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Abstract

Current state-of-the-art methods for evaluating 6 degrees of freedom (6D) pose
estimators have several significant limitations. Existing error metrics often yield
near-zero errors even for inaccurate pose estimations and are highly dependent
on the object point cloud used, leading to inconsistent results across different
objects. Moreover, these metrics fail to account for false detections. Accurate
evaluation of pose estimators is crucial for applications in robotics, augmen-
ted reality, and object manipulation, where reliable performance is essential.
Evaluation is especially critical when analysing 6D pose estimators under dis-
turbance, to gain insight on how the disturbances affect the pose estimator.
This thesis introduces a novel error metric and evaluation score that can assess
poses independently of the specific object and incorporate false detections. The
proposed score is adjustable for various evaluation scenarios. A theoretical
discussion, along with a use case analysing a 6D pose estimator under disturb-
ances, demonstrates the advantages of the new evaluation method compared to
existing state-of-the-art approaches.

Zusammenfassung

Die aktuellen Methoden zur Bewertung von 6 Freiheitsgrade (6D) Positionsschät-
zern weisen mehrere erhebliche Einschränkungen auf. Bestehende Fehlermetri-
ken liefern oft Fehler nahe Null, selbst bei ungenauen Posenschätzungen, und
sind stark von der verwendeten Objektpunktwolke abhängig, was zu uneinheit-
lichen Ergebnissen bei verschiedenen Objekten führt. Zudem berücksichtigen
diese Metriken keine falschen Erkennungen. Eine präzise Bewertung von Posen-
schätzern ist jedoch entscheidend für Anwendungen in der Robotik, erweiterten
Realität und Objektmanipulation, bei denen zuverlässige Leistung unerlässlich
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ist. Dies gilt besonders, wenn 6D-Positionsschätzer unter Störungen analy-
siert werden, um zu verstehen, wie sich diese Störungen auf den Posenschätzer
auswirken. In dieser Arbeit werden eine neuartige Fehlermetrik und eine Bewer-
tungsskala vorgestellt, die Posen unabhängig vom spezifischen Objekt bewerten
und falsche Erkennungen einbeziehen können. Die vorgeschlagene Bewertungs-
methode ist anpassbar und kann somit auf verschiedene Bewertungsszenarien
abgestimmt werden. Eine theoretische Diskussion sowie ein Anwendungsfall,
der einen 6D-Positionsschätzer unter Störungen analysiert, verdeutlichen die
Vorteile der neuen Bewertungsmethode im Vergleich zu bestehenden Ansätzten
nach dem Stand der Technik.
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1
Introduction

The task of detecting and finding poses of objects in three-dimensional (3D)
space has gained significant attention in the recent decade. Successfully solving
this task would represent a substantial leap forward in various applications,
including autonomous driving, industrial and service robotics, and virtual reality,
to name a few.
How these poses estimators are evaluated plays a crucial role in developing
better pose estimators. Given the challenging nature of not only detecting the
object, but also finding its pose, i.e. its rotation and translation. It is not immedi-
ately obvious how the evaluation process should work, since various use cases
focus on different error aspects.
The main problem this thesis is trying to address is that no evaluation score
is available which takes rotation, translation and detection rates into account.
Additional currently deployed metrics are treating objects vastly different, de-
pending on their point cloud, some objects can produce errors up to three times
higher than others, under the same error in the pose estimation.
Since the quantitive results are often treated as of higher importance, than qual-
itative results, the calculation of the quantitive results is of upmost importance.
In practise, pose estimation methods are developed with the goal to achieve a
better quantitive score. If this score calculation does not take an error source
into account, false detections for example, this aspect will most likely be ignored
entirely, making the pose estimator unsuited for real applications.
For the use case of examining how a pose estimator performances under disturb-
ances, the evaluation also plays a central role, because every error aspect should
be considered. For pose estimators, a multisensory setup is often employed,
which brings the need for sensor fusion. Depending on the fusion algorithm, an
error in one sensor can propagate to other sensors, thereby compounding the
overall error in pose estimation. For instance, if a sensor fusion method heavily
relies on a particular sensor’s data, an error in that sensor can disproportion-
ately affect the combined estimate, leading to worse results than if the sensors
were used independently. For real applications, knowing how a pose estimator
performance under sensor disturbances is important, because disturbances can
originate from various sources, including environmental conditions, sensor lim-
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itations, and dynamic changes in the operational context. The current evaluation
methods are not suited for examining performance under disturbances, since
they do not take every kind of error into account and treat the pose estimation
as a binary problem where a pose is either considered correct or incorrect. Only
when a pose is considered correct, the quality of the pose is considered. Also,
recovering the kind of error from the current metrics and scores is not possible.
The question this thesis tries to answer is: How can pose estimators be eval-
uated, while considering every kind of error and being unbiased to different
kind of objects? Also, how can pose estimators be analysed under disturbances,
while being able to see how a disturbance affects different kinds of errors? As
answering these questions makes it possible to develop pose estimators more
suited for real applications.

1.1 THESIS STRUCTURE

In Chapter 2 preliminary information is given. In Chapter 3 current evaluation
methods are introduced, alongside a new novel approach for evaluation. Addi-
tionally, a theoretical compression is given between the evaluation methods is
given. In Chapter 4 the new novel approach, as well as the state-of-the-art eval-
uation is used on the use case of analysing a pose estimator under disturbances.
In Chapter 5 a conclusion is drawn and questions for future work are raised.

2 1 Introduction



2
Fundamentals

This chapter deals with preliminary information needed to understand this
thesis.

2.1 6D POSE ESTIMATION

In this section, the task of 6 degrees of freedom (6D) pose estimation is ex-
plained in detail. The goal of a 6D pose estimation method is to find both the
position (translation) and orientation (rotation) of predefined objects in three-
dimensional space. Here, predefined objects refer to those for which a 3D scan,
in the form of a high density point cloud and 3D textured model, is available.
The point cloud of an object o ∈ O is denoted as the set P and contains every
point p on the surface of a scanned object. If follows that the set O contains all
objects in a given dataset.

2.1.1 COMMONLY USED INPUT

An RGB (red, green, blue) image is almost always used for pose estimation. This
is due to the fact, that detecting objects on 2D images has been proven to work
well. An example of state of the art 2D object detectors would be YOLO which
is introduced in [24]. Also, RGB cameras are inexpensive and widely available,
meaning RBG image data is included in most datasets, like the YCB-Video and
LineMOD dataset, which are introduced in [36] and [13] respectively and a
camera can easily be added to most sensor setups.
Reliably extracting the 3D position of objects, relative to a fixed point, is much
harder. Especially when no markers are available. This is why a depth sensor,
providing a point cloud or depth image, is often used alongside an RGB image.
This greatly improves the accuracy, as can be seen when comparing state of the
art 6D pose estimators using only RGB images with estimators using RGBD (red,
green, blue, depth) data. And example of an RGBD image can seen in Figure 2.1.
On the YCB-Video benchmark PoseCNN, which is introduced in [36], achieves
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an increase of 25.6% mean ADD1, from 53.7% to 79.3%.
While depth sensors are more expensive than RGB cameras, they are still com-
monly available. This makes RGBD data common in datasets, benchmarks and
prototyping, which is why this thesis will focus on these data channels.
In theory, all information for a good pose estimation is given by RGBD data.
When looking at PoseCNN the RGB image is used to detect object 2D bounding
boxes, which are cropped out of the depth image, from which a good estimation
of the object position can be obtained. The orientation is then found by fitting
the object point cloud inside the cropped depth image.

2.1.2 OUTPUT

The pose estimator takes the input (like an RGBD image) and outputs the posi-
tion and rotation for every detected object. The estimated rotation is denoted
as R̂ and the translation t̂, for a single object. The rotation matrix R̂ is a 3× 3
matrix and the vector t̂ is of size 3.
Pose estimators can also output poses for objects not in the input, this is known
as a false detection. They can also not output a pose for an object in the input
this is known as a missed detection or a false negative.
The output, meaning the estimated poses, can be visualized by applying the es-
timated rotation R̂ and translation t̂ to the point cloud of the object P , resulting
in the estimated point cloud Pest,

Pest =
{
R̂p+ t̂|p ∈ P

}
. (2.1)

2.1.3 YCB-VIDEO DATASET

The YCB-Video dataset is introduced in [36] and is one of the largest and most
commonly used dataset for 6D pose estimation. It consists of 21 common house-
hold items, for each object a high density point cloud, as well as 3D texture
scans are available. It provides RBG and depth images and ground truth poses
for 133,827 frames, in 92 different scenes. An example frame can be found in
Figure 2.1.

ASUS XTION

The Asus Xtion was used to record the YCB-Video dataset, the technical spe-
cifications are provided in [1]. For the YCB-Video dataset the 30 fps mode was
used, which outputs 640×480 RGB and depth images. For the creation of the
depth images, an infrared structured light sensor is used. How structured light

1The metrics will be explained in detail in the Chapter 3.
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(a) RGB image. (b) Depth image

Figure 2.1: An example of a frame from the YCB-Video dataset, both the RGB
and the corresponding depth image are provided.

works in detail is explained in [26].
To summarize how structured light works: It projects a pattern onto an object’s
surface. The projected pattern deforms according to the surface geometry of
the object and is reflected back to the sensor. From the deformed pattern a 3D
model of the scanned surface is calculated.
Structured light systems, while effective for capturing detailed 3D informa-
tion, can be susceptible to various disturbances that impact their accuracy and
performance. One common disturbance is ambient light interference, where
external light sources, especially those with infrared components like sunlight or
certain artificial lights, can disrupt the projected pattern and lead to erroneous
depth readings. Surface texture and colour can also affect pattern visibility.
Highly textured or very dark surfaces may absorb the light, reducing contrast
and complicating the detection of pattern deformations. Furthermore, motion
blur can occur if the object or sensor is moving too quickly during capture,
leading to distorted or incomplete data.

