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ABSTRACT
Camera-based systems in Ambient Assisted Living (AAL) and Autonomous Driving (AD) require careful
handling of privacy-sensitive image data. The ideal way to prevent data misuse is to anonymize data right
after perception and before processing. Non-realistic anonymization methods (blur, pixelation) suffice, but
remove essential information needed by subsequent algorithms. Realistic anonymization, on the other hand,
promises to preserve vital information, by generation of natural-like replacements. Recent studies investigate
the performance on such data but do not examine the underlying causes of the observed impacts. For that
reason, this study aims to establish a systematic approach to analyze anonymization methods and their
effects on model training and performance, through a quantitative review of the challenges and changes
introduced by anonymization.
By using the state-of-the-art toolbox DeepPrivacy2, we generate a realistic full-body anonymized COCO
dataset and use it to train and evaluate YOLOv10 on object detection. In addition to classic metrics (mAP,
AP), the Structural Similarity Index Measure (SSIM) is utilized to assess the impact of anonymization
on images or classes. To gain insights on the influences of anonymization on computer vision, we
conduct experiments focusing on factors like object size, as well as co-occurrence frequency with the
anonymized class ‘person’. Furthermore, novel findings on the robustness of model sizes and the processing
of anonymized images within the model are presented.
Training and evaluation with anonymized data pose challenges like object obfuscation and re-labeling.
Results indicate that future research must adapt models to anonymized data, improve realistic anonymization
generation, and provide datasets suited for research in anonymization. This will help establish life-changing
technologies like AAL and AD and narrow the gap between privacy and the information demands of
computer vision.
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FIGURE 1. Top: Generation of an anonymized COCO dataset using DeepPrivacy2 on the full training and validation set of COCO.
Bottom: Visualizing the data flow for training and evaluation. Usage of either the original COCO data or anonymized COCO for training results
in models specialized for the respective data type (Org Model, Anon Model). Each model type is evaluated both on original and on anonymized
data. The full training and validation set is used, without filtering for hard or complex scenes. Evaluation parameter are mAP, AP and SSIM.
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1 INTRODUCTION
Ambient Assisted Living (AAL) and Autonomous Driv-
ing (AD) are emerging fields with significant potential to
enhance the quality of life. AAL empowers elderly adults and
individuals with physical or mental impairments to manage
daily tasks more independently — a key advantage as care
facilities face surging demand from demographic shifts and
a simultaneous caregiver shortage [1]. AD also has the po-
tential to generate societal benefits by improving mobility
access for individuals who are unable to drive. As well as
environmental benefits through more efficient driving [2].

Both in AAL and AD, key technologies like the Internet
of Things (IoT), data fusion, Artificial Intelligence (AI), and
cloud computing offer new possibilities. Nevertheless, they
also raise security and privacy concerns due to an increasing
number of sensors monitoring everything in their field of
view. From a technical perspective, this level of monitoring
is intentional, but introduces risks of data abuse. Incidents
of AD in recent years highlight these risks, such as Tesla
employees sharing sensitive footage from customer cars [3]
and misuse of GPS trackers in cars [4].

As applications for AAL become more widespread, the
potential for data misuse will likely increase. This empha-
sizes the growing importance of privacy-preserving tech-
nologies and anonymization to mitigate these risks or mit-
igate the consequences. In AAL, high levels of trust are
essential as the technology requires continuous monitoring
in personal spaces, revealing private details such as habits,
health data, personal hygiene, and sexual preferences. These
privacy risks extend beyond the intended users, like patients
or medical staff, to include bystanders, such as visitors or
service personnel [5]. Even with declared data confidential-
ity, there are no guarantees for privacy — especially with
cloud-based processing.

The issue of bystanders is equally relevant for AD, as
future vehicles equipped with cameras, LiDAR, and other
sensors will continuously survey both the public environment
and the driver. While drivers — or in AAL contexts, patients
and caregivers — may consent to monitoring, the consent of
other individuals in public spaces remains questionable. For
pedestrians, potential data leaks heighten the risk of being
constantly trackable, especially when data is aggregated and
analyzed on a large scale.

This is not only an ethical issue, but also a matter of legal
compliance. Since 2018, the European General Data Protec-
tion Regulation (GDPR) [6], one of the strictest data protec-
tion laws, mandates explicit individual consent for processing
personal data. As a result, anonymization is critical not only
at the application layer, but also requires advancement in
scientific research.

Training AI requires vast amounts of data, and creating
new datasets is costly and time-consuming. A critical chal-
lenge arises when individuals withdraw consent for data
usage. Such actions can potentially render entire datasets
worthless, posing a significant challenge to AI development.

Original Blur Pixelation

Mask Face Full-body

FIGURE 2. Examples for different methods of anonymization using the same
base image. Showing non-realistic methods like blur, pixelation and masking
as well as realistic methods through DeepPrivacy2 with face and full-body
anonymization. It can be seen how different methods can cause loss of objects
within the anonymized region, e.g. the tennis ball and the wristband.

Anonymization offers a possible solution by allowing con-
tinued use of existing data, which raises questions about
whether models trained on anonymized data can still perform
effectively on original inputs.

If existing models remain suitable, no additional fine-
tuning on anonymized data is required, and resources are
saved; otherwise, new models specialized for anonymized
data may be necessary. This has practical implications be-
cause not every application has the resources to train or
maintain multiple models, so a single model that performs
well on both original and anonymized data is ideal.

The challenges outlined underscore the need for
anonymization methods with robust privacy guarantees.
These methods must ensure no decline in performance on
the intended application and, therefore, must still preserve
required information.

Classic non-realistic anonymization are methods such as
pixelation, blurring, or masking as shown in Figure 2. These
often rely on transforming the source data or on inpainting.
Transformation-based methods face reversibility issues (e.g.,
shown in [7]), therefore failing to provide strong privacy
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guarantees. Both approaches — transformation based and in-
painting — also suffer from information loss, potentially ren-
dering further processing harder or impossible, e.g., pose
estimation for action recognition on blurred or masked data
(compare in Figure 2).

Realistic anonymization offers a promising solution to
these issues by replacing information with synthesized con-
tent generated by AI. These aim for natural-like replace-
ments. So called full-body anonymization, generates replace-
ments based on poses and provides stronger privacy guaran-
tees than classic or purely transformative methods. A notable
recent example in this field is DeepPrivacy2 [8], which is
utilized in this work to achieve realistic anonymization, as
seen in Figure 2.

While realistic anonymization addresses some issues, it
keeps known challenges and introduces new ones. Objects
carried by anonymized individuals may be lost during re-
placement, leading to information loss (compare Figure 2,
tennis ball and wristband are lost by anonymization with blur,
pixelation, mask and full-body). Additionally, replacements
may introduce imperfections, such as changes in the texture
of surrounding objects or changes in illumination, potentially
degrading the performance of subsequent processing or AI
training. These factors highlight the complexity of achieving
effective anonymization for use in real-world applications.

In addition, there is a lack of datasets specifically designed
to investigate computer vision tasks under the influence of
anonymization. This gap shows the lack of research on the
effects of anonymization, especially as the volume of data
featuring anonymized individuals and objects continues to
grow in the future.

Given these challenges, this work examines the influence
and consequences of realistic anonymization on AI training.
We focus on YOLOv10 [9], the latest version of the most
widely used object detection models, at the start of this study.
The aim is to obtain a broad overview of common issues
related to anonymized data. The key questions are:

• Does training on realistic anonymization improve detec-
tion performance compared to original data, and how
does it compare to non-realistic methods?

• What influence does model size (parameter count) have
on the object detection performance of YOLO in the
context of anonymization?

• Do models maintain their detection performance if pro-
cessed data type (anonymized or original) is exchanged
for a different one than the model is trained on?

• How much does realistic anonymization alter the image
or specific objects?

• How much does object size and frequency with the
anonymized class affect detection performance?

• Is fine-tuning pre-trained models with anonymized data
sufficient to improve detections on anonymized inputs?

• Which parts of the detection process are most affected
by anonymization changes?

• Is the investment in a specialized dataset for anonymiza-
tion research worthwhile?

2 RELATED WORK
Research on anonymization in AI training primarily focuses
on evaluating anonymization methods or their impact on
person detection, with fewer studies examining the effects
of anonymized data on model training. Traditional methods
like blurring and pixelation often degrade performance, while
realistic approaches, such as DeepPrivacy2, offer improved
results. However, even realistic anonymization affects com-
puter vision tasks, with the impact varying by model archi-
tecture and used anonymization method [10–12]. Broader
discussions on the general topic of visual privacy highlight
the limitations of traditional anonymization and emphasize
the need for more advanced full-body anonymization meth-
ods [13]. This section reviews key works addressing these
challenges and the role of anonymization in model training.

2.1 ANONYMIZATION METHODS

To better understand the impact of anonymization on model
training, it is essential to examine the different anonymiza-
tion methods available, ranging from traditional techniques
to more advanced realistic approaches. The work of [13]
provides a broad overview of privacy-preserving techniques,
extending beyond anonymization, to explore various methods
for visual privacy.

