implementation demonstrates the effectiveness of Physics-Informed Neural Networks
in solving PDEs related to heat conduction, highlighting their potential for modeling and under-
standing thermal processes in various applications.

3.2.6 Analysis of Simulation Results

The analysis of the PINN simulation results for heat redistribution process withNeumann bound-
ary conditions provides insights into the temperature distribution at various time points. As
illustrated in Figures 1 through 6, the simulation captures the evolution of temperature from
an initial checkerboard pattern to a more uniform distribution over time. The following table
summarizes the key observations at random time intervals throughout the simulation.

Table 3.6: Summary of Temperature Distribution Observations

Time (s) Observations
0.00 Initial temperature distribution characterized by a checkerboard pattern. High

temperatures (approximately 50°C) in the top-right and bottom-left quadrants;
low temperatures (approximately 0°C) in the top-left and bottom-right quadrants.
Sharp temperature gradients at interfaces.

0.61 Significant heat diffusion. Sharp boundaries between hot and cold regions begin to
blur. Pronounced curving of temperature contours at corners. Overall temperature
range narrows, with cold areas warming and hot areas cooling.

1.21 Temperature distribution becomes more uniform. Original checkerboard pattern
still discernible but muted. Prominent curved isotherms, particularly near the do-
main boundaries, reflecting Neumann boundary conditions.

1.82 Further homogenization of the temperature field. Slightly warmer regions persist
in the top-right and bottom-left. Near-symmetric temperature distribution consis-
tent with the initial condition and boundary conditions.

2.00 Highly uniform temperature distribution across most of the domain. Subtle tem-
perature variations near the corners indicate incomplete equilibrium. Overall tem-
perature converging towards the average of the initial hot and cold temperatures
(approximately 25°C).

3.2.6.1 Key Observations

1. Rapid Initial Diffusion: The most dramatic changes occur early in the simulation, con-
sistent with Fourier’s law of heat conduction, which predicts faster heat transfer across
larger temperature gradients.

2. Boundary Effects: The Neumann (zero-flux) boundary conditions are evident in the
curved isotherms near the domain edges, demonstrating the conservation of energy within
the system.

3. Symmetry Preservation: The temperature distribution maintains symmetry throughout
the simulation, reflecting the symmetric initial and boundary conditions.

3.2.6. ANALYSIS OF SIMULATION RESULTS 50

Figure 3.9: Heat redistribution process at different time steps.

3.2.6. ANALYSIS OF SIMULATION RESULTS 51

4. Approach to Equilibrium: While the system has not reached a completely uniform tem-
perature by t = 2 s, it is clearly evolving towards a steady-state condition where the tem-
perature would be uniform across the domain.

These results demonstrate the PINN’s capability to capture the complex dynamics of heat
diffusion, including the effects of sharp initial gradients and insulated boundary conditions.
The simulation successfully models the transition from a highly non-uniform initial state to-
wards thermal equilibrium, showcasing the fundamental principles of heat transfer in a two-
dimensional system.

3.3. UNIFORMLY HOT SQUARE PLATE WITH NEUMANN BOUNDRY 52

3.3 Uniformly Hot Square Plate with Neumann Boundry

3.3.1 Problem Statement

We consider a two-dimensional heat transfer problem involving a square plate with uniform
initial temperature and insulated boundaries. This scenario represents an idealized case of ther-
mal equilibrium and serves as an important benchmark for validating numerical heat transfer
simulations.

Let Ω = [0, L]× [0, L] be a square domain representing the plate, where L is the side length.
The temperature distribution on this plate is denoted by u(x, y, t), where (x, y) ∈ Ω and t ≥ 0
represents time.

T0

∂
T

∂
x
=

0

∂
T

∂
x
=

0

∂T
∂y

= 0

∂T
∂y

= 0

Figure 3.10: A square plate with uniform initial temperature T0

The objective is to analyze and simulate the temperature evolution of this system over time,
given a uniform initial temperature and Neumann (insulated) boundary conditions.

3.3.2 Mathematical Formulation

The heat conduction in the plate is governed by the two-dimensional heat equation.

∂u

∂t
= α

(
∂2u

∂x2
+

∂2u

∂y2

)
(3.4.2)

where

• u(x, y, t) is the temperature at position (x, y) and time t

• α is the thermal diffusivity of the material, defined as α = k
ρcp

• k is the thermal conductivity

• ρ is the density

• cp is the specific heat capacity at constant pressure

3.3.3. INITIAL CONDITION 53

3.3.3 Initial Condition

At t = 0, the temperature is uniform across the entire plate

u(x, y, 0) = T0 ∀(x, y) ∈ Ω

where T0 is the initial temperature.