2.1.4 ITERATIVE CLOSED POINT

Iterative Closed Point (ICP), or iterative corresponding point, is described in
multiple papers, such as[27] or[4]. It is an algorithm, which tries to fit a point
cloud A on to another point cloud B. Since it gets used as a step in many
state-of-the-art pose estimations, such as FFB6D, which is introduced in [11]
and described in Section 2.1.5, Iterative Closed Point (ICP) is explained in detail
in this section.
ICP works by iteratively moving the centre of two point clouds to each other
and rotating the point cloud in a way so that the average distance between the
points of the two point clouds gets smaller with every iteration.
The goal is to find a rotation matrix R̂ and a translation vector t̂, that minimizes
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the distance between points of A and B. In other words, it tries to minimize
the ADDS metric, which gets introduced in chapter 3, using R̂ and t̂, where
the ground truth rotation matrix R and ground truth translation vector t are
unknown.
In every iteration, first the centre of the two point clouds is calculated, meaning

cAi =
1

|PA|

|PA|∑
k=1

ak

and

cB =
1

|PB|

|PB|∑
k=1

bk,

(2.2)

where |PA| denotes the amount of points of the point cloud Ai, ak is a column
of the matrix Ai and represents a point of the point cloud A. The same is done
to point cloud B, where |PB| denotes the amount of points in the point cloud
and the column bk represents one point. The matrix Ai is a 3× |PA| matrix
and B is of size 3 × |PB|. The iteration index i is set to zero at the start and
A0 = A. cAi represents the centre of Ai and cB the centre of B.
Then ti is found by

ti = cB − cAi . (2.3)

Using cAi and cB the centre points of Ai and B are translated to 0 ∈ R3. This
done by

Z = Ai −CAi

and

Y = B−CB,

(2.4)

where CAi and CB are obtained by multiplying cAi and cB with 1T , which is
a vector filled with ones ∈ R|P|. Meaning

CAi = cAi1
T

and

CB = cB1
T .

(2.5)

The matrix Ti, which translate every point in Ai by ti, can be calculated with
Ti = ti1

T .
By using Z and Y, Ri can be found with

Ri = argmin
Ω

∥ΩZ−Y∥2F , (2.6)

where Ω is a 3× 3 rotation matrix and ∥ · ∥F denotes the Frobenius norm of a
matrix.
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So finding Ri is an orthogonal Procrustes problem, which can be solved by
SVD-factorization, as described in [28]. This can be seen when rearranging the
terms from equation 2.6,

Ri = argmin
Ω

∥Z∥2F + ∥Y∥2F − 2⟨ΩZ,B⟩F

= argmax
Ω

⟨ΩZ,Y⟩F

= argmax
Ω

⟨Ω,YZT ⟩F

= argmax
Ω

⟨Ω,UΣVT ⟩F

= argmax
Ω

⟨UTΩV,Σ⟩F

= argmax
Ω

⟨S,Σ⟩F .

(2.7)

And since S is a product of orthogonal matrices, it is again orthogonal. Also, Σ
is a diagonal matrix, meaning the inner product is maximized when S is equal
to the identity matrix I. From this is follows

I = UTRiV,

Ri = UVT ,
(2.8)

where U and V are obtained by the SVD-factorization of YZT .
At the end of each iterationAi is updated by applying the rotation and translation
to it,

Ai+1 = RiAi +Ti. (2.9)

After a fixed amount of iterations or convergence is reached, the algorithm stops
and R̂ = RiRi−1...R1R0 and t̂ = Riti +Ri−1ti−1 + ...+R1t1 + t0.
Under the assumption that B ≈ RA+T, i.e. the point cloud B is approximately
a rotated and translated point cloud A, the algorithm might converge to R ≈ R̂
and t ≈ t̂.
However, this can fail depending on the initial position. Since ICP is a greedy
algorithm and does not know which points of A and B do correspond.

2.1.5 FULL FLOW BIDERECTIONAL FUSION NETWORK FOR 6D
POSE ESTIMATION

Full Flow Biderectional Fusion Network for 6D Pose Estimation. (FFB6D) is a
pose estimator introduced in [11]. It is currently one of the best performing pose
estimators, achieving a score of 96.1% ADDS AUC on the YCB-Video benchmark
and a score of 99.7% ADD Accuracy on the LineMOD benchmark, which is
introduced in [13].
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FFB6D is a pipeline that its core uses a deep learning neural networks for
outputting eight key point per detected object. A downsampled point cloud is
fitted to the key points using ICP, recovering the pose of the detected object.
The pipeline also includes preprocessing, which for example sorts outs dead
pixels (pixels with a value of zero) in the depth image, since less than 1% of
depth image pixels are actually used by the neural network. The network uses a
full flow biderectional fusion approach of RGB and depth data, i.e. after each
convolution the RGB and depth data are fused again, in a point to pixel and pixel
to point manner. This improves performance by about 0.5% ADDS AUC, when
compared with its predecessor PVN3D, which is introduced in [12].
The weights provided by [11], were trained with some disturbances in the RGB
image, but not in the depth image. The disturbances in the RGB image are
blurring, sharpening, changes in brightness and colour shifts.

2.2 FINDING SYMMETRY AXIS OF OBJECTS

Some evaluation metrics, which are introduced in Chapter 3, require every
correct pose of an object. If an object has multiple correct poses, but the ground
truth from the dataset only provides one correct pose, the additional correct
poses can be found by rotating the object around its symmetric axes.
It is possible to find the symmetric axes of an object, by applying Principal
component analysis (PCA) to its point cloud. This process is explained in [2, 10,
22]. To summarize, PCA is applied to the point cloud, where the individual points
are treated as data points and the resulting components are the symmetric axes.
This method has some limitations, the amount of symmetric axes must be known
beforehand, since using PCA on 3D data will always find three components. The
component with the largest eigenvalue is the first symmetry axis, the component
with the second largest the second symmetry axis and so on. This also means
at most 3 symmetry axes can be found using PCA. Also, the symmetries must
be clearly visible in the point cloud. Because the PCA components represent
the axes, where spread is maximized, which normally closely aligns with the
symmetric axes, if they exist.
Since point clouds do not perfectly cover the object surface, the exact symmetry
axes can not be found using PCA, however with high density point clouds the
approximation is close enough for practical applications.

2.2.1 PRINCIPAL COMPONENT ANALYSIS

For completeness, how PCA is applied to 3D point clouds is explained in this
section, as described in [19]. Given a point cloud in the form of a matrix AT of
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size |PA| × 3 PCA is applied as follows. The point cloud is translated to 0 ∈ R3

by subtracting the centre CA,

ZT = AT −CT
A. (2.10)

Then the covariance matrix C is calculated,

C =
1

|PA|
ZZT . (2.11)

The eigenvalues of the covariance matrix C are denoted as λ1, λ2 and λ3 in
descending order. The corresponding eigenvectors are can be interpreted as the
most likely symmetric axes s1, s2 and s3.

2.3 CONVERTING DEPTH IMAGES TO POINT CLOUDS

To calculate the 3D point cloud from a depth image the intrinsic camera matrix K
is needed. The matrix K contains the parameters fx and fy , which represent the
focal length, as well as the optical centre coordinates cx and cy . The parameters
are arranged into K as follows,

K =

fx 0 cx
0 fy cy
0 0 1

 . (2.12)

A singe pixel is given by pixel coordinates px, py and the value of the pixel d,
given in meters. To project a pixel of the depth image to a point in 3D space,
given by the coordinates x, y and z, the following mapping is applied:

z =
d√

1 + (px−cx)
fx

+
(py−cy)

fy

y =
(py − cy)z

fy

x =
(px − cx)z

fx
.

(2.13)

This mapping is applied to every pixel in the depth image. This mapping is
based on [9, pp. 153-155] and assumes a pinhole camera model, which is also
introduced in [9, pp. 153-162].

2.3 Converting depth images to point clouds 9



2.4 PROJECTING FROM 3D SPACE TO 2D IMAGE SPACE

To project a 3D point to the 2D image plane the following mapping can be used,
assuming the 3D point is already in the camera coordinate system,pxpy

1

 =
1

z
K

xy
z

 . (2.14)

K is the intrinsic camera, (x, y, z) are the coordinates of the 3D point in the
camera coordinate system and px and py are the resulting 2D image pixels. This
mapping is taken from [9, pp. 153-155].
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3
Methodology

In this chapter current evaluation methods from the literature and a new novel
evaluation method are introduced and discussed.
The evaluation process can be divided into two phases. Firstly, an error metric
is calculated for every estimation (including false negatives and false positives).
The lower the metric, the better the estimation. A metric of zero means the
estimated pose is perfect and is equal to ground truth. In practise, this almost
never happens due to noise and numerical instability. Even the best pose estim-
ators can not be expected to output perfect estimations. Metrics play a central
role in evaluating pose estimators and analysing them under disturbances, be-
cause some metrics are more sensitive to different errors than others. 6D pose
estimation is a combination of detecting the objects, estimating their position
and their rotation.
Secondly, on the basis of the metrics, a score is then calculated. A metrics
quantifies how good a single estimation is and scores how good the entire pose
estimator is. The scores are calculated over a benchmark dataset, like YCB-Video
benchmark which is introduced in [36], to make the performance of different
pose estimators comparable. The higher the score, the better the pose estimator.
It is desirable that a score is between zero and one, so that it can be interpreted
as a percentage, because then a score of one means the pose estimator is perfect,
i.e. every estimation has an error metric of 0. A score combined with one or
multiple metrics establishes an evaluation method.
For the task of 6D pose estimation, there are three error sources: rotation, trans-
lation and detections. If a detection is right or wrong, i.e. is the detected object
in the to be evaluated frame is often evaluated in the score calculation, while
the metrics cover translation and rotation errors.
The choice of evaluation method is important when comparing pose estimators,
since some evaluation simply ignore entire error sources (like false detections
for example), or place little weight on them. Depending on the use case putting
a low weight on an error source might be desired, since the low weighted error
source does not matter for the task at hand. For the case of finding the influence
of different disturbances, every error source is important. Because a disturbance
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might only affect one error source, if this error source is then ignored in the
evaluation, the effect of the disturbance goes unnoticed.
To discuss the different metrics in this Chapter characteristic of a good metric are
now defined. A good metric should be sensitive to both translation and rotation.
It should also be in the same bounds for different objects, and deliver similar
results for different objects. If some objects have a higher metric upper bound,
these objects get punished more for the same error in their pose estimation.
Since the task is to evaluate the pose and not the object, it should be expected
that two similar objects give the same error metric for the same pose estimation.
Similar in this context means, that they have the same amount of correct poses,
since symmetric objects for example have two correct poses, which some metrics
ignore. Generally, metrics sort objects into two categories, objects with a single
correct pose and objects with multiple correct poses. An object with multiple
correct pose has at least one symmetric or rotation invariant axis.
Furthermore, the metric should weigh the rotation and translation similarly.
For example, if 1◦ error in the rotation gives the same error as 10 meters in
translation, the translation can be almost ignored entirely by the pose estimator.
Because none of the metrics in literature fulfil the criteria a new novel metric
is introduced in section 3.2, alongside a new evaluation score which treats the
issue of false detections.

3.1 LITERATURE REVIEW ON EVALUATION METHODS

In this Section the current evaluation methods are introduced.