It discusses intervention approaches, data hiding, vi-
sual obfuscation techniques such as image filtering, gait
anonymization, traditional and realistic anonymization tech-
niques, and poisoning attacks, among others. Additionally,
the review dives into privacy-by-design systems with differ-
ent privacy levels.

The review emphasizes that simply anonymizing facial
features is insufficient, as other identifiable attributes, such
as gait, gender, and height, can still be extracted. This un-
derlines the importance of realistic full-body approaches for
anonymization to address all potential identifiers effectively.

Traditional, non-realistic anonymization methods, such
as pixelation and blurring, are ineffective for computer
vision tasks due to significant information loss and being
reversible [7, 14, 15]. Realistic anonymization methods are
more sophisticated due to the generation of new content. But
these remain limited, with only a few frameworks focusing
on full-body anonymization, including [8, 16–18]. For in-
stance, DeepPrivacy2 exemplifies the latest advancements in
realistic anonymization.

DeepPrivacy2
DeepPrivacy2 is a GAN-based toolbox designed for face and
full-body anonymization. Its detection step integrates three
frameworks, consisting of face detection using DSFD [19],
pose estimation via CSE [20], and instance segmentation
through Mask R-CNN [21]. Using these detection steps,
individuals are grouped into those with poses detected by
CSE, persons not identified through CSE, and faces missed
by the other two methods. Each group undergoes an own
specialized anonymization process.
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The anonymized individuals are re-integrated into the orig-
inal image using a recursive ordering method, designed to
minimize stitching artifacts. Larger detections are presumed
to be in the foreground. These are stitched last to maintain
scene integrity, while smaller ones are placed first.

DeepPrivacy2 includes notable features, such as the ability
to track individuals across image sequences and preserve
generated identities, ensuring consistency. It can reproduce
identical anonymization results when processing the same
source image repeatedly, further enhancing consistency. Ad-
ditionally, generation can be guided by text prompts, en-
abling control over anonymized attributes — for example,
specifying that all generated individuals should have spe-
cific expressions like smiling or other facial attributes like
having mustaches. Therefore, it offers a wide range of
possible applications.

While the authors identify a limitation in how the genera-
tor’s output is influenced by image context (e.g., generating
a baseball player when a baseball field is detected in the
surrounding environment), this work highlights it as a poten-
tial advantage. Refining this characteristic in future iterations
could enable context-aware identity generation, preserving
critical information and enhancing realism.

2.2 IMPACT OF ANONYMIZED TRAINING DATA ON
COMPUTER VISION
Research on the impact of anonymized data on AI training
and its effects on computer vision tasks remains scarce.
Among recent studies, three stand out as they move beyond
merely assessing whether new anonymization methods still
enable person detection or evaluate the level of privacy
they provide. Instead, these works examine how training
on anonymized data affects object detection, segmentation,
and keypoint detection, offering valuable insights into the
implications of anonymization on computer vision. As these
studies serve as the main inspiration for our work, their
findings and methods are summarized in this section, and key
differences and contributions to this research are highlighted
in Section 2.5.

The study of LEE [10] examines non-realistic anonymization
techniques, and their effects on different computer vision
tasks when they are used as anonymized training data.
Additionally, they compare different architectures, such as
ViT-based models and CNN-based models (YOLOv8 [22]).
The results indicate that CNN architectures are more robust
in regard to performance degradation caused by anonymized
data. Further, an interesting finding is that object classes fre-
quently appearing alongside anonymized persons experience
a decrease in accuracy, while the impact on other classes is
considered negligible.

This suggests that anonymized classes can negatively in-
fluence the performance of non-anonymized ones. The extent
of this impact depends on the anonymization technique,
model architecture, and class type. The study also found
that larger models with more parameters are less affected by

anonymization-related degradation. However, no information
is provided on how objects or labels within anonymized
regions are handled. These can pose a problem for evaluation
if objects are removed during anonymization.

The impact of face-anonymized training data on segmenta-
tion tasks within AD is investigated by ZHOU [11]. They
apply different anonymization techniques, including blur,
crop-out, random crop, and realistic anonymization. Their
study uses the Cityscapes dataset [23], which is specialized
for autonomous driving. By focusing on use case relevant
classes (persons and three vehicle types) the evaluation is
highly use case specific. Their results indicate that, among the
applied anonymization methods, realistic face anonymization
performs best, but still leads to a decrease in performance.
Additionally, like LEE [10], they find that larger models are
less affected by anonymization-induced degradation com-
pared to smaller ones.

Another study focusing on the impact of anonymized images
on model training is presented by HUKKELAS [12]. The
authors apply both realistic and non-realistic anonymization
techniques. For traditional non-realistic methods, they use
face and full-body blurring as well as mask-out. Realistic
anonymization is implemented using DeepPrivacy2 for both
face and full-body anonymization. Their results indicate
that face anonymization has minimal to no impact on seg-
mentation tasks for both realistic and traditional methods.
However, for keypoint detection, traditional anonymiza-
tion significantly degrades performance, whereas realistic
anonymization results in a much smaller performance drop.
When evaluating full-body anonymization, they observe a
clear decline in performance for both traditional and realistic
methods. However, realistic anonymization proves to be
significantly better than traditional approaches.

While other works such as LEE and ZHOU [10, 11] sug-
gest that larger models are less affected by anonymization,
HUKKELAS [12] finds the opposite. Their analysis, is limited
to ResNet and R-CNN architectures, leaving open the possi-
bility that other architectures, such as YOLO as CNN, may
behave differently.

Similar to LEE [10], they observe that anonymization
impacts not only the altered classes but also unrelated ones.
In full-body detection, they find no significant influence
on large objects like buses, cars, motorcycles, trains, or
trucks. However, performance decreases for smaller sized
classes such as bicycles, which they theorize to be caused
by overlapping of relevant regions. They highlight realistic
anonymization as a “superior option”, but emphasize that it
is no substitute for real data, despite findings indicating that
realistic anonymization can effectively replace original data
in certain cases.

In their experiments, they do not anonymize the entire
dataset. They exclude crowded scenes and images where ob-
jects are frequently in close relation to people (e.g., bicycles)
to avoid relabeling the data, leading to the assumption that a
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FIGURE 3. Particularly simplified scheme of YOLOv10, highlighting the task of specific layers with YOLOv10. For detailed architecture, see Appendix A.

mix of original and anonymized data is used for training if
the whole training set is used.

2.3 ARCHITECTURE OF YOLOv10
To gain further insights into whether realistic anonymization
fundamentally alters image features or merely requires fine-
tuning of the classification step (see experiments in Sec-
tion 3.6), a closer look at YOLO’s architecture is necessary.
The goal is to determine which parts are responsible for a
certain task within the model’s learning process. This section
describes the architecture and tasks of individual layer groups
in YOLOv10 according to [22] and [9].

YOLOv10’s architecture can be divided into three key
components, each with a distinct role in the detection process.
A simplified representation of these responsibilities is shown
in Figure 3. Due to the absence of a complete architecture
diagram for YOLOv10 in the literature, our work provides
an architectural overview, including individual layer types
and corresponding layer numbers, in Appendix A.

Key Components
The backbone is responsible for extracting features from
the input image. These detected features are passed to the
neck and into a self-attention layer, which captures global-
scale patterns.

Extracted features along with the global patterns provided
by the self-attention layer are processed and combined within
the neck. This enables a comprehensive feature combination
before passing the data to the head.

The head determines the observed class types, defines
bounding box areas, and outputs the final detections. It con-
sists of two specialized components: a one-to-many head,
which generates multiple predictions during training to im-
prove model accuracy, and a one-to-one head, which selects
the best-fitting detection during inference. This distributed
approach eliminates the need for Non-Maximum Suppres-
sion (NMS), leading to improved latency compared to earlier
YOLO versions — a key optimization goal of YOLOv10.

2.4 DATASETS
Publicly available datasets related to anonymization typically
focus on the anonymization process itself. Which is evaluated
by the level of achieved privacy [13]. Other datasets focus on
specific computer vision tasks, but are commonly utilized to
improve anonymization techniques. Currently, anonymiza-
tion is not frequently used in datasets. There exist some, like
NuScenes [24], A2D2 [25] or AViD [26] but within these,

anonymization is restricted to the blurring of heads or license
plates. However, there is a notable gap in specialized datasets
designed to study the impact of different anonymization
methods on computer vision tasks or AI training. Conse-
quently, the most practical approach is to utilize a commonly
used dataset and apply the desired anonymization method to
it, as shown by LEE [10] and HUKKELAS [12].

This study, compiled a collection of relevant datasets appli-
cable for various tasks and use cases, or enhancement of
anonymization methods in Appendix B. Though, most of
these datasets do not satisfy the requirements of our experi-
ments, which are: the inclusion of persons performing diverse
activities (preferably aligned with AAL or AD) in home
or outdoor environments, annotations for everyday objects,
and a manageable size allowing anonymization, training and
evaluation within a reasonable timeframe. Among the options
considered, MS COCO [27] is the only dataset meeting
most of the criteria and is also employed in prior studies of
LEE [10] and HUKKELAS [12].