3.3.4 Boundary Conditions

Neumann boundary conditions are applied on all edges of the square, representing perfect insu-
lation which can be represented as

∂u

∂x
(0, y, t) = 0 ∀y ∈ [0, L], t > 0

∂u

∂x
(L, y, t) = 0 ∀y ∈ [0, L], t > 0

∂u

∂y
(x, 0, t) = 0 ∀x ∈ [0, L], t > 0

∂u

∂y
(x, L, t) = 0 ∀x ∈ [0, L], t > 0

(3.4.4)

These conditions ensure that there is no heat flux across the boundaries of the plate.

3.3.5 Analytical Solution

In this particular case, we can derive an analytical solution to the problem. Let’s consider the
implications of our initial and boundary conditions.

Given the uniform initial temperature T0 = 61.30 °C, we have

∇2u(x, y, 0) =
∂2u

∂x2
(x, y, 0) +

∂2u

∂y2
(x, y, 0) = 0 ∀(x, y) ∈ Ω (3.4.5)

This is because the temperature is constant across the domain, so all spatial derivatives are zero.

The Neumann boundary conditions (Eq. 3.4.4) ensure that there is no temperature gradient at
the boundaries. This means that the heat flux across the boundaries is zero,

−k∇u · n = 0 on ∂Ω

where n is the outward normal vector to the boundary ∂Ω.

Substituting Eq. 3.4.5 into the heat equation (Eq. 3.4.2), we get

∂u

∂t
= α∇2u = α · 0 = 0

This implies that ∂u
∂t

= 0 for all (x, y) ∈ Ω and t > 0.

Therefore, the analytical solution to this problem is

3.3.6. NUMERICAL SIMULATION 54

u(x, y, t) = 61.30 °C ∀(x, y) ∈ Ω, t ≥ 0

This solution satisfies the heat equation, the initial condition, and the boundary conditions.

3.3.5.1 Physical Interpretation

The constant temperature solution can be explained by the following physical principles:

1. Conservation of Energy: With insulated boundaries, there is no mechanism for the sys-
tem to exchange heat with its surroundings. Therefore, the total thermal energy of the
system must remain constant.

2. Second Law of Thermodynamics: Heat naturally flows from regions of higher temper-
ature to regions of lower temperature. In this case, there are no temperature gradients
within the system to drive heat flow.

3. Thermal Equilibrium: The system starts in a state of thermal equilibrium (uniform tem-
perature) and, with no external influences, remains in this equilibrium state.

3.3.6 Numerical Simulation

Despite the trivial nature of the analytical solution, it is instructive to perform a numerical sim-
ulation of this scenario. This serves several purposes like validation of the numerical method
and verification of boundary condition implementation.

For our simulation, we use the following parameters:

Domain: [0, 1]× [0, 1]

Initial temperature: 61.30°C

Thermal diffusivity: 0.1 m2/s

Simulation time: [0, 1]

Spatial discretization: 100 × 100 grid

Time step: 0.001 s

We employ a finite difference method with forward Euler time integration as

un+1
i,j − un

i,j

∆t
= α

(
un
i+1,j − 2un

i,j + un
i−1,j

(∆x)2
+

un
i,j+1 − 2un

i,j + un
i,j−1

(∆y)2

)
[16]

where un
i,j represents the temperature at grid point (i, j) and time step n.

3.3.7. SIMULATION RESULTS 55

The Neumann boundary conditions are implemented using ghost points as

un
−1,j = un

1,j (left boundary)
un
Nx+1,j = un

Nx−1,j (right boundary)
un
i,−1 = un

i,1 (bottom boundary)
un
i,Ny+1 = un

i,Ny−1 (top boundary)

(3.4.6)

where Nx and Ny are the number of grid points in the x and y directions, respectively.

3.3.7 Simulation Results

Figure 3.11: Temperature distribution Uniformly Hot Square Plate

Figure 3.11 shows the temperature distribution at three different random time steps: t = 0.8,
t = 2.0, and t = 7.2. As predicted by the analytical solution, the temperature remains constant
at 61.30°C and uniform throughout the simulation.

3.3.8 Error Analysis

To quantify the accuracy of our numerical simulation, we compute the maximum absolute error
between the numerical solution and the analytical solution which is expressed as

Emax = max
i,j

|un
i,j − 61.30|

For our simulation, we find thatEmax < 10−12 for all time steps, which is within the expected
range of floating-point precision errors.