3.1.1 AVERAGE DISTANCE OF MODEL POINTS METRIC

The Average Distance of model points (ADD) metric eADD is introduced in [13]
and defined as

eADD =
1

|Ps|
∑
p∈Ps

∥(Rp+ t)− (R̂p+ t̂)∥2. (3.1)

Here, Ps represents the point cloud of an object with a singular correct pose, and
|Ps| its cardinality. R and t are the ground truth rotation matrix and translation
vector for the object, respectively, with R̂ and t̂ representing the estimated
counterparts. This metric effectively measures the average distance between
corresponding point pairs from the estimated pose to the ground truth. In the
context of 6D pose estimation error metrics corresponding points are defined
a pair of points where one is in the ground truth point cloud and the other in
the estimated point cloud Pest and these must be same point in their respective
point cloud, i.e. the points have the same coordinates if the same rotation and

12 3 Methodology



translation is applied to both point clouds. A visualization of the ADD metric
can be found in Figure 3.1.

Estimation
Ground Truth
Metric

Figure 3.1: Visualization of the ADD metric on a banana from the YCB-Video
dataset. The blue point cloud represents the pose estimation; the
orange point cloud represents the ground truth. The pose estimation
is off by a rotation of 30◦ on the Z-axis and a translation of 1 cm on
the X-axis. For better visualization, the object’s local X and Y-axis
are also drawn at the centre of each point cloud. The green lines
represent the ADD metric, with their average length illustrating the
error metric.

3.1.2 AVERAGE DISTANCE OF MODEL POINTS FOR SYMMETRIC
OBJECTS METRIC

Average Distance of model points for Symmertic Objects (ADDS) eADDS is
introduced in [13] and defined as

eADDS =
1

|Pm|
∑

p1∈Pm

min
p2∈Pm

∥(Rp1 + t)− (R̂p2 + t̂)∥2. (3.2)

Here, Pm is the point cloud of an object with one or multiple correct poses.
This metric measures the average minimal distance between two points in the
estimated pose and the ground truth pose. It can be interpreted as a metric for
surface overlap. A visualisation can be found in Figure 3.2.

3.1 Literature Review on Evaluation Methods 13



Estimation
Ground Truth
Metric

Figure 3.2: A visualization of the ADDS metric on a banana, from the YCB-Video
dataset. The blue point cloud is the pose estimation, the orange point
cloud is the ground truth. The pose estimation is off by a rotation
of 30◦ on the Z-axis and a translation of 1 cm on the X-axis. For
better visualization, the object’s local X and Y-axis are also drawn at
the center of each point cloud. The green lines represent the ADDS
metric, the average length of these lines is the resulting metric.

3.1.3 TRANSLATION ERROR METRIC

The translation error (TE) et is defined as

et = ∥t− t̂∥2, (3.3)

in accordance with [14].

3.1.4 ROTATION ERROR METRIC

The rotation error (RE) tries to measure the difference between two rotation
matrices. An overview over different definitions of rotation error metrics can be
found in [17]. Since these definitions are functional equivalent with each other
and the definition in [14], the rotation error er is defined as

er = ∥I−RR̂
T ∥F , (3.4)

in this thesis, for its easy geometric interpretation. Here ∥ · ∥F denotes the
Frobenius norm. This definition of er ∈ [0, 2

√
2].
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3.1.5 COMPLEMENT OVER UNION METRIC

TheComplement over Union (CoU) is defined as

eCoU2D = 1− Area(Â ∩A)

Area(Â ∪A)
, (3.5)

in accordance with [14]. Here A is the 2D bounding box (or segmentation mask)
of the ground truth object and Â is the 2D bounding box (or segmentation mask)
of the object after the estimated translation and rotation is applied.
Usally this metric is used in 2D object detection, it is possible to project the
bounding boxes or segmentation mask from 3D space to 2D space, as is explained
in Section 2.4. In practise, it is better to use the volume of the 3D bounding
boxes, or segmented objects, as is done in [37]. Resulting in

eCoU3D = 1− Volume(B̂ ∩B)

Volume(B̂ ∪B)
, (3.6)

where B and B̂ are 3D bounding boxes. Both eCoU2D and eCoU3D ∈ [0, 1]

3.1.6 AVERAGE CORRESPONDING POINT DISTANCE METRIC

The Average Corresponding Point Distance (ACPD) is introduced in [14] and is
an extension of the ADD metric. It is defined as

eACPD = min
(R,t)∈Q

1

|Pm|
∑

p∈Pm

∥(Rp+ t)− (R̂p+ t̂)∥2. (3.7)

The set Q contains all correct poses of an object. How this set is obtained is not
mentioned in [14].1 Unlike the ADD metric, the ACPD is not depended on how
many correct poses an object has.

3.1.7 MAXIMUM CORRESPONDING POINT DISTANCE METRIC

The Maximum Corresponding Point Distance (MCPD) is similar to the ACPD,
with the only difference being that the maximum is taken instead of the average.
It was also introduced in [14] and is defined as

eMCPD = min
(R,t)∈Q

max
p∈Pm

∥(Rp+ t)− (R̂p+ t̂)∥2. (3.8)

1This set can be obtained by adding additional rotations to the ground truth, how this is done is
explained in Section 2.2
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3.1.8 VISIBLE SURFACE DISCREPANCY METRIC

Since [14] does not mentation a way to obtain the set Q it also introduces the
Visible Surface Discrepancy (VSD), which only takes the visible surface of the
object under consideration into account. The visible surface is defined as the
surface visible from the sensor setup, which is in most cases is just the RGB
camera. Hence the set V contains all pixels from the object under consideration,
which can be seen from the ground truth object, and the set V̂ contains all visible
pixel of the estimation. The Visible Surface Discrepancy (VSD) is defined as

eVSD =
1

|V ∪ V̂|

∑
p∈V∪V̂

c(p, λ). (3.9)

Here the cost matching function c(p, λ) is defined as

c(p, λ) =

{
d/λ if p ∈ V ∩ V̂ and d < λ
1 otherwise

}
, (3.10)

where λ is the misalignment tolerance, which allows the maximal range of d
and d is the distance between the two pixels p from the ground truth object and
the estimation in 3D space. The position of a pixel in 3D space can be found
using the intrinsic camera matrix and the depth image, which is explained in
Section 2.3.
The VSD ∈ [0, 1] since the function c(p, λ) is also ∈ [0, 1].

3.1.9 ACCURACY SCORE

The accuracy sa is the percentage of correct poses. Correct poses are those for
which the metric is below a threshold τ .

sa =
1

|Og|

|Og |∑
l=0

χ(el < τ), (3.11)

where χ is the indicator function, which returns 1 when el < τ and 0 otherwise.
The set Og contains all ground truth objects in the evaluation dataset and el is
the error metric for an object ∈ Og .

3.1.10 MEAN RECALL SCORE

The mean recall (MR) sMR is defined as the average percentage of correctly
classified poses for a set of thresholds T ,

sMR =
1

|T |
∑
τ∈T

h(τ), (3.12)
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h(τ) returns the percentage of correctly classified poses for the threshold τ and
can be interpreted as the accuracy sa depending on threshold τ . This definition
was taken from [14]. Since this score is averaging over percentages it is ∈ [0, 1].

3.1.11 AREA UNDER CURVE SCORE

The area under curve (AUC) sAUC is defined as the integral of the proportion of
correctly classified poses, over varying thresholds. Since it currently is the gold
standard score, in combination with ADD and ADDS it used by [36, 11, 29, 32,
23, 33, 34, 30] and is defined as

sAUC =

∫ γ

0
h(τ), (3.13)

where γ is the maximum threshold at which the evaluation starts. A visual
representation can be seen in Figure 3.3. This AUC is closely related to the MR,
since the AUC is just the mean recall (MR) with infinite thresholds. In practise
the thresholds would be set exactly after the metric values, i.e. the AUC gets
numerically calculated like the MR with perfect threshold placement to separate
all error metric values.
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Figure 3.3: An example for the AUC. This AUC is from FFB6D on the YCB-Video
benchmark, using the ADDS metric. The thresholds from 10 cm to
0 cm are plotted on the X-axis, the percentage of correct poses is
plotted on the Y-axis. The area under the line is the AUC, in this
example it is 96.13%.
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3.1.12 INTERSECTION OVER UNION

The Intersection over union (IoU) sIoU3D is the complement of the compliment
over union,

sIoU3D =
Volume(B̂ ∩B)

Volume(B̂ ∪B)
. (3.14)

As for the CoU, instead of the volume, the area of the 2D projection could also
be used. This definition was taken from [14] and is only applicable to one object.
When calculating theComplement over Union (CoU) for an entire dataset, the
score is averaged over all objects. This score can be interpreted as the percentage
of overlapping area or volume, between the estimation and ground truth.

3.2 PROPOSED NOVEL EVALUATION METHODS

In this Section the new novel evaluation method is introduced. It introduces
a new error metric, which can be viewed as an extension and combination
of the rotation and translation error and a new evaluation score. The error
metric was developed to treat every kind of object the same, independent of the
amount of correct poses, while being able to weigh the importance of rotation
and translation. The proposed evaluation score is able to treat the issue of
false detections and no longer treats poses as a binary problem, i.e. correct or
incorrect.

3.2.1 SYMMETRIC ROTATION ERROR METRIC

The rotation error can be extended for symmetric objects, for this the symmetry
axis ui and the corresponding correct angles θi,j ∈ Bi must be known. The
set Bi contains the symmetry angles for a symmetry axis ui. For example,
for an object with a fourfold symmetry around the X-axis: u1 = (1, 0, 0) and
Bi1 = {0◦, 90◦, 180◦, 270◦}.
The main idea is to add the additional rotations to the ground truth, which
also lead to a correct pose, since objects with multiple correct poses are either
symmetric or rotation invariant on one axis, i.e. their correct poses only differ
in rotation. Only the combination of rotations, that leads to the smallest error
is used for the error metric. To achieve this, we need the rotation matrix R̃u,θ ,
which contains a rotation around the axis u = (ux, uy, uz) with the angle θ.
This matrix is defined as [21, 20]:

R̃u,θ =

 cos θ + u2x(1− cos θ) uxuy(1− cos θ)− uz sin θ uxuz(1− cos θ) + uy sin θ
uyux(1− cos θ) + uz sin θ cos θ + u2y(1− cos θ) uyuz(1− cos θ)− ux sin θ

uzux(1− cos θ)− uy sin θ uzuy(1− cos θ) + ux sin θ cos θ + u2z(1− cos θ)

 .

(3.15)
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However, since the symmetry axes are given in world coordinate, they do not
align with the local object coordinate after one rotation. To make the axis ui

align with the object coordinate system again, all previous rotations must be
applied. For example, after the ground truth was rotated by 90◦ on the X-axis
(1, 0, 0), the second symmetry axis (0, 1, 0) is now (0, 0, 1).
This leads to the set A, which contains all symmetry axes of an object with the
previous rotations applied,

A =

{
Ru1, R̃Ru1,θ1,jRu2, R̃R̃Ru1,θ1,j

Ru2,θ2,j
R̃Ru1,θ1,jRu3, . . .