2.5 CONTRIBUTIONS OF THIS WORK

This work aims to extend previous research of training
and evaluating models on realistically full-body anonymized
data. By combining and expanding evaluation schemes, it
establishes a new systematic approach to assess the impact
of anonymization on model training and performance, using
object detection as a case study. This methodology is not
limited to realistic anonymization, but is also applicable
to other anonymization techniques or methods that alter
specific image regions. The following section highlights the
differences to prior works and summarizes our contributions.

Differences to Previous Works
In contrast to HUKKELAS [12], this work fully anonymizes
the dataset for training without filtering the images for harder
cases. While they exclude classes commonly associated with
persons (e.g. bicycle or motorcycle), our approach enables
a general evaluation taking all possible circumstances into
account.

Additionally, it is also investigated if using the original an-
notations on anonymized data or relabeling influences detec-
tion performance. Whereas HUKKELAS [12] applies Deep-
Privacy2 on different datasets (Cityscapes [23], BDD100K
[28] and COCO) and filters problematic cases, this study
employs the same anonymization framework but focuses on
COCO, without removing problematic cases. Additionally,
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Original Difference Anonymized

FIGURE 4. Difference images (middle) between original image from COCO (left) and anonymized with DeepPrivacy2 (right). The ground truth bounding box
(yellow) shows no significant change in size or position for the generated person compared to the original image.

whereas ZHOU [11] uses ResNet/R-CNN architectures for
segmentation, this work evaluates the performance of a CNN-
based object detector (YOLO).

Further, while LEE [10] evaluates only on the original
validation set, this study assesses model performance on both
the original and anonymized validation sets. This comparison
allows for an analysis of data exchangeability between differ-
ent training and application data types.

In [10], LEE investigates which pixels of original and
anonymized data contribute to classification. Findings in-
dicate that models trained on original data rely on overall
shape and contour for detections, whereas models trained on
anonymized data interpret features and objects differently,
though no further details are provided.

Our work aims to explore these effects by freezing layers
of the model which are responsible for feature detection,
combination and the final detection. Using this approach,
it is expected to gain further insights whether realistic
anonymization alters image features and therefore changes
the models’ detection process.

LEE [10] observes a correlation between decreased per-
formance in non-anonymized objects and their frequent co-
occurrence with the anonymized class. The present work
aims to investigate this effect further by analyzing perfor-
mance variations across different co-occurrence frequencies.
Additionally, we hypothesize that object size plays a crucial
role, as smaller objects are more likely to be altered or
affected by anonymization. Therefore, this study examines
not only the frequency of object appearances but also their
size to better understand the impact of anonymization on
detection performance.

Instead of using YOLOv8, as LEE [10], this work utilizes
YOLOv10, which incorporates an updated head architecture
for improved detection results.

To assess changes and imperfections introduced by
anonymization, this work employs SSIM as an evaluation
metric. The measure is also applied by ZHOU [11] to identify
regions where anonymization is applied within a dataset.
Their study, which focuses on the impact of anonymization
on semantic segmentation, required detecting areas affected
by anonymization. This provides a valuable assumption —

generated content is not perfect and alters key image proper-
ties such as lighting and texture.

Building on this, our work adapts the use of SSIM from
identifying anonymized regions to a method for quantifying
changes introduced by anonymization, offering a broader
perspective on its impact on model training and performance.

Overview of Contributions
• We establish a systematic evaluation approach to an-

alyze anonymization methods, assessing both image
modifications and their effects on model training and
detection performance.

• For training and evaluation, the entire COCO dataset is
anonymized without filtering out difficult cases, simu-
lating real-world conditions.

• The anonymized COCO dataset is used to investigate
training performance on anonymized data and test de-
tection performance on the anonymized validation set.

• Further, we investigate the influence of model size on
performance under realistic anonymization, contribut-
ing additional results to the contradiction between LEE,
ZHOU [10, 11] and HUKKELAS [12].

• This study employs SSIM as a novel metric to quantify
the changes introduced by anonymization.

• Building on LEE [10], our work explores the influence
of frequent co-occurrence with the anonymized class
‘person’ in relation to object size.

• By identifying the most affected components of the
detection pipeline under realistic anonymization we
provide a direct extension to LEE [10], aiming to
gain insights, that enhance model performance on
anonymized data.

• Additionally, we investigate the exchangeability of orig-
inal and anonymized data for training, offering insights
for practical use cases.

• Finally, performance gains from relabeling anonymized
data are demonstrated by comparing the use of the
original ground truth with a ground truth adapted to
anonymized data.
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FIGURE 5. Difference images (middle) between original image from COCO
(left) and anonymized with DeepPrivacy2 (right). Top: Changes occur not only
for persons, but also in a small surrounding area, potentially changing
properties of near objects.

3 EXPERIMENTS
This section presents experiments evaluating the impact of
anonymization on model training and performance. It intro-
duces the used data and describes the anonymized dataset’s
creation. The key investigations include: evaluating general
detection performance and model size influence, assessing
anonymization effects on an image level, comparing realistic
to non-realistic anonymization, analyzing influence of ob-
ject size and frequency, exploring fine-tuning with different
freezing configurations, and assessing improvements through
annotation correction for anonymized data.

3.1 DATASET
Due to the lack of datasets focusing on the influence of
anonymization and the other reasons listed in Section 2.4, the
MS COCO 2017 instance dataset is chosen as a base dataset
for this work.

To generate the anonymized version of this dataset, the
process visualized in Figure 1 is used. All images containing
persons from both the training and validation subsets of
COCO are retrieved and processed with DeepPrivacy2 in
full-body anonymization mode.

As DeepPrivacy2 is an unsupervised approach to
anonymization, a confirmation of its effectiveness is needed.
This is verified by reviewing 100 randomly selected images,
confirming that the original annotations maintain aligned
within the anonymized images (compare Figure 4).

This process results in two datasets, each with training
and validation data: COCO original and COCO full-body
anonymized. For data generation, a system with an NVIDIA
GeForce GTX 1070 (VRAM 8 GB) and CUDA 10.2 is used.

3.2 CHANGES OF ANONYMIZATION ON AN IMAGE
LEVEL
The goal is to assess the changes beyond a count of pixels
with differences. Since the anonymization process always
affects an area surrounding the anonymized person (see Fig-
ure 5), a more advanced assessment method is required. A
naive approach, such as computing the difference image be-
tween the original and anonymized versions of the same im-
age or counting changed pixels, is considered to not provide

sufficient insight. In particular, the grade of modifications
must be observed, as neighboring textures or lighting are
affected to varying degrees. As these changes are a potential
explanation why objects frequently appearing alongside the
‘person’ class show a decline in detection performance, they
need to be measured.

To address this, the Structural Similarity Index Measure
(SSIM) [29] is employed, which differs from techniques like
Mean Squared Error and other methods that estimate absolute
differences. SSIM evaluates changes in luminance l, contrast
c, and structure s between two images or neighborhoods
x, y. The key idea is that pixels exhibit strong dependencies,
especially within a neighborhood. These dependencies en-
code crucial structural information about objects in a scene.
Therefore, properties such as the pixel mean µx, µy and
variance σx, σy of x, y are incorporated into the computation.
The full derivation can be found in [29], at this point a brief
look at the main components of SSIM is provided.

The equations for l, c, and s are given by

lxy =
2µxµy + c1
µ2
x + µ2

y + c1
, (1a)

cxy =
2σxσy + c2
σ2
x + σ2

y + c2
, (1b)

sxy =
σxy + c3
σxσy + c3

, where c3 =
c2
2
. (1c)

The constants c1 = (k1L)
2 and c2 = (k2L)

2 are used
with the factors k1, k2 to weight the dynamic range L of pixel
values, ensuring that l, c and s are balanced without overem-
phasizing any single component. The final SSIM score is
derived as a weighted product of l, c, and s, resulting in

SSIMx,y =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
. (2)

The values of SSIM are in the range of [−1, 1]. A value of
1 means perfect similarity, values of 0 indicate no similarity,
negative values show an anti-similarity which can range up
to −1 standing for absolute anti-correlation.

To evaluate SSIM, a closer look is taken at use case-
specific classes for AAL and AD. Classes are divided into
two groups for each use case:

• Change Group (CG): changes are acceptable
• No Change Group (NoCG): changes should be avoided

The resulting groupings of classes are shown in Table 1.
Using these groups, SSIM is calculated for the entire

image containing the relevant classes. The basis of the cal-
culation is the original COCO image and the anonymized
version of the same image. Additionally, SSIM is calculated
based on bounding boxes, comparing class relevant regions
in the original image with the same areas in the anonymized
version. This results in an SSIM score specific to each class
relevant area. By comparing both methods, it is possible
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Usecase

Group
NoCG CG

AD
car,

stop sign,
traffic light

cow,
umbrella,

bench

AAL
knife,
bed,
chair

potted plant,
clock,

tv

TABLE 1. Class groupings used to calculate SSIM scores for the use cases
AD and AAL, divided into no change group (NoCG) and change group (CG)

YOLOv10 Size Size (in million)
n 2.3
s 7.2
m 15.4
l 24.4
x 29.5

TABLE 2. Count of parameters for each of the used YOLOv10 model sizes.

to assess the changes related to persons and the impact of
anonymization for each class.