3.3.9 Discussion

The simulation of a uniformly hot square plate with Neumann boundary conditions illustrates
several important concepts in heat transfer and numerical methods:

1. Importance of Boundary Conditions: This case demonstrates how boundary conditions
fundamentally determine the behavior of a heat transfer system. The insulated boundaries
prevent any heat exchange with the environment, leading to a constant temperature solu-
tion.

3.3.9. DISCUSSION 56

2. Equilibrium States: The system begins and remains in thermal equilibrium. This high-
lights the concept that without external influences or internal gradients, a system will
maintain its equilibrium state.

3. Numerical Method Validation: While the solution is trivial, this case serves as an excel-
lent test for numerical methods. It verifies that the method correctly implements Neumann
boundary conditions and maintains a constant solution when appropriate.

4. Conservation Properties: The simulation demonstrates the conservation of energy in the
system. The total thermal energy remains constant throughout the simulation, as expected
for an insulated system.

5. Stability and Accuracy: The numerical solution remains stable and accurate over long
simulation times, which is crucial for more complex heat transfer problems.

The study of a uniformly hot square plate with Neumann boundary conditions provides valu-
able insights into heat transfer processes and numerical simulation techniques. While the con-
stant temperature solution might seem trivial, it serves as a fundamental baseline case that vali-
dates the correct implementation of Neumann boundary conditions and demonstrates the ability
of numerical methods to maintain constant solutions. Moreover, it illustrates the importance of
temperature gradients or external influences in driving heat transfer. This scenario also serves
as a simple test case for assessing the conservation properties and long-term stability of nu-
merical schemes. Understanding and correctly simulating such fundamental cases is crucial for
building confidence in more complex heat transfer simulations, as it lays the groundwork for
tackling more challenging problems involving non-uniform initial conditions, mixed boundary
conditions, or additional heat sources and sinks.

4 Conclusion

This thesis presented a comprehensive study on the simulation of two-dimensional heat con-
duction using Physics-Informed Neural Networks (PINNs). By integrating the principles of
heat conduction with advanced neural network methodologies, we demonstrated the potential of
PINNs as an effective tool for solving complex thermal problems. The initial chapters provided
a foundational understanding of heat conduction principles and neural network architectures,
setting the stage for the application of PINNs. Through various case studies, including a cen-
tral heat source setup, heat redistribution scenarios, and the behavior of a uniformly hot square
plate, we highlighted the adaptability of PINNs in modeling heat conduction phenomena under
different boundary conditions.

The simulation results showed that PINNs could accurately capture temperature distribu-
tions and dynamics, often outperforming traditional numericalmethods such as Finite Difference
Method (FDM) and Finite Element Method (FEM). This was particularly evident in scenarios
with complex geometries and boundary conditions, where PINNs provided a more flexible and
efficient approach.Despite the promising results, this study also acknowledged the limitations of
PINNs, including the need for extensive training data and the challenges associated with conver-
gence in certain configurations. These insights pave the way for further research in optimizing
the training process and enhancing the robustness of PINNs in thermal simulations.

Looking ahead, future work could explore the integration of PINNs with other machine
learning techniques to refine predictions and improve computational efficiency. Additionally,
expanding the application of PINNs to three-dimensional heat conduction problems and real-
world engineering scenarios could significantly advance the field.In summary, this research
underscores the transformative potential of Physics-Informed Neural Networks in thermal sim-
ulations, offering a novel perspective on the intersection of physics and artificial intelligence.

The implementation of the algorithms and the associated code were developed using Python
and various libraries. All the code developed and utilized for this thesis is available in my
personal GitHub repository [17]. This repository contains all relevant scripts, documentation,
and additional resources that support the findings presented in this thesis.

57

Bibliography

[1] Elsevier, Thermal conduction, Accessed: [10.08.2024]. [Online]. Available: https://
booksite.elsevier.com/samplechapters/9780123735881/9780123735881.pdf.

[2] Wikipedia, Thermal conduction, Accessed: [10.08.2024]. [Online]. Available: https:
//en.wikipedia.org/wiki/Thermal_conduction.

[3] T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. DeWitt, Introduction to heat trans-
fer, Accessed: [15.08.224]. [Online]. Available: https://ia601300.us.archive.
org/5/items/bzbzbzHeatTrans/Heat%20and%20Mass%20Transfer/Bergman%2C%
20Incropera/Introduction%20to%20Heat%20Transfer%206e%20c.2011%20-
%20Bergman%2C%20Incropera.pdf.

[4] webbusterz, Thermal conduction, Accessed: [10.08.2024]. [Online]. Available: https:
//www.webbusterz.org/understanding-heat-transfer/.