}
= {v1,v2,v3, . . . } .

(3.16)

Which leads to the set of all possible correct rotations around symmetric axes
R for an object after the ground truth rotation is applied, being defined as,

R =

 ∏
vi∈A

R̃vi,θj | θj ∈ Bi

 . (3.17)

Resulting in the symmetric rotation error eRSYM being defined as

eRSYM = min
R̃∈R

(∥I− R̃RR̂
T ∥F ). (3.18)

3.2.2 ROTATION INVARIANT ROTATION ERROR METRIC

The rotation error er can also be extended to handle objects with rotation
invariance. Since it has been proven in [7], that an object can only be rotation
invariant on one axis, or else it would be a ball i.e. it is rotation invariant on all
axes, only the case of a single rotation invariant axis needs to be considered.
That means, that the rotation invariant rotation error eRINVAR can be viewed as
an optimisation problem in one dimension,

eRINVAR = min
α

(∥I− R̃w,αRR̂
T ∥F ). (3.19)

where w is the rotation invariant axis, with previous rotations applied and α is
the angle which minimizes the error eRINVAR by rotating around w.
Since α is the only optimisation parameter and represents a rotation around
one axis, the optimisation function is rather simple. The function to optimize
is of periodic nature and every local minimum is also a global minimum, that
rotation error under rotation on one axis behaves this way can be seen in [14].
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3.2.3 MULTI ROTATION ERROR METIC

The multi rotation error (MRE) is a combination of the symmetric rotation error
eRSYM and the rotation invariant rotation error eRINVAR. The main advantage
to the MRE is that it can be applied to any object, no matter how many correct
poses the object has. The MRE eR is defined as

eR = min
R̃∈R

(min
α

(∥I − R̃w,αR̃RR̂
T ∥F )). (3.20)

The set R contains all possible correct rotations around the symmetric axes
of an object, after the ground truth rotation is applied. If the object under
consideration has no symmetries R = {I}. w is the rotation invariant axis of
an object with the previous rotations (ground truth and symmetric rotations)
applied. If an object has no rotation invariant axis, α is simply set to zero.

3.2.4 MULTI ROTATION TRANSLATION ERROR METRIC

Since the MRE eR only evaluates the rotation and not the translation of an
estimated pose, it can be combined with the translation error et, resulting in the
multi rotation translation error (MRTE) eMRTE, which is defined as

eMRTE = f(eR) + g(et). (3.21)

Where f and g scaling functions for eR and et. It is recommended to scale because,
eR ∈ [0, 2

√
2] and et ∈ [0,∞). Also, by applying scaling, the importance of

rotation or translation can be given for the specific task.
Some default scaling would be to linearly scale eR to be in the interval of [0, 1],
f(x) = x

2
√
2
. Since et has no upper bound, it can be cut off after a threshold,

after which the estimation is unusable. This threshold is called the usability
threshold β, resulting in g(x) = min(xβ , β). For the ADD and ADDS AUC the
maximum threshold γ is often set to 10 cm, as proposed in [36], the same value
can be used for β to make the metrics comparable.

3.2.5 AVERAGE INVERSE MULTI ROTATION TRANSLATION ERROR
SCORE

The Average Inverse Multi Rotation Translation Error Score (AIMRTES) sAIMRTES

was designed to be used with the MRTE, because as the name suggests it is
defined as the average inverse of the error. However, to also cover the aspect
of detection and giving it bounds in [0, 1], one is added to the denominator.
Resulting in

sAIMRTES =
1

|Od|

|Od|∑
k=0

1

ek + 1
, (3.22)
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where Od is the union of all detected objects and all correct objects in the
evaluation dataset and ek is the error e for an object ∈ Od. For objects, which
were not detected, the error ek is set to ∞, meaning zero is added to the sum
over all objects. The score S lies in the interval [0, 1].2

Other error functions can also be used, the upper bound of the error function
determines how much the correct detection of an object gets weighted into the
score.

3.3 THEORETICAL DISCUSSION

In this section, the advantages and disadvantages of the metrics and scores are
discussed. The selection of an evaluation method is not trivial, since the metrics
and scores are measuring different aspects of the estimated poses. In [16] an
overview of the entire 6D pose estimation progress is given, since different
evaluation methods were used in some approaches it makes the performance
hard to compare to other pose estimators.
There have already been discussions focused specifically on the evaluation meth-
ods for 6D pose estimation in [14], where new scores and metrics are introduced,
and the conclusion is drawn that different use cases focus on different aspects
of the pose estimation. According to [14] object grasping in the field of robotics
is mainly focused on surface overlap.
In [14] the ACPD, MCPD and the VSD are introduced. However, currently the
ADD and ADDS metrics are still the most commonly used metrics, which is
probably due to their easy interpretation and the ACPD and MCPD not address-
ing every problem of the ADD metric.
To better understand ADD, ADDS and the proposed MRTE, the framework of
[14] was followed to provide some visualizations on how the metrics behave. In
[14] an error, like rotation, is isolated and the behaviour of the different metrics
is shown. This was only done for rotation from 0◦ to 360◦ for a coffee mug,
which is not sufficient to see the behaviour of all metrics.
In the following visualisations of the metrics all objects from the YCB-Video
dataset are used, as well as different error sources.

2Note that eR and et, do not need to be scaled with an upper bound of one. The range can
be viewed as weighting the score for rotation, translation, and object detection. If both the
rotation and translation error are scaled with an upper bound of one, rotation, translation, and
detection all contribute the same amount to the final score. It is also possible to just iterate over
all correct objects in the evaluation dataset, like it is done when using ADD and ADDS AUC. An
implementation can be found under https://github.com/D-Doge/metric_pose_estimation.
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3.3.1 METRICS UNDER TRANSLATION

In Figure 3.4 the behaviour of the different error metrics under translation is
depicted. The MRTE, ADD, MCPD and ACPD all behave the same. They all
have a linear relationship with the translation error, in fact they are equal to
the translation. The MRTE only uses the translation error in this case, which
just gives the distance of the translation. The same is true for the ADD metric,
since it gives the average distance of all points from the ground truth to the
estimation. In this case, every point has the same distance, i.e. the MCPD and
the ACPD are equal to the ADD metric in this case, because the correct rotation
(R̂ is equal to the unit matrix) is used, for every metric.
The results from the ADDS metric are scattered, every object has a visibly
different line. This is due to the fact, that the ADDS metrics does not use corres-
ponding points of the ground truth and estimation, but simply the ones with
the minimal distance. This means, that when the ground truth and estimated
point clouds still overlap, the error grows slowly. Only when the point clouds
start to move further apart, the ADDS metric starts to grow linearly.
From about 0 to 5 cm the objects still overlap, however, even after that the ADDS
metric still grows at different speeds for every object. This makes the ADDS
heavily dependent on the point cloud under translation. At 10 cm translation
the ADDS metric has values ranging from about 4.1 cm to 9.1 cm, which is
a difference of over 200%. Also when using the ADDS AUC with a starting
threshold of 10 cm, as proposed in [36], only after about 18 cm of translation
the AUC would be zero. With 5 cm of translation, the AUC would be over 70%.
This suggests, that the ADDS is insensitive to translation, when compared to
the other metrics.

3.3.2 RESULTS UNDER ROTATION

For the error metrics under rotation, three different kind of objects need to
be considered. The first kind of objects are those with a single correct pose,
an example would be a banana. The second kind of objects are those with
symmetries. There are different kinds of symmetries (twofold, threefold etc.)
that need to be considered, but for the following visualization only twofold
symmetries were used, since in the YCB-Video dataset only the woodblock has
a different kind of symmetry along one axis (fourfold). The third kind of objects
are those with a rotation invariant axis, in the YCB-Video dataset only the bowl
is considered rotation invariant.
Because the MRTE has vastly different upper bounds than the point cloud based
metrics multiple plots are provided.

22 3 Methodology



0 5 10 15 20 25
0

5

10

15

20

25

Translation (cm)

E
rr
or

m
et
ri
cs

MRTE, ADD, MCPD, ACPD
ADDS

Figure 3.4: The error metrics under translation, for every object in the YCB-
dataset. On the X-axis the error (translation on the X-axis) is plotted
and on the Y-axis the resulting metric. Every metric can be interpreted
as cm. The MRTE can only interpreted as cm when no scaling to the
translation error is applied. Each line represents one object evaluated
with one metric. The MRTE, ADD, MCPD and ACPD are represented
by the blue lines, because they are all equal, while the ADDS is
represented by the green lines and behaves different for every object.
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MRTE UNDER ROTATION

In Figure 3.5 the MRTE metric under rotation, for all three kinds of objects can
be seen. Objects with one correct pose were rotated around the X-axis. For this
kind of objects, the MRTE behaves the same as the rotation error er and produces
the same error values for every object in this category. Since every object with
one correct pose gets treated the same, they have a consistent maximum value
at π radians. Also, the MRTE behaves linear under rotation.
For twofold symmetric objects, the MRTE takes the minimum of two rotation
errors er, where one is shifted by π radians. This means that the MRTE has
two minima and two maxima, reflecting the two correct poses. Both minima
have the exact same value of zero, and both maxima the exact value of π/2. The
minima are at the correct rotations and the maxima in the middle of them. It
is obvious, that this pattern would repeat for objects with more symmetries
along the axis. For example, a fourfold symmetry would have four maxima and
four minima. The transition between maxima and minima is linear. Objects
with more symmetries have a lower upper bound, this could be counteracted
by scaling the error on this axis. This is easy to do since the upper bound
can be predicted by dividing π by the amount of symmetries. But this is not
implemented into the MRTE, since otherwise objects with a high amount of
symmetries would have a faster growing error than objects with no symmetry.
For example, an object with 180 symmetries along a single axis would have its
maximum error at every odd degree, which means even a one degree error in
the pose estimation leads to a metric error value of π, when the rotation error is
scaled for symmetric objects as described above. Because scaling the rotation
error as described above leads to an extremly senstive metric, the MRTE does
not scale the rotation error for symmetries, which implies that the rotation on
symmetric axis is less important.
For objects with a single rotation invariant axis, the MRTE behaves as expected
and produces values near zero for every possible rotation along the invariant
axis. The values are not zero exactly due to numerical errors.