3.3 GENERAL PERFORMANCE AND INFLUENCE OF
MODEL SIZE
To investigate the impact of model size on the performance
of anonymized models, YOLOv10 models of all sizes, from
YOLOv10n to YOLOv10X, are trained using the Ultralyt-
ics toolbox [22]. The number of parameters is provided
in Table 2.

Each model size is trained on both the original COCO
training set and the full-body anonymized training set, result-
ing in two trained models per size, differing in training data.
Both sets of models are evaluated on both the anonymized
validation set and the original COCO validation set.

A naming convention is established for clarity, as given
in Table 3. For example, a model named Org on Org is
trained on the original COCO training set and evaluated
on the original COCO validation set. This results in four
possible model and evaluation combinations Org on Org,
Org on Anon, Anon on Org and Anon on Anon. The Org
on Org evaluation forms the base evaluation the other are
compared to.

The training methodology is realized according to
LEE [10]. They train the models from scratch using default
parameters except for the optimization method, which is
changed from ‘auto’ to ‘SGD’. To retain comparability, we
use the same configuration.

The only additional modification is an increased batch size
of 40. To ensure reproducibility, the deterministic flag is set
to ‘True’, and the training seed is fixed at 0. Evaluations
are conducted across all training and evaluation data types,
measuring mAP and AP over all classes and model sizes.
Evaluations are realized using the COCO API [30]. Our mod-
els are trained on a system using an NVIDIA A40 (VRAM
48 GB), CUDA 12.1 and a total RAM of 512 GB.

Name Description

Org Model,
Training data: Original COCO training set

Anon Model,
Training data: Full-Body anonymized COCO training set

on Org Evaluation,
Data: Original COCO validation set

on Anon Evaluation,
Data: Full-Body anonymized COCO validation set

TABLE 3. Naming convention used to define the type of training data and type
of evaluation data used, e.g. a model named Anon on Anon is trained on
full-body anonymized data and evaluated using the anonymized validation set.

Group Riding Equipment Accessory

Class bicycle
motorcycle

skis
snowboard
baseball bat

baseball glove
skateboard
surfboard

tennis racket

backpack
umbrella
handbag

tie
suitcase

TABLE 4. Classes used by [10] to evaluate performance of trained models
with different methods of anonymization.

3.4 REALISTIC ANONYMIZATION COMPARED TO
NON-REALISTIC ANONYMIZATION
LEE [10] provides multiple tables with detailed mAP and AP
values for the m-size YOLO model. These values are used
to compare our trained models, which specialize in realistic
full-body anonymization, with models trained using different
non-realistic anonymization methods. Since most of their
information concerns the m-size model, that size is the focus
of further evaluations. Unfortunately, they supply detailed AP
for a limited set of classes only, so the comparison remains
restricted to the 14 classes listed in Table 4.

3.5 INFLUENCE OF OBJECT SIZE AND FREQUENCY
Assessment of the influence of object size and frequency are
conducted on the four different model and evaluation data
combinations. Following LEE [10], results are analyzed for
models of size m.

To focus on the relationship between object frequency
and performance impact, specific object classes are selected
to represent different frequency levels. Classes frequently
appearing with the ‘person’ class are categorized into three
frequency groups based on the total number of images in
which they appear together. These frequency distributions
are illustrated by the blue bars in Figure 6. Borders of
frequency ranges are chosen based on recognizable changes
in classwise image count, resulting in definitions of:

• High frequency fhigh: 9,000 down to 3,200 images
• Medium frequency fmed: 3,200 down to 1,400 images
• Low frequency flow: less than 1,400 images

Since performance degradation is expected to depend not
only on frequency but also on object size, the selected classes
are further categorized by size, compared to humans:
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FIGURE 6. Distribution of images per class which is pictured with person class. Blue: original COCO train set, Green: used subset for fine-tuning with different
configurations of frozen layers.

Size

Frequency
low medium high

small

banana,
vase,
bird,

toothbrush

book,
bowl,

baseball glove,
clock

sports ball,
cup,

cell phone,
bottle

medium

fire hydrant,
microwave,

toilet,
keyboard

dog,
laptop,

baseball bat,
suitcase

backpack,
chair,

umbrella,
bench

large

refrigerator,
elephant,

bed,
stop sign

couch,
bus,

horse,
motorcycle

dining table,
car,

truck,
surfboard

TABLE 5. Objects classified by size and frequency.

• Small objects: Items that can be easily carried in one
hand or fit inside it.

• Medium-sized objects: Items reaching approximately
knee or hip height when placed on the ground.

• Large objects: Items at least human-sized or signifi-
cantly larger.

Using these classifications based on frequency and size, four
classes per combination are selected. The chosen objects
are listed in Table 5. To assess performance changes by
anonymization, changes in AP are investigated for Org on
Anon, Anon on Org and Anon on Anon relative to the Org on
Org base evaluation.

3.6 INFLUENCE ON MODEL TRAINING
To determine where anonymization affects the model’s learn-
ing process, the Org model of size m, is fine-tuned on
anonymized data. To get an insight into which part of the
model is influenced by the detection process, different con-
figurations of frozen layers are trained.

By comparing the performance of different freezing strate-

Definitions Layers
BACKBONE 0 - 10
BACKBONE without PSA 0 - 9
NECK 11 - 22
NECK with HEAD 11 - 23
NECK with HEAD & PSA 10 - 23

TABLE 6. Definitions of frozen layer ranges. For architecture graph of
YOLOv10 with layer (block) numbers, see Appendix A.

gies, it is possible to identify which step is mostly affected
by anonymization and where its influence lies. Definitions of
frozen layers can be seen in Table 6.

If fine-tuning of the neck (freezing the backbone) improves
performance, it suggests that anonymization primarily af-
fects analysis and combination of features rather than fun-
damentally altering the raw image. This would indicate that
anonymized persons retain key natural characteristics, align-
ing with expectations based on the quality of anonymization,
where essential features such as face, hair, arms, and legs
seem clearly recognizable.

If fine-tuning of the backbone (freezing the neck) yields
better results, it suggests that anonymization significantly
alters the image at the pixel level, requiring the model to
relearn feature extraction to improve performance. Addi-
tionally, the fine-tuned models are compared to the model
trained entirely on anonymized data to assess whether pre-
training on original data before fine-tuning on anonymized
data provides an advantage when working with anonymized
images.

Data Selection and Parameter for Fine-tuning
To prevent overfitting on already-learned classes which are
probably unaffected by anonymization, a specific subset
of the anonymized training data is selected. Only images
containing anonymized persons and the selected classes
are used. A random sample comprising 20 % of the full
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FIGURE 7. Left: Examples of own dataset where anonymization is not introducing errors. Right: Examples of own dataset with problematic original ground truth.
The top row shows the classes ‘tie’ (blue) and ‘book’ (pink) which are removed through anonymization. The bottom row visualizes how much the original ‘person’
bounding box (yellow) needs to be extended (yellow mask).

Parameter Value
epochs 30
initial learning rate 0.001
final learning rate 0.01
momentum 0.85
weight decay 0.0007
warmup epochs 4
warmup momentum 0.8
optimizer SGD
batch size 40

TABLE 7. Parameters used for fine-tuning. Settings for optimizer and batch
size are adopted from the base model. Other values are based on suggestions
from [31, 32] and auto-tune feature of Ultralytics. Parameters not listed here
use default settings.

training set is drawn. To ensure class distributions are not
over amplified, the image count per class in the fine-tuning
subset is compared to the distribution in the full training set.
Figure 6 shows this comparison, with the fine-tuning subset
represented by green bars. Since the distributions align, the
dataset is suitable for fine-tuning without introducing further
biases. Used parameters for fine-tuning are listed in Table 7.

3.7 INFLUENCE OF LABEL ERROR

Using the original ground truth for anonymized data is not
ideal, as errors may arise, particularly in cases where indi-
viduals are interacting with objects. During anonymization,
there is no guarantee that these objects will be preserved (as
seen in Figure 2), leading to labeling inconsistencies that can
affect both training and evaluation.

In training, the model learns from altered pixel regions
where objects have been removed or modified due to
anonymization. These areas no longer resemble the same
class of objects that remain unchanged, introducing inconsis-
tencies. During evaluation, this issue presents two challenges:
the model may correctly fail to detect an object that has
been removed, yet this will be incorrectly counted as a false
negative; alternatively, due to erroneous training data, the

model might falsely detect objects which do not exist, leading
to false positives.

These issues are briefly mentioned but not extensively
explored by HUKKELAS [12], likely explaining why the
authors evaluated their models on the original validation set
rather than an anonymized one. Their decision to reduce
anonymized frames to simpler cases with single individuals
and exclude images with a high probability of person-
object interactions (e.g. images with classes like bicycles and
motorcycles) also aligns with this reasoning.