[5] S. J. Mohaiminul Islam, Neural networks, Accessed: [31.08.2024]. [Online]. Available:
https://www.researchgate.net/publication/337137421_An_Overview_of_
Neural_Network.

[6] Y. Goldberg, “A primer on neural network models for natural language processing,” Oct.
2016. [Online]. Available: https://arxiv.org/abs/1510.00726.

[7] B. P. C, Regularization in neural networkss, Accessed: [10.10.2024]. [Online]. Available:
https://www.pinecone.io/learn/regularization-in-neural-networks/.

[8] Wikipedia,Neural networks, Accessed: [10.08.2024]. [Online]. Available: https://en.
wikipedia.org/wiki/Neural_network.

[9] B.Moseley, “So, what is a physics-informed neural network?,” 2023. [Online]. Available:
https://benmoseley.blog/my-research/so-what-is-a-physics-informed-
neural-network/ (visited on 08/31/2023).

[10] H. Song, “2d heat conduction applications,”Mar. 2017. DOI: https://www.sciencedirect.
com/science/article/pii/S2542435118300345.

[11] M. Adam, “Solving 1d and 2d heat conduction equations and advection equation,” Mar.
2023. DOI: 10.13140/RG.2.2.11783.98720.

[12] A. Chandra and R. Kumar, “Finite difference method and computational fluid dynamics,”
Mar. 2022. [Online]. Available: https://www.jafmonline.net/article_1282_
37dc9e7bbfb530c05996c31b03ce8774.pdf.

58

https://booksite.elsevier.com/samplechapters/9780123735881/9780123735881.pdf
https://booksite.elsevier.com/samplechapters/9780123735881/9780123735881.pdf
https://en.wikipedia.org/wiki/Thermal_conduction
https://en.wikipedia.org/wiki/Thermal_conduction
https://ia601300.us.archive.org/5/items/bzbzbzHeatTrans/Heat%20and%20Mass%20Transfer/Bergman%2C%20Incropera/Introduction%20to%20Heat%20Transfer%206e%20c.2011%20-%20Bergman%2C%20Incropera.pdf
https://ia601300.us.archive.org/5/items/bzbzbzHeatTrans/Heat%20and%20Mass%20Transfer/Bergman%2C%20Incropera/Introduction%20to%20Heat%20Transfer%206e%20c.2011%20-%20Bergman%2C%20Incropera.pdf
https://ia601300.us.archive.org/5/items/bzbzbzHeatTrans/Heat%20and%20Mass%20Transfer/Bergman%2C%20Incropera/Introduction%20to%20Heat%20Transfer%206e%20c.2011%20-%20Bergman%2C%20Incropera.pdf
https://ia601300.us.archive.org/5/items/bzbzbzHeatTrans/Heat%20and%20Mass%20Transfer/Bergman%2C%20Incropera/Introduction%20to%20Heat%20Transfer%206e%20c.2011%20-%20Bergman%2C%20Incropera.pdf
https://www.webbusterz.org/understanding-heat-transfer/
https://www.webbusterz.org/understanding-heat-transfer/
https://www.researchgate.net/publication/337137421_An_Overview_of_Neural_Network
https://www.researchgate.net/publication/337137421_An_Overview_of_Neural_Network
https://arxiv.org/abs/1510.00726
https://www.pinecone.io/learn/regularization-in-neural-networks/
https://en.wikipedia.org/wiki/Neural_network
https://en.wikipedia.org/wiki/Neural_network
https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/
https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/
https://doi.org/https://www.sciencedirect.com/science/article/pii/S2542435118300345
https://doi.org/https://www.sciencedirect.com/science/article/pii/S2542435118300345
https://doi.org/10.13140/RG.2.2.11783.98720
https://www.jafmonline.net/article_1282_37dc9e7bbfb530c05996c31b03ce8774.pdf
https://www.jafmonline.net/article_1282_37dc9e7bbfb530c05996c31b03ce8774.pdf

BIBLIOGRAPHY 59

[13] Mathoverflow, “Physical interpretation of robin boundary conditions,” May 2020. [On-
line]. Available: https : / / mathoverflow . net / questions / 95316 / physical -
interpretation-of-robin-boundary-conditions.

[14] R. A. Bafghi, Pytorch, Accessed: [31.08.2024]. [Online]. Available: https : / / www .
researchgate.net/publication/376521877_PINNs-Torch_Enhancing_Speed_
and_Usability_of_Physics-Informed_Neural_Networks_with_PyTorch.

[15] Wikipedia, Gaussian function, Accessed: [11.08.2024]. [Online]. Available: https://
en.wikipedia.org/wiki/Gaussian_function.