POINT CLOUD BASED METRICS UNDER ROTATION

In Figure 3.6 the ADD, ADDS ACPD and the MCPD are plotted, under rotation
for objects with one correct pose. All objects with a single correct pose from the
YCB-Video dataset were used. All objects were rotated around the X-axis from 0◦

to 360◦. It can be seen that the ADD, ADDS, ACPD and MCPD all have different
upper bounds for different objects. Since the ACPD and MCPD are variations of
the ADD metric they behave similarly. The ACPD behaves exactly like the ADD
metric, which is expected, since the objects have only one correct pose, i.e. the
ACPD is equal to the ADD metric. The MCPD only considers the point which is
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Figure 3.5: The MRTE metric under rotation for all three kinds of objects. Every
object from the YCB-Video dataset was used. The blue lines represent
objects with one correct rotation, the dashed magenta line objects
with a twofold symmetry and the thick orange line objects with a
rotation invariant axis. Objects with one correct pose were rotated
from 0◦ to 360◦, around the X-axis. Symmetric objects were rotated
around their symmetric axis and rotation invariant object around
their rotation invariant axis. The rotation is plotted on the X-axis of
the plot, and the resulting error metric on the Y-axis. In can be seen
that the MRTE gives the same value for all objects of the same kind.
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furthest away from its corresponding point, which in practise results in ACPD
with larger values. The results of the ADD, ACPD and MCP all have a parabolic
shape, meaning the gradient is smaller around the maximum. When comparing
the maximum error values of different objects, the spread is large. The upper
bounds of the ADD and ACPD are between about 4.9 cm and 17.7 cm, which is a
difference of more than 300%. Such a large difference in upper bounds makes it
difficult to assign a threshold for score calculations. Following the difference in
upper bounds, the gradients are also very different for different objects, which
is not ideal when the metrics are used as loss functions, since the optimizer is
more focused on objects with larger gradients. The difference in upper bounds
and gradients can also be seen for the MCPD. The absolute values for the upper
bounds are larger, between about 7 cm and 25 cm, but the increase is also a
bit larger than 300%. The ADDS metric behaves differently, when compared to
the ADD, ACPD and MCPD. While the ADD, ACPD and MCPD have a single
maximum at π radians and a minimum at 0 radians, the ADDS metric sometimes
has two maximums at around π/2 radians and 3π/2, with a second minimum at
π. This implies symmetry around the X-axis (the rotation axis), which is not
the case. For some objects the ADDS error is close to 0 cm and does not change
much, for any rotation, which implies rotation invariance around the X-axis.
Considering how the ADDS metric is calculated, it becomes obvious that the
ADDS metric does not actually measure rotation or translation errors, but the
average surface distance between the ground truth and the estimation. Most
objects will still have close surfaces after being rotated by 180◦, which explains
the implied symmetry. As mentioned, for some use cases we want to measure
the surface overlap/distance, but this is not ideal for the general use case of 6D
pose estimation. In virtual reality, for example, drinking from a flipped coffee
mug would not look right. The ADDS not only behaves different for every object,
while having different upper bounds for every object, it is also much lower in
general than the ADD metric. With upper bounds ranging from practically 0 cm
to about 5 cm. This is important for threshold selection when calculating scores,
since state-of-the-art evaluation uses the same threshold for ADD and ADDS,
which can be seen in [36, 11, 29, 32, 23, 33, 34, 30].

In Figure 3.7 the ADD, ADDS, ACPD and MCPD metric are plotted under
rotation for objects with a twofold symmetric axis. The objects were rotated
from 0◦ to 360◦, along their twofold symmetric axis. The ADD metric ignores
the symmetry of the objects entirely, treating them exactly the same as objects
with one correct pose. The ADDS, ACPD and MCPD are all taking the symmetry
of the objects into account. They all have two maxima at around π/2 radians and
3π/2 radians, with the second minimum at around π radians. The ADDS metric
again behaves different for different objects. For some objects, the error metric is
close to zero, no matter the rotation angle. Which implies rotation invariant on
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Figure 3.6: The ADD, ADDS, ACPD and MCPD metrics under rotation for objects
with a single correct pose. Every object from the YCB-Video dataset
was used. The dashed blue lines represent the MCPD, the red lines the
ADD and ACPD and the green lines the ADDS. Each line represents
the error for one object with the corresponding metric. On the X-axis
the rotation angle is plotted and on the Y-axis the resulting error. It
can be seen, that all metrics have different upper bounds depending
on the object.
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a symmetric axis. Also for one object the minimum at π is quite high at around
1.5 cm, when the maximum for this object is around 3 cm. Of course, since the
points in the point cloud of the estimation do not align perfectly with points of
the ground truth, a small deviation from zero can be expected, but these small
deviations can add up to a substantial error. The spread between upper bounds
of different objects is quite large in this case, ranging from practically 0 cm to
about 3 cm.
The ACPD and MCPD both are behaving similarly. The ACPD takes the min-
imum of two ADD curves, where one is shifted by π radians. This results in a
clean second minimum at π radians and maxima aligned with the symmetry of
the object. There is, however, still a large amount of spread in the upper bounds
for different objects. The maximum values for the ACPD are between about 4 cm
to 10.2 cm. This also applies to the MCPD, which has maximum values ranging
from about 5.1 cm to almost 15 cm. In Figure 3.8 the ADD, ADDS, ACPD and
MCPD are plotted under rotation for objects with a rotation invariant axis. The
YCB-Video dataset only contains one object that is classified as having a rotation
invariant axis. However, since the metrics that actually take rotation invariance
into account, do almost not depend on the object under consideration, the study
of only one object is enough to understand how the metrics behave with regard
to rotation invariance. The ADD metric ignores the rotational invariance entirely
and treats every object as if it had only one correct pose. Since the ADD metric
measures each individual point distance, from a single ground truth to a pose
estimation, this is true for every object. The ADDS metric produces error values
near zero for every rotation. The values are not exactly zero, since the ground
truth and estimated point cloud do not align perfectly, but it is close enough
for evaluation purposes. It can be assumed, that the point cloud of an object
with a rotation invariant axis aligns close enough with the estimation, for any
rotation on the rotationally invariant axis, which makes the result transferable
to other objects. This is, however, under the assumption, that the point cloud
is of sufficient quality. In the extreme case of only point, in a point cloud, the
ADDS metric would behave similarly to the ADD metric. This means the ADDS
requires a dense and evenly distributed point cloud. If a higher density point
cloud was available, the ADDS metric would be even closer to zero, for every
error angle. The ACPD and MCPD are both nearly exactly zero for every rotation
angle. The deviation from zero is due to the numerical instability of floating
point numbers. For all practical purposes, they can be considered to be zero.
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Figure 3.7: The ADD, ADDS, ACPD and MCPD metrics under rotation for every
YCB-Video object with a twofold symmetric axis. The objects were
rotated around their twofold symmetric axis. The rotation angle
is plotted on the X-axis and the resulting error on the Y-axis. The
ADD metric is represented by the red lines, the ADDS by the green
lines, the ACPD by the blue lines and the MCPD by the dashed black
lines. Each line represents the error for one object. It can be seen
that the ADD metric is not able to capture symmetries and the ADD,
ADDS, ACPD and MCPD all have different upper bounds for different
objects.
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Figure 3.8: The ADD, ADDS, ACPD and MCPD metrics under rotation for an
object with a rotation invariant axis, from the YCB-Video dataset. The
object was rotated around its rotation invariant axis. The rotation
angle is plotted on the X-axis and the resulting error on the Y-axis.
The red line represents the ADD metric, the green line the ADDS
metric and the orange line the ACPD and MCPD. It can be seen that
the ADD metric ignores the rotation invariance entirely, while the
ADDS, ACPD and MCPD produce error values close to zero for every
rotation angle.
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3.3.3 RESULTS UNDER POINT CLOUD CHANGES

The MRTE is not dependent on the specific point cloud used. The ADD, ADDS,
ACPD and MCPD in contrast, are dependent on the point cloud. In Figure 3.9 the
ADD, ADDS, ACPD and MCPD are plotted under size scaling of the point cloud
are plotted. Because the MRTE is not dependent on the point cloud, no plot is
provided, since MRTE error value would remain constant. For the plot, every
object of the YCB-Video dataset was used with a pose estimation that is wrongly
rotated by 90◦ on the X-axis and the point cloud scaled from 0 to 10 times its
original size. Since the objects have only correct pose, the ADD and ACPD
metric are equal. The ADD, ADDS, ACPD and MCPD are all increasing, when
the size of the point cloud is increased. Since the ADD, ADDS, ACPD and MCPD
are all measuring distances of points, this was expected. The same metric, ADD
for example, is growing at different rates for every object, under point cloud size
increase. This means, when increasing the size of every object in the dataset by
the same factor, the error metric values do increase by different factors, which
makes it difficult to set a threshold for score calculations for all objects. To
counteract this, [13] proposed to use a threshold given as a proportion of object
size. For example, ADD AUC with a threshold of 10% of object size. However,
this approach does not deal with the fact that each object has different rate at
which the ADD, ADDS, ACPD and MCPD increase under size changes. This
issue can be especially problematic when a dataset contains objects of strongly
varying sizes, for example, cars, lorries and bicycles, or tables and bottles. When
using a large fixed threshold, the small objects will easily get accepted even
when larger errors a present, when using a small threshold the large objects will
not get accepted, even when the error is small.
Other changes to the point clouds should also be considered, like density, for
example. A sparse point cloud might miss important features of an object, which
for example makes it difficult to identify its rotation. An example of this is
a bowling ball, a sparse point cloud might miss the three finger holes, which
makes the bowling ball point cloud indistinguishable from a ball point cloud.
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Figure 3.9: The ADD, ADDS, ACPD and MCPD metrics under point cloud size
scaling. Every object in the YCB-Video dataset was scaled from 0 to
10 times its original size and has a pose error of 90◦ on the X-axis.
The size increase is plotted on X-axis and the resulting error on the
Y-axis. The ADD and ACPD metric represented by the red line, the
ADDS by the dotted green line and the MCPD by the dashed blue
line. Each line represents one object. It can be seen that ADD, ADDS,
ACPD and MCPD all increase with point cloud size. The rate at which
they increase is different for every object.
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3.3.4 THOUGHTS ON THE AVERAGE DISTANCE OF MODLE POINTS
METRIC

The main advantage of the eADD metric is its simplicity. It is also stable under
translation. The main disadvantage is that the ADD metric can not be used on
objects with more than one correct. It also is dependent on the propetries of
thepoint cloud used, leading to diffrent upper bounds for every object.