Due to the lack of specialized datasets for anonymization
and AAL, the authors of the present work started to record an
own custom dataset centered around AAL. Examples of the
dataset are provided in Figure 7 (left). A small subset of 79
frames is used to assess the impact of relabeling. The original
frames are annotated and relabeled after anonymization with
DeepPrivacy2. To achieve this, the original ground truth
is imported into the anonymized frames, compared, and
corrected where necessary. Figure 7 (right) shows cases
where these corrections need to be applied.

To quantify the effect of relabeling, models are evaluated
on the anonymized subset using both the original ground
truth and with corrected annotations. This comparison helps
determine the extent to which annotation errors influence
model performance and provides insights into the importance
of accurate re-labeling in anonymized existing datasets.

Details of own Dataset
The dataset is recorded in an ambulatory care facility and in-
cludes 14 participants (3 male, 11 female). Each person takes
various roles — caregiver, patient, visitor, or paramedic —
and performs care-related tasks, such as measuring vital
signs, wound dressing changes, movement therapy, fall inci-
dents and assistance, as well as daily actions such as dialogs,
reading, sleeping, eating and drinking. These actions are
captured as continuous data across multiple scenes.
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FIGURE 8. Left: Comparison of mAP of trained models on anonymized and original data across different model sizes. Right: AP of class ‘person’ for trained model
types and sizes on anonymized and original data.

Model
Size n s m l x

Org on Org 26.6 34.6 38.5 40.1 41.2
Org on Anon −1.1 −1.8 −2.5 −2.6 −2.9
Anon on Org −1.7 −2.6 −2.8 −2.1 −2.8

Anon on Anon −1.0 −2.3 −2.9 −2.4 −3.0

TABLE 8. Changes in mAP across model sizes for all training and evaluation
types compared to the Org on Org base model. Larger models of all types
show a larger performance decrease compared to smaller ones.

This dataset aims to provide a comprehensive basis for
studying anonymization by capturing data across multiple
modalities, offering valuable opportunities for future re-
search. The sensor setup includes an Azure Kinect camera
and a Blickfeld Cube1 LiDAR, with transformations between
both sensors provided. Both sensors are mounted together,
observing the scene from a top-corner viewpoint at 3 meters
height with a 15◦ downwards angle, mimicking a real-world
application setup.

Data is recorded using ROS2 [33], capturing the RGB
image, depth image, and depth cloud of the Kinect, as well as
the point cloud of the Cube1. Additionally, audio is recorded
via the Kinect’s microphone array. Recordings are stored as
ROS2 bag and .wav files. For further processing, all ROS
messages are extracted into individual image and .pcd files.
The recorded scenes have a combined duration of about 30
minutes, with a total size of 1.2 TB.

The Kinect is configured to record at 15 FPS in 1440p
resolution, which is later downsampled to 640× 480 to align
with the average COCO resolution.

LiDAR frames are recorded at 1.8 Hz using 150 × 150
scan lines at an angle spacing of 0.4◦ across a FOV of
70◦ × 33◦ (h× v).

At the current state, annotations are limited to 79 original
and full-body anonymized RGB images and cover 18 objects:
person, backpack, tie, umbrella, sports ball, bottle, cup, bowl,
chair, dining table, bed, potted plant, clock, vase, laptop,
remote, cell phone and book.

Model
Size n s m l x

Org on Org 26.6 34.6 38.5 40.1 41.2
Org on Anon −1.1 −1.8 −2.5 −2.6 −2.9

Anon on Anon 25.6 32.3 35.6 37.7 38.2
Anon on Org −0.7 −0.3 +0.1 +0.3 +0.2

TABLE 9. Changes in mAP across model sizes for exchanged evaluation data
types compared to training type. The anonymized model Anon shows
noticeably smaller changes than the model trained on original data (Org).

4 RESULTS
4.1 GENERAL PERFORMANCE AND INFLUENCE OF
MODEL SIZE

To assess general performance and the influence of model
size, the mAP of each model and evaluation combination
(see Table 3) is compared across all trained model sizes.
The anonymized class ‘person’ is examined to determine
how performance changes through anonymization, offering
insights on an important class for both defined use cases.

General Performance
Figure 8 (left) shows the mAP of all training and evaluation
types across all classes. The mAP increases with model size
for all model types. However, comparing absolute differences
between model types reveals that larger models exhibit a
bigger absolute decrease when compared to the base model
Org on Org, as seen in Table 8. These results align with
HUKKELAS [12] but contradict LEE [10] and ZHOU [11].

Compared to LEE [10], the differences remain small. Their
work reports a decrease of about −25 across model sizes
using distortion-based anonymization for keypoint detection,
or a decrease ranging from −2.4 to −4.9 for object detection.
The paper utilizes non-realistic anonymization, and evaluates
on original images only. Achieving smaller reduction in
performance by using realistic anonymization is the favorable
option for anonymization, as outlined by HUKKELAS [12].

Nevertheless, performance drops with anonymized data
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compared to Org on Org, whether used for evaluation or
training, as seen in Table 8. For evaluations of models
on their training data type, the anonymized model (Anon
on Anon) shows a lower performance when compared to
the base model (Org on Org). Other types show a slightly
smaller decrease.

Comparing the performance of models on their own training
type (e.g., Org on Org) with the opposite type (e.g., Org
on Anon) in Table 9, reveals that the difference for models
trained on anonymized data is small or even negligible. This
indicates a certain exchangeability of data type for anon-
trained models, though a small performance loss compared
to their training data remains. Models trained on original data
show a higher performance drop when switching data type.

This effect likely stems from imperfections introduced by
anonymization. Embedding errors in training data is already
known to make models more resilient (e.g., through data
augmentation [34, 35]), which could explain this outcome.
The extent of introduced imperfections and their possible
effects are examined in Section 4.2.

Anonymized Class ‘person’
For the anonymized class, similar observations as mentioned
above apply and are visible in Figure 8 (right). However,
some differences need to be highlighted.

For the ‘person’ class, there is a more clear difference in
terms of data type exchangeability. For the original model
Org, switching to anonymized data results in a performance
loss (e.g., x-size Org on Anon: −3.5). Whereas, for an
anonymized model Anon, switching to original data results
in a greater loss (e.g., x-size Anon on Org: −5.5). In our use
cases, these represent significant decreases for an important
class, so switching between data types should be avoided
within these use cases.

When maintaining the same training type within the eval-
uation (Org on Org, Anon on Anon), the difference between
original and anonymized models becomes somewhat smaller
(e.g., x-size: −2.2). By applying targeted tuning to the
anonymized model and utilizing carefully crafted datasets,
this small performance drop will potentially be reduced or
even eliminated.

From an application point of view, in scenarios where an-
onymized data must be used, a model trained on anonymized
data is preferable. In terms of person classification, the
performance is notably better when both the training and
inference are conducted on the same data type.

4.2 EFFECTS OF ANONYMIZATION ON AN IMAGE
LEVEL
By comparing the SSIM score across the whole image and
class specific bounding box areas, it is possible to assess the
changes through anonymization which impact each of the
defined classes (see list of classes in Table 1).

SSIM for whole Images
The achieved SSIM values for investigating changes across
the entire image are visualized in Figure 9 (left). Although
all used images contained the investigated class and persons,
some classes reach a SSIM of 1, indicating no changes
occurred through anonymization. One likely reason is that
DeepPrivacy2 failed to anonymize persons, which does not
necessarily imply poor performance. Images labeled con-
taining “person” are not further verified for how much of
the person is visible or how large the person is. COCO
includes images containing only body parts or small persons,
but still labeled with person annotations. These can remain
undetected and are therefore not anonymized. An example of
this issue is visualized in Appendix D.

The investigation of the AD classes reveals that all classes
exhibit a mean SSIM greater than or equal to 0.9, indicating
a high degree of similarity between the anonymized and
original data. A significant proportion of the images achieve
a SSIM greater than 0.8, further showcasing high similarity.
Notably, classes where no changes are intended (AD NoCG)
display high SSIM values with smaller variability, suggesting
minimal alteration in the anonymized data. Even, classes
where changes are acceptable (AD CG) show high SSIM
values, though with greater variability.

Compared to the AD groups, all classes in the AAL group
show a notably broader variance. For AAL, a larger portion
of the data exhibits a lower SSIM, with values greater than
0.75. The mean SSIM within all classes fluctuates between
0.82 and 0.92. Additionally, the minimal SSIM values are
significantly lower than those observed in the AD classes.
These observations suggest that the anonymized images with
selected AAL classes demonstrate less similarity to the orig-
inal images compared to the AD classes, therefore undergo
more significant changes through anonymization.

The lower SSIM values for the AAL group are likely
attributed to the nature of the images in this dataset. AAL
images have a higher probability to feature larger or closer
individuals, as they are typically taken in home environments.
As a result, people occupy a larger portion of the image, and
the anonymization process has a more significant impact on
these areas. In contrast, the AD group images are generally
captured in outdoor environments, offering a wider field
of view where individuals appear smaller, leading to less
alteration by the anonymization process and, consequently,
higher SSIM values.

SSIM for Bounding Boxes
To gain a clearer perspective on the impact of anonymization,
it is essential to investigate the changes in the relevant areas
corresponding to different classes. Using the same images,
SSIM calculation is restricted to bounding boxes of single
classes.