[16] Wikipedia, Euler method, Accessed: [10.10.2024]. [Online]. Available: https://en.
wikipedia.org/wiki/Euler_method.

[17] S. Aryal, Bachelor thesis: Pinns for 2d heat conduction, Accessed: 2024-10-28. [Online].
Available: https://github.com/Samman2571/Bachelor_thesis_PINNs_2D_Heat_
Conduction.

[18] R. A. Bafghi, Pytorch, Accessed: [31.08.2024]. [Online]. Available: https : / / www .
researchgate.net/publication/380824296_Comparing_PINNs_Across_Frameworks_
JAX_TensorFlow_and_PyTorch.

[19] G. Karniadakis, Y. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang, “Physics-
informed machine learning,” Nature Reviews Physics, pp. 1–19, May 2021. DOI: 10.
1038/s42254-021-00314-5.

[20] M. Raissi, Pinns, Accessed: [10.04.2024], 2023. [Online]. Available: https://github.
com/maziarraissi/PINNs.

[21] C. AB, Pinn heat equation, Accessed: [10.04.2024], 2023. [Online]. Available: https:
//github.com/cissieAB/pinn-heat-equation.

[22] 314arhaam, Heat pinn, Accessed: [10.04.2024], 2023. [Online]. Available: https://
github.com/314arhaam/heat-pinn.

https://mathoverflow.net/questions/95316/physical-interpretation-of-robin-boundary-conditions
https://mathoverflow.net/questions/95316/physical-interpretation-of-robin-boundary-conditions
https://www.researchgate.net/publication/376521877_PINNs-Torch_Enhancing_Speed_and_Usability_of_Physics-Informed_Neural_Networks_with_PyTorch
https://www.researchgate.net/publication/376521877_PINNs-Torch_Enhancing_Speed_and_Usability_of_Physics-Informed_Neural_Networks_with_PyTorch
https://www.researchgate.net/publication/376521877_PINNs-Torch_Enhancing_Speed_and_Usability_of_Physics-Informed_Neural_Networks_with_PyTorch
https://en.wikipedia.org/wiki/Gaussian_function
https://en.wikipedia.org/wiki/Gaussian_function
https://en.wikipedia.org/wiki/Euler_method
https://en.wikipedia.org/wiki/Euler_method
https://github.com/Samman2571/Bachelor_thesis_PINNs_2D_Heat_Conduction
https://github.com/Samman2571/Bachelor_thesis_PINNs_2D_Heat_Conduction
https://www.researchgate.net/publication/380824296_Comparing_PINNs_Across_Frameworks_JAX_TensorFlow_and_PyTorch
https://www.researchgate.net/publication/380824296_Comparing_PINNs_Across_Frameworks_JAX_TensorFlow_and_PyTorch
https://www.researchgate.net/publication/380824296_Comparing_PINNs_Across_Frameworks_JAX_TensorFlow_and_PyTorch
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://github.com/maziarraissi/PINNs
https://github.com/maziarraissi/PINNs
https://github.com/cissieAB/pinn-heat-equation
https://github.com/cissieAB/pinn-heat-equation
https://github.com/314arhaam/heat-pinn
https://github.com/314arhaam/heat-pinn

	Abstract
	List of Figures
	List of Tables
	Introduction
	Theoretical Background
	Introduction to Heat Conduction
	Fundamental Principles of Heat Conduction

	Introduction to Neural Networks
	Types of Neural Networks
	Training Process
	Regularization Techniques

	Introduction to Physics-Informed Neural Networks (PINNs)
	2D Heat Conduction Equation
	Boundary Conditions in Heat Conduction Problems
	 Dirichlet Boundary Condition
	 Robin Boundary Condition
	 Periodic Boundary Condition
	 Neumann Boundary Condition

	PyTorch Framework for PINNs

	Case Studies
	2D Heat Conduction with Center Heat Source
	Governing Equation
	Domain and Boundary Conditions
	Heat Source
	Initial Condition
	PINN Implementation
	Training Process
	Visualization
	Simulation Results
	Simulation Analysis
	Dirichlet Boundary Condition: Central Source Heating
	Comparison of Neumann and Dirichlet Boundary Conditions

	2D Heat Conduction: Redistribution of Heat
	Governing Equation
	Domain and Boundary Conditions
	Initial Condition
	PINN Implementation
	Visualization and Results
	Analysis of Simulation Results

	Uniformly Hot Square Plate with Neumann Boundry
	Problem Statement
	Mathematical Formulation
	Initial Condition
	Boundary Conditions
	Analytical Solution
	Numerical Simulation
	Simulation Results
	Error Analysis
	Discussion

	Conclusion
	References