3.3.5 THOUGHTS ON THE AVERAGE DISTANCE OF MODLE POINTS
FOR SYMMETRIC OBJECTS METRIC

The ADDS metric addresses the main disadvantage of the ADD metric by being
usable on every object, independent on the amount of correct poses. Even
though it is calculated similarly to the ADD metric, it measures a completely
different aspect: the surface distance between the estimated and ground truth
point clouds. Meaning, it is not comparable to the ADD metric. This can be seen
in the plots, the ADDS metric is not stable under translation, or rotation and
dependent on the point cloud. Also, the values produced are much smaller than
from ADD. Making the evaluation approach, as proposed in [36] and used by
[11, 29, 32, 23, 33, 34, 30, 15, 25, 31, 6, 18, 35, 8], of using ADD for objects with a
single correct pose and for objects with multiple correct poses ADDS, with the
same AUC threshold, not comparable. Since a good threshold for ADD will lead
to a significantly higher score using ADDS.
For use cases where surface overlap is more important than object rotation,
the ADDS metric is a good choice. However, taking the ADDS as the default
evaluation metric will lead to extremely high scores which are unintuitive, i.e.
the ADDS metric produces low error values for poses that are visually bad. For
example, when the rotation is wrong, shifting the pose estimation with the
translation vector t̂ can lead to better results. This was done in Figure 3.10,
where adding translation makes the object surface align more. Also, the pose
estimation is rotated by 180◦ and translated by -1 cm on the Z-axis and the
ADDS error is still lower than expected at 0.58 cm, for such a big error in the
rotation.

3.3.6 THOUGHTS ON THE TRANSLATION ERROR METRIC

The translation error only measures translation, i.e. the rotation is ignored
entirely when being used on its own. It is intuitive for quantifying the translation
error in an estimated pose and does not rely on the point cloud used.
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Figure 3.10: A visualization of a bad pose estimation (orange), for a mustard
bottle, from the YCB-Video dataset. The ground truth (blue) was
rotated by 180◦ on the Y-axis and translated by -1 cm on the Z-axis.
The error under the ADDS metric would be 0.58 cm. This would
result in a score of 94.2%, using the AUC with a starting threshold
of 10 cm, which is the evaluation method used by state-of-the-art
pose estimators. The proposed AIMRTES would provide a score of
47.8% for this pose estimation.

3.3.7 THOUGHTS ON THE ROTATION ERROR METRIC

The rotation error has two drawbacks. The first one being that translation is
ignored entirely, and the second being that it can only be used on objects with
a single correct pose. It does however measure the rotational error for objects
with one correct pose perfectly.

3.3.8 THOUGHTS ON THE COMPLEMENT OVER UNION METRIC

When theCoU with bounding boxes is used, every object is treated like a box.
Since a box has an axis with a twofold and another fourfold symmetric axis, an
accurate representation of the rotation error in the pose can not be expected.
Furthermore, some objects will have large areas in the box which are not part
of the object, meaning that the bounding boxes might overlap, but the objects
do not. An example is an L-shaped object, where the upper right corner of
the bounding box will not contain any part of the object. Also, worse pose
estimations can lead to a better metric value. An example is a stick, when no
rotation is applied moving one stick a bit can make them no longer overlap. By
rotating one stick, so that they are no longer parallel, they can overlap again
resulting in a better metric, even tough the rotation estimation was deteriorated.
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When using the object area instead of bounding boxes, the same example with
sticks can be applied. When using object volume, the metric behaves similar to
the ADDS metric, since when the area of the estimation and ground truth are
overlapping there will also be some surface overlap. TheCoU has a maximum of
1, when the area of the objects or bounding boxes are no longer overlapping.
For use cases where volume overlap is important, this metric is a good choice.
However, using it as a default metric leads to unintuitive metric score values,
since a low metric does not necessarily imply the estimated rotation is close to
the ground truth rotation.

3.3.9 THOUGHTS ON THE AVERAGE CORRESPONDING POINT
DISTANCE METRIC

The ACPD tries to extend the ADD metric to address its main drawback of
only being applicable to objects with one correct pose. The other drawbacks of
being heavily dependent on the point cloud used and producing different upper
bounds for every object remain. Additional, when it was introduced in [14] no
method for finding the additional correct poses was described. The additional
correct poses can be found as described in Section 3.2 i.e. the same method of
adding rotations to the ground truth, as for the MRE, can be used, which makes
the metric usable with current datasets like the YCB-Video dataset.

3.3.10 THOUGHTS ON THE MAXIMUM CORRESPONDING POINT
DISTANCE METRIC

The MCPD is essentially a stricter version of the ACPD. Since it only uses one
point pair of the estimated and ground truth point cloud, it can be argued that it
is less dependent on the density of the point cloud. In practise, however, high
density point clouds are almost always available.

3.3.11 THOUGHTS ON THE VISIBLE SURFACE DESCRAPANCY
METRIC

The VSD is similar to the ADDS metric, it also measures surface distance. The
main difference being that only the visible surface of the ground truth and
estimation is used in the metric, which leads to an even more lenient metric.
An argument can be made, that only using the visible surface is a fairer way
of evaluation, since no information of the not visible parts of the objects is
available. In [14] the example of a coffee mug is used, without seeing the
handle it is impossible to reliably find the real rotation of the mug. The VSD
is however not perfect in this regard. It does not take texture information into
account, which means that even when the correct rotation could be found from
colour information, the VSD will ignore this. The coffee mug form [14] was
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monochrome. If the mug had a graphic printed on it, the single correct pose can
be identified from almost any view angle.
Also, for occluded objects the visible surface becomes rather small, making it
easier to satisfy the VSD metric. The VSD is also more complex than the other
metrics, needing projections from 3D space to 2D space.

3.3.12 THOUGHTS ON THE ACCURACY SCORE

The accuracy score is easy to understand, but for the purpose of 6D pose estima-
tion, it has many flaws. Since it only uses a single fixed threshold, it converts
the problem to a binary classification problem, where a pose is either correct
or incorrect. If the threshold τ is for example 5 cm using the ADDS metric, a
pose estimator that is always of off by 4.9 cm in the estimation is considered
perfect. Which makes comparisons only possible if all errors are around the
given threshold. False detections are ignored entirely. It could, however, be
extended to address false detections by also iterating over detected objects in
addition to the ground truth, like it is proposed for the AIMRTES.

3.3.13 THOUGHTS ON THE MEAN RECALL SCORE

The MR, as it is defined in [14] and can be viewed as the average accuracy over
multiple thresholds, which is an improvement since better pose estimations
can now score higher, when the error metric is lower than multiple thresholds.
The problem of false detections not being addressed still remains, but can be
addressed like it is done with the AIMRTES.

3.3.14 THOUGHTS ON THE AREA UNDER CURVE SCORE

The AUC is essentially the MR with an infinite amount of thresholds T from 0
to a threshold γ. Which means that every improvement in the estimated pose
now counts towards the score, instead of predefined steps, but every pose worse
than γ is treated the same. With its standard definition, it also ignores false
detections entirely, but this can again be addressed by iterating over the detected
objects alongside the ground truth.

3.3.15 THOUGHTS ON THE SYMMETRIC ROTATION ERROR METRIC

The symmetric rotation error is an extension of the rotation error, addressing
the drawback of not being able to be used on symmetric objects.
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3.3.16 THOUGHTS ON THE ROTATION INVARIANT ROTATION
ERROR METRIC

The rotation invariant rotation error extends the rotation error to make it ap-
plicable to be used on objects with a rotation invariant axis.

3.3.17 THOUGHTS ON THE MUTLI ROTATION ERROR METRIC

The multi rotation error combines the symmetric rotation error and the rotation
invariant rotation error, to create a rotation error metric that can be used on any
object. It does not depend on the point cloud used and has predictable upper
bounds. Its main drawback is its inablity to address translation errors.

3.3.18 THOUGHTS ON THE MULTI ROTATION TRANSLATION
ERROR METRIC

The MRTE combines the multi rotation error with the translation error. This
deals with the two main drawbacks of the individual metrics and is able to
address both rotation and translation errors. Its advantages are, that it can be
used on any object, does not depend on the point cloud used and has predictable
upper bounds. Through scaling, the MRTE is applicable to a wide verity of use
cases.

3.3.19 THOUGHTS ON THE AVERAGE INVERSE MULTI ROTATION
TRANSLATION ERROR SCORE

The AIMRTES was designed to address the issue of false detections alongside
the pose estimation errors. Instead of just taking the objects of the ground truth
dataset into account, it also iterates over all detected objects. Since no threshold
is defined, there is no cut off for any pose estimator, meaning a higher scoring
pose estimator always performance better.

3.3.20 SUMMARY

The ADD and ADDS in combination with the AUC is the most commonly used
method for evaluation. As discussed, this method has significant disadvantages,
especially when the same AUC threshold for both ADD and ADDS is used.
The ACPD and MCPD try to address some of the issues, but not all. Also, since
no method for finding other correct poses was provided, these metrics never
caught on in practical applications.
The MRTE alongside with AIMRTES, is the only evaluation method which fulfils
all criteria of a good evaluation method. It addresses rotation errors, translation
errors and false detections equally and predictably. Can be used on any object
and treats objects independent of the point cloud.
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4
Experiments

This chapter shows how the proposed evaluation method performs for the use
case of evaluating 6D pose estimators under disturbances. The task of examining
pose estimators under sensor disturbances is crucial for real-world applications,
as it provides insights into the robustness and reliability of these systems in
practical scenarios. Various factors such as noise, occlusions, and dynamic
environments, can significantly impact the accuracy of pose estimation, making
it essential to assess how well these systems can maintain performance under
such conditions. By systematically introducing and analysing disturbances in
sensor data, we can better understand the limitations and strengths of pose
estimators.

4.1 SETUP

In this section, the general setup for the following experiments is explained. For
the case study of how 6D pose estimators behave under disturbances, FFB6D
is used together with the YCB-Video dataset. Both are described in detail in
Chapter 2. FFB6D was chosen because it uses a bidirectional fusion approach in
the convolution layers, how this fusion approach deals with errors in one data
source has yet to be addressed. FFB6D also has an impressive ADDS AUC of
96.1% on the YCB-Video benchmark.
The YCB-Video dataset was chosen due to its size and high quality ground truth
poses for common household objects.
The approach of [3] was followed when conduction the experiments. This
means that the YCB-Video dataset will be artificially enhanced to also contain
disturbances. FFB6D will be benchmarked on each disturbance individually,
under different error intensities.
For each intensity the ADD AUC, ADDS AUC, AIMRTES without false detections
(w. f.d.) , AIMRTES with false detections, average scaled (avg. s.) multi rotation
error with standard deviation, average scaled translation error with standard
deviation and percentage of false detections are provided. The AIMRTES without
false detections only takes the error values of poses inside the evaluation dataset
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into account. The AIMRTES with false detections also takes the wrongly detected
object poses into account, like it is defined in Section 3.2.5. The ADD and
ADDS AUC are provided since they are the current state-of-the-art evaluation
method, with which the proposed evaluation (AIMRTES) will be compared to.
Additionally, the rotation error, translation error and amount of detected objects
are provided, to better understand what kind of error a disturbance introduces.
If the rotation error, translation error, or amount of false detections increases,
the scores should decrease.
The AUC threshold is set to 10 cm as proposed in [36] and used by [11, 29, 32, 23,
33, 34, 30] because of this the scaling g(x) in the MRTE (used by the AIMRTES)
will scale the translation error by dividing it by 10 cm and cutting off values
higher than 10 cm, i.e. β = 10 cm. The MRE, in the MRTE is scaled so that it is
between zero and one. This means that the AIMRTES values 1 cm of translation
as much as 36◦ of rotation. These scaling are also used on the average MRE and
translation error, of course missed objects and false detections are excluded for
the average since they have an error of ∞, also the translation error is not cut
off after 10 cm for the average calculation. The YCB-Video benchmark contains
14000 ground truth poses, meaning that if 7000 false detections were made the
false detection rate is 50%.