In Figure 9 (right), it is apparent that the classes ‘car’,
‘stop sign’, and ‘traffic light’ remain unchanged through
anonymization, as reflected by their SSIM values of 1.0. This
confirms that the NoCG group is not affected by anonymiza-
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FIGURE 9. Results for SSIM calculation using the original image and the anonymized one. Left: SSIM for whole images which contain the relevant class. Right:
SSIM-Results if only the respective ground truth bounding box area for calculation.

car stop sign traffic light cow umbrella bench knife bed chair potted plant clock tv
Org on Org 38.0 28.8 15.6 40.7 39.0 19.5 13.5 30.2 22.0 21.7 34.8 41.6

Org on Anon 0.0 +0.4 −0.1 −0.6 −2.3 +0.9 −2.9 −1.3 −1.2 +0.9 −0.3 −0.8

TABLE 10. Changes in AP (IoU = 50 to 95) for an YOLOv10 size m (original data trained) if evaluated on original data and anonymized data. Values of decreased
AP are bold. Objects with decreased AP correspond to those with larger changes through anonymization, as seen in SSIM values in Figure 9.

tion. An explanation for this are the few instances of per-
sons near these classes. Even within the AD CG group, the
changes are minimal, with most data showing a similarity of
approximately 0.9. This suggests that the use of anonymiza-
tion in the AD use case does not significantly impact the use
case relevant classes.

For AAL groups, classes in the NoCG category are no-
ticeably more affected by anonymization, likely because they
are more closely related to persons. This effect also appears
for “umbrella” and “bench” in AD. Within AAL CG, values
remain close to 1, even surpassing CG in AD.
These findings lead to the conclusion that anonymization for
more human-centered applications like AAL is more prob-
lematic. Relevant classes show more pronounced changes
and a larger decline in AP, which correlates with the
bounding-box-based SSIM (see Table 10 and compare with
Figure 9). These changes often stem from overlaps with
generated content or partial contact of the object’s outer
edges, potentially altering important features. For instance,
Figure 5 shows how anonymization removes the pointy edges
of an umbrella.

As noted by LEE [10], models trained on original data
often rely on shape and contour. Therefore, alterations can
lower performance when using anonymized data. These ob-
servations explain effects noted in previous sections.

4.3 REALISTIC ANONYMIZATION COMPARED TO
NON-REALISTIC ANONYMIZATION
To compare model performance regarding the anonymization
method, models are compared with those of LEE [10] using
the same set of 14 classes in Table 4. Figure 10 shows the AP

for the evaluated classes at two IoU ranges: 1) IoU of 50 to
95 (left) and 2) IoU of 50 (right).

For an IoU of 50 to 95, our models show lower per-
formance than the models from LEE [10]. The mean per-
formance of the own models has already been discussed
in Section 4.1, along with most differences between them.
Notably, the Org on Org model exhibits the smallest variance
in AP, while the variance of the reference models remains
relatively consistent across all non-realistic anonymization
methods.

When evaluation is performed at an IoU of 50, our models
outperform those of LEE [10] (see right side of Figure 10).
Better performance on an IoU of 50 indicates that they are
more adept at detecting objects with less stringent overlap
requirements. Conversely, performance dropping at higher
IoU thresholds (50 to 95) suggests that the models have prob-
lems to accurately localize objects under stricter matching
conditions, where predictions must closely align with ground
truth annotations.

Lower IoU thresholds like 50 are more forgiving and
suitable for scenarios where partial overlaps are common or
where precise localization isn’t critical. Higher IoU thresh-
olds, such as 50 to 95, are stricter and better suited for tasks
requiring precise object localization, such as in AD.

A possible explanation for the weaker performance is that
LEE [10] uses non-realistic anonymization methods, which
introduce abrupt changes in the anonymized region and
disrupt natural pixel relationships. Such alterations may be
easier for models to learn. These methods also tend to modify
only the anonymized object.

In contrast, the realistic anonymization used in the present
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FIGURE 10. Comparison of models trained on anonymized data of [10] and our trained models. Both using YOLO size m. The study [10] uses original COCO data
for evaluation. Our Models are trained on original data (Org) and anonymized (Anon) and evaluated using both the original validation set (on Org) and an
anonymized one (on Anon). Left: Results for an IoU of 50 to 95. Right: Results for an IoU of 50. AP values are restricted to a set of 14 classes, listed in Table 4.
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to base model Org on Org. Differences to the base model suggest a stronger relation between lower AP and size than between lower AP and frequency. Model size
of pictured values: size m.

work, tries to generate natural-looking persons flowing seam-
less into the image. This alters a larger surrounding area,
inducing errors and making them harder to detect. Another
factor is the heavily restricted class set, which focuses on
classes closely associated with humans — already shown to
be problematic for the chosen anonymization method in
Section 4.2.

However, these factors do not fully explain why even the
base model (Org on Org) underperforms. A likely reason
is that the training parameters and optimization strategies
did not transfer as effectively to YOLOv10 as they did to
YOLOv8, which was used by the comparison source.

4.4 INFLUENCE OF OBJECT SIZE AND FREQUENCY
Using the groupings from Table 5 defined in Section 3.5, the
influence of object size and frequency with the anonymized

class is investigated. Investigations are based on AP and
changes in AP compared to Org on Org. The results are
visualized in heatmaps. A lighter color indicates higher AP,
where a darker color indicates lower AP. These values are
averaged per size-frequency pairing. Individual class-AP are
provided in Appendix C.

Figure 11 (left) shows the average AP for each size-
frequency grouping. Objects with higher frequency to the
‘person’ class consistently have lower performance across all
sizes, and smaller objects also exhibit generally lower per-
formance. These findings hold for all model and evaluation
types. This suggests they reflect a general performance trend,
rather than changes related to anonymization.

To gain further insight into the relation of size and fre-
quency to anonymization, Figure 11 (right) compares the
change in AP by subtracting the Org on Org baseline from the
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fine-tune base model (Org size m) and Anon model. All models are evaluated
on anonymized data.

other three model-evaluation combinations. The coloration
of tiles suggests a stronger connection between lower perfor-
mance and smaller objects. However, higher frequency with
the person class also contributes to reduced performance.
Negative impacts are more pronounced for Org on Anon and
Anon on Anon than for Anon on Org, suggesting that training
on anonymized data provides increased resilience in cases of
data type changes.

Like in LEE [10], classes with higher frequencies show
worse performance than lower-frequency objects. Our data
points to an even stronger link between low AP and smaller
object sizes. The difficulty of smaller objects — already more
challenging under normal conditions (compare left side of
Figure 11, Heatmap of Org on Org) — is even more amplified
under the influence of anonymization. They are more likely
to be altered or removed through anonymization, especially
if worn or handled by persons. This effect is evident when
comparing objects fitting these conditions, e.g. the class ‘tie’
drops between Org on Org and Org on Anon from 31.4 AP
to 1.3 AP.

4.5 INFLUENCE ON MODEL TRAINING
To determine where anonymization affects the model’s learn-
ing, different freezing strategies for fine-tuning are com-
pared. The AP comparison in Figure 12 shows that fine-
tuning does not improve performance. Results with various
frozen-layer configurations only converge toward the perfor-
mance of the model trained on anonymized data, which is
worse than the base model.

Among the strategies, no clear differences emerge: the
mean and maximum AP values decrease for all variants,
and there are only minor differences between models with
a frozen backbone or neck, with the frozen neck models

Model AP50 : 95, person AP50, person
Org on Anon 46.7 65.8
BACKBONE +1.1 +1.6
BACKBONE without PSA +1.4 +2.4
NECK +1.5 +2.5
NECK with HEAD +1.5 +2.4
NECK with HEAD & PSA +1.4 +2.4
No Freeze +1.7 +3.2
Anon on Anon +1.1 +1.7

TABLE 11. Differences in AP for the anonymized ‘person’ class across the
different freezing strategies. Values are compared to the Org model, which is
the base model used for fine-tuning. All models are evaluated on anonymized
data. The best improvements are bold.

performing slightly worse.
The model without any freezing is close in performance

to the Anon on Anon model. Fine-tuning of an original
model gives slightly better results than training directly on
anonymized data, presumably due to the base model’s prior
knowledge. Though, differences are minimal.

The graph suggests a slight tendency for models with a
frozen backbone to outperform those with a frozen neck, im-
plying that realistic anonymization primarily affects feature
analysis and combination. However, focusing on changes in
the anonymized class points to a different, more relevant
interpretation, since anonymization occurs there.

According to Table 11, improvements from fine-tuning on
the anonymized ’person’ class suggest that changes intro-
duced by anonymization occur at the pixel level rather than
the feature level. Fine-tuning the backbone leads to better
results than freezing the backbone while fine-tuning the neck.

Not freezing at all delivers even better results, indicating
that newly learned features also require different processing.
These finding further align with LEE [10], where the authors
note that anonymized models interpret features differently
than models trained on original data. The initial assump-
tion that generated humans retain key classification features
(face, hair, arms, legs) does not seem to hold for classifying
anonymized persons.