4.1.1 SENSOR DISTURBANCES

In this section, the errors featured in the experiments are introduced. As de-
scribed in Section 2.1.3 the Asus Xtion used by the YCB-Video dataset uses an
infrared structured light sensor for its depth images. This sensor is highly prone
to disturbances, since any other infrared light source can interfere with the
distance calculation. The surface texture of objects can also lead to errors in the
distance calculation, depending on how the light is reflected. This can lead to
wrong distance reading of some pixels.
For both the RBG and infrared camera, the lens can be blocked, resulting in
missing spots in the RBG or depth image. Also, motion blur can accrue in both
sensors when the sensor setup (Asus Xtion) is moved. Both sensors can also
experience hardware failure, which can results in dead pixels.1

In the following experiments, the following disturbances are considered:

Missing spots in the depth image This can happen when something is block-
ing the view of the infrared camera, for example, dirt or debris in on camera
lens.

1An implementation of all disturbances can be found under https://github.com/D-Doge/ffb6
_disturbances.
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Missing spots in the RGB image This can happen when something is block-
ing the view of the RGB camera, for example, dirt or debris on the camera
lens.

Noise in the depth image Other infrared emitters, like the sun, can cause
noise in the depth image.

Noise in the RGB image Noise in the RGB image can be caused by low light
conditions, resulting in graininess, or by electrical interference affecting
the camera sensor, leading to unwanted artefacts or colour distortions in
the image.

Motion blur in the depth image Motion blur can occur when the camera is
moved during the recording of a frame.

Motion blur in the RGB image As for the depth image motion blur can also
occur in the RGB image.

4.2 BASELINE

Before examining how FFB6D performance under disturbances, the baseline
performance on the YCB-Video benchmark without disturbances is shown in
Table 4.1. Even without disturbances, the amount of false detections is already
high. The YCB-Video benchmark contains 14,000 ground truth poses. FFB6D
detects 21672 objects, resulting in a false detections rate of 54.8%. The high
false detections rate is probably due to the fact, that the current evaluation
metrics ignore the aspect of false detections entirely. The ADD AUC and ADDS
AUC scores are both quite good, at 92.4% and 96.1% respectively. The AIMRTES
without false detections is also good at 91.2%, since for these experiments a
similar scaling as for the ADD and ADDS AUC was chosen. In contrast, the
AIMRTES takes false detections into account and is much lower at 58.6%.
The average translation error is extremely low at 4 mm. Since FFB6D was trained
with the ADD metric as the loss function, this is explainable, since the ADD
metric punishes translation errors more than rotation errors, which is shown in
Chapter 3. The average MRE is about 0.25, which corresponds to 15.5◦.
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ADD AUC ADDS AUC AIMRTES AIMRTES w. f.d. Avg. eR Avg. et Percentage of f.d.
92.4% 96.1% 58.6% 91.2% 0.27 4 mm 54.8%

Table 4.1: This Table shows the results of FFB6D on the normal YCB-Video
benchmark. The ADD ACU, ADDS AUC and AIMRTES without false
detections are all good at over 90%. The standard AIMRTES is much
lower at 58.6%, because the false detection rate is high at over 50%.
The average translation error is excellent at only 4 mm, while the
MRE is just a bit worse at 0.27.

Figure 4.1: An example of a depth image with the disturbance of missing circles
applied at an intensity of one.
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4.3 MISSING SPOTS IN THE DEPTH IMAGE

To simulate missing spots in the depth image, circles at random spots of the
depth image were set to zero. The circle have a radius from 50 to 100 pixels,
chosen at random. The intensity is given by how many circles are cut out from
the image. An example of an augmented depth image can be seen in Figure 4.1.
The results be seen in Figure 4.2. The AIMRTES without false detections (w.
f.d.) produces similar results to the state-of-the-art ADD and ADDS AUC, being
slightly more strict. Since a similar scaling for the AIMRTES was chosen to
make it comparable to the ADD and ADDS AUC, this was expected. As the
intensity of the disturbance increases, the average MRE and translation error
increase as well. The percentage of false detections does not change much. The
AIMRTES with false detections is much lower than the ADD and ADDS AUC,
but decreases slower. It decreases slower because of the high amount of false
detections, which do not change much under higher intensity and are adding
more terms to the sum of the AIMRTES, making is less sensitive to other rotation
and translation. To counteract this, the rotation and translation error in the
AIMRTES can be weighted higher.
When examining how missing spots in the depth image affect FFB6D, it can be
seen that the average scaled translation error and the average scaled MRE both
increase at about the same rate. The standard deviation of the translation error
is however growing faster, meaning more outliers are present. Since the scores
are still high, this suggests that the translation of a pose is either estimated close
to the ground truth or completely wrong. The same is true for the MRE, to a
lesser degree.
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Figure 4.2: The plot shows the ADD AUC (red), ADDS AUC (green), AIMRTES
without false detections (w. f.d.) (orange), AIMRTES with false detec-
tions (blue), average scaled (avg. s.) multi rotation error (magenta)
with standard deviation (represented by the error bars), average
scaled translation error (yellow) with standard deviation (represen-
ted by the error bars) and percentage of false detections (black). The
intensity (how many spots are missing in the depth image) is plotted
on the X-axis, with the corresponding value on the Y-axis. The ADD
AUC, ADDS AUC and AIMRTES w. f.d. all behave similar, while
standard AIMRTES is lower due to the high false detection rate. As
the intensity of the disturbance is increasing, the error metrics are
increasing slightly. It follows that the scores are decreasing slightly.
Over all, FFB6D is not affect too harshly by the missing spots in the
depth image.
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4.4 MISSING SPOTS IN THE RGB IMAGE

The same method of setting random circles, with a radius from 50 to 100 pixel
to zero, from the depth image is also used on the RGB image. An example is
shown in Figure 4.3.
The results are shown in Figure 4.4. Compared to the missing spots in the depth
image, the missing spots in the RGB image cause a stepper performance drop,
in all four scores. This suggests, that the RGB information is more important to
FFB6D than the depth information. The AIMRTES w. f.d. again performance
similar to the ADD and ADDS AUC, which all decline under heavier disturbances.
The AIMRTES without false detections also declines faster, for the disturbance
on the RGB image.
The percentage of false detections is decreasing, since it makes little sense that
FFB6D improves under disturbances, the RGB data is probably used to detected
objects. With more parts of the picture missing, some objects might be cut
out entirely, making them only detectable from the depth data. Because of the
dropping false detection rate it can also be assumed that the true detection rate is
dropping. The average scaled translation error and its standard deviation behave
about the same, as for the missing circles in the depth image. The average scaled
MRE and its standard deviation is higher, than for the missing circles in the
depth image. This suggests that the RGB data is more important for rotation
and about of the same importance for the translation. As both scaled errors get
set to one, if the object is not found, it can not be due to decreasing detections
rate.
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Figure 4.3: An example of an RGB image with the disturbance of missing circles
applied at an intensity of two.
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Figure 4.4: The plot shows the ADD AUC (red), ADDS AUC (green), AIMRTES
without false detections (w. f.d.) (orange), AIMRTES with false detec-
tions (blue), average scaled (avg. s.) multi rotation error (magenta)
with standard deviation (represented by the error bars), average
scaled translation error (yellow) with standard deviation (represen-
ted by the error bars) and percentage of false detections (black). The
intensity (how many spots are missing in the RGB image) is plotted
on the X-axis, with the corresponding value on the Y-axis. Compared
to the missing spots in the depth image, the average scaled MRE is
increasing faster, which results in a larger drop in the scores. The
false detection rate is also decreasing, which suggest that the RGB
image play a critical role in detecting object. The standard deviation
of the average scaled translation is lower for the disturbance in the
RGB image, this suggests that the RGB image is not as important for
translation.
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4.5 NOISE IN THE DEPTH IMAGE

To simulate noise in the depth image a random value drawn from a Gaussian
distribution is added to every pixel in the depth image. The intensity is given
by the standard deviation of the Gaussian distribution. A value of one is equal
to 100 µm, i.e. adding a value of ten, to a pixel in the depth image corresponds
to adding 1 mm to the depth reading. This is why also some high values, up
to 10,000 (1 m) are included. An example of a noisy depth image is shown in
Figure 4.5.
The results can be seen in Figure 4.6. The average scaled translation error
exceeds its limit of 10 cm after an intensity of 1000 by such a huge margin, that
even the standard deviation is above 10 cm. This makes sense, since a pixel value
of 1000 corresponds to 10 cm. The average scaled MRE is lower, which again
suggest, that the depth data is mainly used for translation. The false detection
rate is also increasing rather quickly after an intensity of 500. Which means the
depth data also plays a role in object detection.
An intensity lower than 10 seems to have no effect. The data used to train FFB6D
comes from a real Asus Xtion, where this level of noise might be present in the
sensor, even under ideal conditions.
The ADD AUC is zero as soon as the translation error is above 10 cm. The
ADDS AUC is zero after a little higher intensity, since it is not as sensitive to
translation, which was shown in Chapter 3. After they reach zero it not possible
to see if the performance of FFB6D gets better or worse, when only relying on
the ADD and ADDS AUC. Both AIMRTES based scores are still decreasing, even
after the translation error is maxed out, because the MRE is still getting worse.
Which means it is still possible to see the performance decreasing, even when
one error aspect is maxed out.
It has to be noted, that AIMRTES also awards true detections, since even objects
with a bad pose estimation will add something to sum. In this case, a true
detection will add 1

3 to the sum. From this it can also be seen, that FFB6D
does not detect every object in the benchmark dataset, because otherwise the
AIMRTES without false detections could not be lower than 1

3 .
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Figure 4.5: An example of a depth image with the disturbance of added Gaussian
noise applied at an intensity of 10000.
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Figure 4.6: The plot shows the ADD AUC (red), ADDS AUC (green), AIMRTES
without false detections (w. f.d.) (orange), AIMRTES with false detec-
tions (blue), average scaled (avg. s.) multi rotation error (magenta)
with standard deviation (represented by the error bars), average
scaled translation error (yellow) with standard deviation (represen-
ted by the error bars) and percentage of false detections (black). The
intensity (standard deviation of the Gaussian noise added in the depth
image) is plotted on the X-axis, with the corresponding value on the
Y-axis. Low intensities up to 15 are not affecting FFB6D much. After
an intensity of 100 the average scaled translation error is increasing
fast, which results in the ADD and ADDS AUC dropping to zero after
an intensity of 1000 is reached. This again solidify the notion that
the depth image is important for translation. The AIMRTES based
scores are still awarding the rotational aspect of the pose and the
object detecting capabilities and are still decreasing as the intensity
is increasing. The average scale MRE is increasing much slower than
the average scaled translation error, which suggest that the depth
information is not as important for rotation. The false detection
rate is also increasing quickly after an intensity of 1000, but is also
decreasing again, which suggest that the depth image is also involved
in the object detection aspect of FFB6D.
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Figure 4.7: An example of an RGB image with the disturbance of added Gaussian
noise applied at an intensity of 10.

4.6 NOISE IN THE RGB IMAGE

To simulate noise in the RGB image a random value drawn from a Gaussian
distribution is added to every channel of every pixel. The intensity is given by
the standard deviation of the Gaussian distribution. The image is interpreted
as an eight bit three channel image, i.e. every channel contains values ranging
from 0 to 255. An example of a noisy RGB image is shown in Figure 4.7.
In Figure 4.8 the results are shown. The false detection rate is increasing much
faster than the average scaled rotation or translation error. The AIMRTES is
the only scores that reacts to the increase in false detections, which is easy to
see when look at an intensity range from about 0 to 80. The false detection rate
is sensitive to noise in the RGB image, much more than for noise in the depth
image, which again suggest that the RGB image is important for object detection.
The noise intensity of the RGB can not be compared to the noise intensity of
the depth image, since the values are encoding different information (colour
and distance). After an intensity of around 100 the average scaled rotation and
translation errors are also increasing fast, which causes the ADD AUC, ADDS
AUC and AIMRTES without false detections to drop. As the false detection rate
increases, the AIMRTES becomes less sensitive to rotational and translational
errors, because the rotational and translational errors make up a smaller fraction
of the sum over which the AIMRTES is averaged.
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Figure 4.8: The plot shows the ADD AUC (red), ADDS AUC (green), AIMRTES
without false detections (w. f.d.) (orange), AIMRTES with false detec-
tions (blue), average scaled (avg. s.) multi rotation error (magenta)
with standard deviation (represented by the error bars), average
scaled translation error (yellow) with standard deviation (represen-
ted by the error bars) and percentage of false detections (black). The
intensity (standard deviation of the Gaussian noise added in the RGB
image) is plotted on the X-axis, with the corresponding value on
the Y-axis. The false detections rate is affected the most by the dis-
turbance, reaching over 100% at an intensity of 80, which causes the
AIMRTES to decline faster than the other scores, which is the only
score to take false detection into account. The fast increase in false
detections suggest that the RGB image plays a major role for the
object detection.The average scaled rotation error is also increasing
faster than the average scaled translation error.
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Figure 4.9: An example of an RGB image with the disturbance of added Gaussian
noise applied at an intensity of 10.

4.7 MOTION BLUR IN THE DEPTH IMAGE

To simulate motion blur in the depth image, a linear motion blur is applied
using a convolutional kernel that smears pixel values along a randomly chosen
direction. The length of the blur is the intensity and is given in pixels. The
direction of the motion blur is determined by a randomly generated angle. An
example of this disturbance can be seen in Figure 4.9.
The average scaled rotation error is only increasing very slowly, which suggest
that the depth image is not important for finding rotations. The average scaled
translation is increasing faster again, which solidifies that the depth image is
used for finding translations. The false detection rate is also increasing fast. The
ADDS AUC is much lower than the ADD AUC, even though ADDS is a more
lenient metric than ADD, this suggest, that some objects with multiple correct
poses get affected more by the motion blur disturbance. The AIMRTES without
false detection is decreasing much more slowly than the ADD and ADDS AUC.
This is probably due to the fact, that the AIMRTES w. f.d. is still awarding the
low rotation error, where the ADD and ADDS AUC classify the pose as incorrect,
due to the high translation error.
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Figure 4.10: The plot shows the ADD AUC (red), ADDS AUC (green), AIM-
RTES without false detections (w. f.d.) (orange), AIMRTES with
false detections (blue), average scaled (avg. s.) multi rotation error
(magenta) with standard deviation (represented by the error bars),
average scaled translation error (yellow) with standard deviation
(represented by the error bars) and percentage of false detections
(black). The intensity (length of the motion blur in the depth image)
is plotted on the X-axis, with the corresponding value on the Y-axis.
The false detection rate and the averaged scaled translation error
are increasing fast. The averaged scaled rotation error is increasing
very slowly. Which again suggest that the depth image is mainly
used for detection and translation. The ADDS AUC is decreasing
faster than the ADD AUC, which suggest that some objects with
multiple correct poses are affected more by the motion blur, since
the ADDS is a more lenient metric than ADD. Because the average
scaled translation error is much higher than the average scaled ro-
tation error, the AIMRTES is higher than both the ADD and ADDS
AUC. This is probably due to the fact the AIMRTES w. f.d. still
awards the low rotation error.
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Figure 4.11: An example of an RGB image with the disturbance of added Gaussian
noise applied at an intensity of 10.

4.8 MOTION BLUR IN THE RGB IMAGE

The motion blur for the RGB image was simulated with a convolutional kernel,
as for the depth image. The convolutional kernel was applied to every channel
of the RGB image. This disturbance was included in the training of FFB6D with
an intensity of up to 15. An example of the applied motion blur can be seen in
Figure 4.11.
The results are plotted in Figure 4.12. The false detection rate is much better
than for the other disturbances, especially in the intensity range included in
the training. Both the average scaled rotation and translation error are only
increasing very slowly for intensities below 15. This means that including the
disturbance during training seems to increase performance, however to gain
more confidence in that regard this experiment should also be done on a version
of FFB6D which was not trained with this disturbance. The average scaled
rotation error is again increasing fast, which solidifies that the rotation is mainly
recovered from the RGB image. The scores behave as expected, with AIMRTES
w. f.d. being again a bit higher than the ADD AUC and ADD AUC, due to the
discrepancy in rotational and translational errors.
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Figure 4.12: The plot shows the ADD AUC (red), ADDS AUC (green), AIM-
RTES without false detections (w. f.d.) (orange), AIMRTES with
false detections (blue), average scaled (avg. s.) multi rotation error
(magenta) with standard deviation (represented by the error bars),
average scaled translation error (yellow) with standard deviation
(represented by the error bars) and percentage of false detections
(black). The intensity (length of the motion blur in the RGB image)
is plotted on the X-axis, with the corresponding value on the Y-axis.
The false detection rate is lower than expected, it even is decreas-
ing at the start, when the intensity is blow 15. The average scaled
rotation error is again increasing faster than the translation error.
The ADD AUC, ADDS AUC, AIMRTES w. f.d. and AIMRTES are
all decreasing as expected. It can be noted that FFB6D was trained
with this disturbance, with an intensity of up to 15, which seems to
have improved the performance in that intensity range.
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4.9 SUMMARY

The AIMRTES is better suited than ADD or ADDS AUC for examining pose
estimators under disturbances, because it does not reach zero as quickly, as can
be seen in Section 4.5. This means, that the AIMRTES has a larger range of
intensities, for which a difference in performance can be seen. Additionally, the
AIMRTES is the only score that can take false detections into account, while
performing similar to the ADD and ADDS AUC, when ignoring false detections.
It is still recommanded to also track the average MRE, average translation error
and false detections rate and maybe even the true detection rate, so it is clear
which aspects of the pose estimator are affected by the disturbance.
By isolating disturbances in different data channels, it is possible to see how
the pose estimator uses the provided information. In the case of FFB6D, it is
apparent that the depth data is mainly used for translation and detection. The
RGB data has more influence on the rotation than the translation and is also
used for detections.
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5
Conclusion

The newly developed evaluation score AIMRTES is able to address every aspect
of 6D pose estimation. It can be applied to every kind of object and is unbiased
to the different kind of objects, while considering every kind of error. The
MRTE provides easy interpretable results, growing linear for both rotational
and translation errors. Additionally, the scaling in the MRTE can be used to
adapt the metric for different use cases, where rotation, translation and false
detections are of different importance. The AIMRTES also does not treat pose
estimation as a binary problem, i.e. it can distinguish the performance of pose
estimators more precisely, than current state-of-the-art methods.
To analyse pose estimators under disturbances, the approach of using the AIM-
RTES alongside the average scaled rotation and translation error, while tracking
the amount of false and true detections, is able to clearly isolate the different
kind of errors, while providing a good indication of overall performance, in the
form the AIMRTES.
For the example of FFB6D, it can be clearly seen that the depth image is highly
important for the translation. This information can not be easily recovered from
the state-of-the-art evaluation methods. Overall FFB6D deals quite well with
minor disturbances.

5.1 FUTURE WORK

A logical next step would be to survey current state-of-the-art pose estimators
using the AIMRTES, as current state-of-the-art evaluation does not take false
detections into account, the results might greatly differ from the ADDS AUC.
Also, using a stricter scaling than 10 cm should also be considered, since cur-
rent scores are quite high, sometimes even as high as 99.7% ADD accuracy, as
reported in [11].
Using the complement of the AIMRTES as the loss function in training for deep
learning networks might improve results. Especially in regard to false detec-
tions, since currently often the ADD metric is often used as a loss function.
The MRTE metric used by the AIMRTES also grows linearly for both rotation
and translation and is unbiased for different objects. The gradient of the MRTE
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is however not differentiable at its extrema, but this is a well known problem
in machine learning. This problem is easily addressed by setting the gradient
to zero at these extrema, which is also done for loss functions like the mean
absolute error as can be seen in [5, p. 46].
With the newly introduced approach to analyse pose estimators under disturb-
ances, it would also be interesting to try to improve FFB6D in terms of its
robustness to disturbances. This could be archived by adding the disturbances
that effect FFB6D to the training data, following the approach of [3]. With the
finer amount of information on the different kinds of error, it is possible to see
if other errors degenerate as overall performance increases. For example, if the
training puts more focus on depth disturbances improving translation errors,
the overall performance might increase while the rotational errors worsen. It
might also be advantageous to include the true positive detection rate for the
analysis, especially for pose estimators that only output a detection under higher
confidence.
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