The general performance decrease on anonymized data,
as observed in Figure 12, also appears in the other parts
of this section. It highlights a wider issue when using an
anonymized dataset with the original ground truth. Inserting
generated content into the image sometimes partially or fully
occludes other classes, leading to errors when combined
with the original ground truth for evaluation purposes. Sec-
tion 4.6 demonstrates the potential influence of correcting
these errors.

4.6 INFLUENCE OF LABEL ERROR
A small sample from our in-development dataset is tested to
see if relabeling is worthwhile. Both Org and Anon mod-
els are evaluated on the same sample. For evaluation, two
ground-truth variants are used: one matching the original im-
ages and one with corrected annotations after anonymization.

Figure 13 shows the difference in AP. Both the AP for
Org and Anon model either improve or remain unchanged,
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FIGURE 13. Changes of AP for classes where annotations are corrected for
anonymized data. Graphs show differences of the same model evaluated
using the ground truth of original data and ground truth with corrected
annotations for anonymized data.

indicating that relabeling does not reduce AP for any of
the evaluated classes. As expected, correcting labels on
anonymized data leads to better results, particularly for small
objects. There is also a measurable gain for the ‘person’
class. DeepPrivacy2 sometimes fails to correctly anonymize
persons, e.g. when lying or sitting in bed, capturing parts of
the bed or blanket in the generated instance (compare right
side of Figure 7). If corrected to the new dimensions, these
cases likely explain the improved performance for persons.

These findings suggest that correcting erroneous annota-
tions yields a noticeable improvement in evaluation results
for both Org and Anon training types. Therefore, models
trained on anonymized data with corrected annotations will
also produce better results, since the instances used for
training fit the data supplied. The key result is that existing
datasets cannot be directly used with anonymization without
additional label adjustments.

5 CONCLUSION
Using the systematic approach portrayed in Section 3, this
study identifies and investigates several problems that arise
when working with anonymized data, especially regarding
model training. These challenges include performance drops,
difficulties in accurate object localization, and complications
stemming from the nature of anonymized images.

Gaining these insights validates our systematic approach to
analyzing anonymization methods successful. Nevertheless,
issues like the labeling error and training parameters are iden-
tified. The main findings of this study as well as identified
problems are summarized within this section.

Systematic approach
Training models of various sizes on original and anonymized
data and evaluating both variants on anonymized and original
data opens a wide range of evaluations and comparisons,
offering the possibility to assess performance based on model
size, as well as training and evaluation data types. This ap-
proach also provides insights into data exchangeability for
real-world scenarios where only one model type (Org or
Anon) is used. Employing SSIM as a metric assesses the
changes introduced by anonymization and their influence on
model performance. Freezing different configurations of lay-
ers during fine-tuning identifies the influence of anonymiza-
tion on images and potential changes in the model’s learning
process. Investigating different object sizes and frequencies
with the ‘person’ class highlights objects groups that are
more heavily affected by anonymization.

The systematic approach allows us to answer the questions
posed in Section 1, which renders our approach of evaluation
successful. Applying it to further anonymization methods,
networks, or computer vision tasks will yield valuable in-
sights into the influence of anonymization.

Changes through Anonymization
Using SSIM as a metric to evaluate changes introduced
by anonymization reveals significant differences between
objects. For AD classes, it does not show relevant effects
through realistic anonymization. In contrast, AAL applica-
tions, which are more human-centric, experience stronger
changes to relevant classes and a greater performance de-
cline. Overlaps frequently cause partial or complete oc-
clusion by generated content, which is the primary source
of problems.

The current state of realistic anonymization appears un-
suitable for AAL environments, as the border area around
generated persons also alters important features of surround-
ing objects. Additionally, DeepPrivacy2 fails to detect distant
or partially occluded persons (e.g., a person lying in bed),
making it ill-suited for both AAL and AD applications due to
occlusion and distance issues.

General Performance and Model Size
With our systematic approach, it is possible to evaluate the
performance of different model sizes and model types (Org,
Anon) and their general performance on anonymized and
original data.

Models trained on anonymized data perform better on
them, than those trained on original data. Therefore, in sce-
narios where anonymized data is mandatory, models trained
entirely on anonymized data are preferable. Regarding the
anonymized class ‘person’, detection performs better when
both training and evaluation data are of the same type.

In general, the trained models struggle to localize ob-
jects accurately, leading to lower performance under stricter
matching conditions. In conclusion, the chosen realistic
anonymization is not well suited for AD, as it requires a high
degree of precision.
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The differences in performance between models trained
on realistic anonymized data and those trained on original
data are generally small. However, evaluating on anonymized
data or using models trained on anonymized data typically
results in lower performance compared to models trained and
evaluated on original data.

Compared to LEE [10], the models presented here per-
form worse, likely because the training parameters and
optimization strategies did not transfer as effectively to
YOLOv10 as they did to YOLOv8. Optimizing the training
parameter for YOLOv10 will most likely yield clearer and
improved results.

Larger models of all types exhibit a recognizable decrease
in performance compared to smaller ones when working
with anonymized data, rendering smaller models more ro-
bust to changes caused by anonymization. Therefore, the
results comply with HUKKELAS [12], and contradict those
of LEE [10] and ZHOU [11]. The contradiction with LEE
[10] is especially peculiar, as they also use YOLO, unlike
HUKKELAS [12] where ResNet/R-CNN architectures are
used. There is currently no explanation for this. Further
investigation is suggested.

Data Exchangeability
By switching the evaluation data to the opposite type of the
training data (Org on Anon, Anon on Org), this study assesses
data exchangeability.

The model trained on anonymized data shows notice-
ably smaller performance changes than the model trained
on original data. We assume that anonymization-induced
changes in classes strengthens the model trained on them,
making it more robust. Nevertheless, the Org model performs
better than the Anon model on both data types. Which
indicates that in cases where both types need to be processed,
either an original trained model should be used or multiple
models, specialized to each type. For anonymized models on
anonymized data, a small performance drop is to be expected
compared to the original trained one.

Fine-tuning on Anonymized Data
Fine-tuning a model initially trained on original data offers
the opportunity to compare its performance against a model
trained directly on anonymized data.

We observed only a minor performance gain over the Anon
model, likely due to knowledge already acquired by the base
model. Although the original model still performs slightly
better, the differences remain small. Parameter optimization
for training and fine-tuning is likely to enhance the clarity
of results.

Fine-tuned models only offer a minor improvement in
comparison to the model directly trained on anonymized
data. For the anonymized class ‘person’, the performance
improves when the model is fine-tuned to handle anonymized
data. Given these findings, fine-tuning is only worthwhile if
the desired application is centered around humans.

Influence on the Model’s Learning Process
Evaluating different freezing strategies provides insights into
how the model processes anonymized images. Anonymiza-
tion appears to affect pixel-level details rather than features.
Freezing the neck (fine-tuning the backbone) performs better
than freezing the backbone (fine-tuning the neck), indicating
that changes occur primarily on the pixel level.

A detailed review of single layers (e.g., influence on the
PSA layer) is not feasible, as differences between fine-
tuned models remain minimal. Not freezing any part yields
even better performance, suggesting newly learned features
also need different processing, supporting the idea that
anonymized models interpret data differently than those
specialized in original data.

Influence of Object Size and Frequency
Classes with higher occurrence frequencies tend to per-
form worse than those with lower frequencies. This is also
observed by LEE [10]. Our data indicates a stronger link
between lower performance and smaller object sizes. Smaller
objects are already challenging to detect, and anonymization
amplifies this difficulty, particularly for items worn or held
by a person, mainly because of overlapping or coverage by
generation results.

Realistic Anonymization vs. Non-realistic Methods
A comparison between our results for realistic anonymization
and those of LEE [10] for non-realistic methods reveals a
significant performance difference. Based on different IOU
ranges, our trained models show lower accuracy. We theorize
that non-realistic anonymization introduces abrupt, unnatural
alterations in the anonymized region, which seemingly sim-
plifies learning for models.

In contrast, the realistic anonymization used here aims
to create natural-looking persons blending into the scene,
generating additional errors by modifying surrounding areas,
potentially altering features or removing objects.

It is to highlight, that caution is warranted when compar-
ing our results directly to those of LEE [10]. They solely
evaluated training performance by training on anonymized
data and evaluating on the unchanged coco validation set.
In contrast, we additionally used the anonymized COCO
validation set.

Observed differences between the studies motivated fur-
ther exploration of the influence of anonymization on the
validation set. Therefore, we investigated the correctness of
the original ground truth on anonymized data using a subset
of our dataset.

Label error
Experiments on our small data subset highlight that relying
on the original ground truth is problematic when images
are anonymized. Relabeling data for anonymized imagery is
necessary to improve both training and evaluation.

Corrected annotations benefit smaller objects but also
improve person-class performance. Using original ground
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truth is believed to be one of the primary reasons for the
anonymized model’s lower performance. The issue is am-
plified by the lack of a dataset dedicated to anonymization,
enforcing the use of datasets that are not designed for this
purpose and require substantial work for relabeling and ap-
plying anonymization methods. This also leads to problems
in comparing different studies.

Results across all experiments clearly highlight the influ-
ence of erroneous labels as the main source of problems for
training or evaluation with anonymized data. Anonymiza-
tion changes the shapes of objects or removes them from
the image. Using original annotations leads to either erro-
neous training data or penalties for missing detections during
the evaluation.

The only way to eliminate this issue is to re-label
anonymized data, which likely improves training and eval-
uation results. These results amplify the need for specialized
datasets for anonymization research, keeping these problems
in mind and providing corrected annotations for anonymized
data, like our sample dataset.

6 FUTURE WORK
All these challenges and findings summarized in Section 5
indicate a need for further research focusing on three prior-
ities: improving realistic anonymization methods, adapting
models to anonymized data, and providing datasets suitable
for anonymization research to advance both of the first
two goals.

Improving Realistic Anonymization
In DeepPrivacy2, minimizing the bordering region around
the anonymized person can reduce alterations to other
classes, and will therefore enhance subsequent processing.

Since DeepPrivacy2 aims for a seamless integration of
anonymized regions into the surrounding image, further en-
hancements (e.g. adapting to lighting and other image fac-
tors) would be beneficial. As occlusion remains a major chal-
lenge for anonymization, this study highlights the importance
of preserving objects within anonymized areas and calls for
research featuring this problem.

Additionally, as realism is potentially important for further
processing after anonymization, DeepPrivay2’s tendency to
context related generation is a feature likely needed. Refining
this characteristic in future iterations provides the capability
of context-aware identity generation.

However, even full-body anonymization does not in-
herently guarantee privacy as other identifiable features,
like gait, may remain. Exploring the extent to which
DeepPrivacy2 alters gait, alongside its prompt genera-
tion and sequence anonymization features, could yield
valuable improvements.

Adapting Models to Anonymized Data
As models trained on anonymized data classify differently
than those trained on original data, a deeper exploration
of how these models make decisions could help tune them

for anonymized inputs. Findings may guide the creation of
specialized datasets that emphasize the distinct detection
processes in anonymized scenarios. Even adjustments to
model architecture may further improve performance.

Providing Datasets suitable for Anonymization Research
There is a notable gap in computer vision datasets designed
specifically with anonymization in mind. Such a dataset
would require rich annotations (objects, segmentation masks,
poses, human actions, emotions, context) while also being
use case–specific, given that task performance can strongly
depend on objects near anonymized classes.

Development of this resource is challenging not only
because of the considerable time and effort required, but
also due to decisions on which anonymization techniques to
employ. Correcting annotations for each chosen method adds
further complexity.

Advancements in these priorities boost the research and
introduction of privacy and law respecting AAL and AD
applications. This work sees a need for privacy-by-design
systems, which include anonymization. These are needed
to produce data usable for follow-up algorithms. Given the
findings of this and prior works, further advancements in
the field of anonymization are important to establish life-
changing technologies like AAL and AD.

REFERENCES
[1] A. Sweeting, K. A. Warncken, and M. Patel, “The

Role of Assistive Technology in Enabling Older
Adults to Achieve Independent Living: Past and
Future,” Journal of Medical Internet Research,
vol. 26, e58846, Jul. 30, 2024, ISSN: 1438-8871. DOI:
10.2196/58846. [Online]. Available:
https://www.jmir.org/2024/1/e58846 (visited on
01/22/2025).

[2] E. Schoitsch, “Autonomous Vehicles and Automated
Driving: Status, Perspectives, and Societal Impact,” in
IDIMT-2016: Information Technology, Society and
Economy Strategic Cross-Influences: 24th
Interdisciplinary Information Management Talks,
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APPENDIX A YOLOv10 ARCHITECTURE GRAPH
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FIGURE 14. Architecture of YOLOv10 size m, based on layer configuration file from [22] and YOLOv10 paper [9]. Layers types and number according to [22].
Please notice that architecture has different types for some layers for other model sizes.
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APPENDIX B DATASETS
Datasets for object detection and segmentation tasks

MS COCO [27]: A widely used dataset focusing on object detection, segmentation, and captioning. It features scenes
from everyday life, including homes, urban and natural environments, various human activities, and crowded settings. The
dataset comprises 330,000 images, with over 200,000 labeled images covering 80 object categories (91 if ‘stuff’ categories
are included), and 250,000 people annotated with keypoints. It includes object segmentation, contextual information, and 5
captions per image.

LVIS (Long-tailed Visual Instance Segmentation) [36]: A large-scale dataset for instance segmentation, featuring 2 million
masks across 1.2 million images and over 1,200 object categories. LVIS provides rich contextual information, long-tail
distribution of object frequencies, and detailed annotations, including object attributes and multi-labels per object. It features
scenes from diverse environments such as urban, indoor, and natural settings.

ImageNet [37]: ImageNet is a large-scale dataset designed for visual recognition tasks, featuring over 14 million images
labeled across more than 20,000 categories. It emphasizes object classification, detection, and localization, with its most widely
used subset consisting of 1,000 classes spanning approximately 1.43 million images. Images are richly annotated, primarily
depicting single objects in varied contexts rather than complex scenes with multiple labeled objects or people.

Pascal VOC 2012 Dataset [38]: The Pascal VOC 2012 dataset is a benchmark for object detection, segmentation, and action
classification tasks. It consists of >11,000 images with over 27,000 annotated objects across 20 categories, including animals,
vehicles, and household items. Annotations include bounding boxes, pixel-wise segmentation, and object class labels. Images
often depict realistic settings, such as streets, parks, indoor environments, or natural landscapes, and frequently include multiple
objects in varied poses. The dataset supports multi-label and complex scene analysis.

Open Images [39]: A large-scale dataset from Google featuring approximately 9 million images with diverse annotations.
These include object bounding boxes, segmentation masks, visual relationships and properties (e.g., ‘woman playing guitar’,
‘beer on table’), localized narratives (detailed content descriptions of foreground, middle, and background), and point-level
labels (specific pixel-level annotations). The number of classes and total image counts vary significantly by annotation
type — for instance, 350 classes for instance segmentation, 600 classes for bounding boxes, and 1,466 different descriptions
for relationships. The dataset spans a wide range of content, from single objects to complex scenes across various topics.

Datasets to enhance realistic anonymization results
Realistic anonymization is a complex task that requires expertise in pose-related generation, clothing synthesis, human action
modeling, and more. Consequently, the development of these methods often relies on a diverse selection of datasets. The
following section provides an overview of datasets, may be valuable for anonymization or enhancing anonymization techniques.

Flickr Diverse Humans Dataset [40]: This dataset consists of real-life images featuring centered single humans, annotated
with dense pose (CSE), keypoints, and segmentation masks. It lacks additional annotations, such as object segmentation,
focusing solely on human-centric data. With 1.5 million images for training and 30,000 for validation, it serves as a valuable
resource for improving the synthesis and analysis of human poses. The dataset contributed to the development of the first
version of DeepPrivacy [40] and was released with it.

CelebFaces Attributes [41]: CelebFaces Attributes features facial attributes annotated with approximately 40 flags, such as
gender, age, and expressions. It contains 200,000 images and is particularly interesting for tasks involving facial editing, and
synthesis of facial features.

YouTube 8M video dataset [42]: Comprising around 500,000 hours of video streams annotated with 4,800 labels for
video categorization, this dataset is valuable for studying context preservation. While it provides extensive content, labeling
individuals within the videos poses a challenge. The dataset has been utilized in privacy preservation research, such as in [43],
with a focus on facial anonymization.

Clothing Co-Parsing dataset [44]: This dataset comprises 2,000 high-resolution street fashion images annotated with 59
labels for various clothing types, along with 1,000 images featuring pixel-level annotations. It provides detailed segmentations
of individual garments and skin, making it a valuable resource for improving clothing generation techniques. The dataset has
already been applied in a realistic anonymization method, as demonstrated in [16], to enhance the synthesis of clothing in
anonymized images.

Human3.6M dataset [45]: This dataset provides extensive and diverse 3D human pose data, including 3.6 million annotated
3D poses paired with corresponding images. Poses are captured by 11 professional actors performing 17 distinct scenarios,
such as eating, making purchases, pointing in directions, and phone conversations. Captured poses are used to generate human
3D models into real scenery. Annotations also include background subtraction, bounding boxes for individuals, and detailed
pose information. As well as the Clothing Co-Parsing dataset, it has been applied in [16].

Hardhat dataset [46]: This dataset focuses on hardhat detection in industrial environments, contributing to workplace privacy
and safety-related object detection tasks. It includes approximately 12,000 images with bounding box annotations specifically
for hardhats, providing a resource for applications in industrial safety monitoring.
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APPENDIX C DETAILED RESULTS

AP over Size and Frequency
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FIGURE 15. AP of single Objects within Size-Frequency pairs.

APPENDIX D ADDITIONAL IMAGES

FIGURE 16. Example, where DeepPrivacy2 is unable to anonymize persons as they are too small to be found by its detectors. Nevertheless, the persons are
labeled within the COCO annotations. Even for the human eye, they are hard to spot.
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